Package ‘CTP’

October 12, 2022

Type Package
Title Closed Testing Procedure (CTP)
Version 3.0.1
Depends clinfun, diagram, stats, emmeans
Imports dplyr, magrittr, MASS, survival, shape, Gmisc, grid
Suggests knitr, rmarkdown
License GPL (>= 2)
LazyLoad yes
Encoding UTF-8
RoxygenNote 7.1.1
VignetteBuilder knitr
NeedsCompilation no
Author Paul Jordan [aut, cre], Matthias Herpers [aut]
Maintainer Paul Jordan <paul.jordan@roche.com>
Repository CRAN
Date/Publication 2021-04-27 11:20:02 UTC

R topics documented:

- Adjust_p ... 2
- Adjust_raw 2
- AnalyseCTP 4
- colorectal 6
- CTP ... 6
Adjust_p

Adjusting p-values, auxiliary function

Description

Adjusting p-values, auxiliary function

Usage

Adjust_p(ctp.struc, ctp.pval)

Arguments

- ctp.struc: Object of class ctp.str.
- ctp.pval: Data frame with hypothesis names and unadjusted p-values. Output from CTPcompare.

Value

Adjusted p-values

Adjust_raw

Adjusting raw p-values of a CTP

Description

Function that adjusts the raw p-values of the elementary hypotheses of a closed testing procedure. The raw p-values are adjusted according to the closure principle. The adjusted p-value is calculated as the maximum of the raw p-value from the current hypothesis in question and the raw p-values from all subsequent hypotheses that contain the current hypothesis.
Usage

Adjust_raw(
 ctp.struc,
 p.value,
 dataset.name = NULL,
 factor.name = NULL,
 factor.levels = NULL,
 model = NULL,
 test.name = NULL
)

Arguments

ctp.struc Object generated by `IntersectHypotheses`
p.value Vector of raw p-values in the order of the hypotheses created by `summary.ctp.str`
dataset.name Character string naming the analysis dataset (optional - only for documentation purposes).
factor.name Character string naming the factor whose levels are compared (optional - only for documentation purposes).
factor.levels Vector of type "character" containing the levels of the treatment factor (optional - only for documentation purposes).
model Model used in the analysis (optional - only for documentation purposes).
test.name Character string naming the statistical test applied.

Value

An object of `oldClass = "ctp"` to be used for summarizing and plotting the results.

See Also

`IntersectHypotheses, AnalyseCTP, Display, summary.ctp`

Examples

```r
Pairwise <- IntersectHypotheses(list(c(1,2), c(1,3), c(1,4), c(2,3), c(2,4), c(3,4)))
Display(Pairwise)
summary(Pairwise)

# the vector of p-values calculated by another software
p.val <- c(
  0.4374,
  0.6485,
  0.4103,
  0.2203,
  0.1302,
  0.6725,
)```
result <- Adjust_raw(ctp.struc=Pairwise, p.value=p.val)

## details may be documented
result <- Adjust_raw(Pairwise, p.value=p.val
 ,dataset.name="my Data", factor.name="Factor"
 ,factor.levels=c("A","B","C","D"), model=y~Factor
 ,test.name="my Test")

summary(result)
Display(result)

AnalyseCTP

AnalyseCTP

AnalyseCTP

Description

Calculation of p-values of a closed testing procedure (CTP). The function returns an object of oldClass "ctp"; summary() and Display() can be applied.

Usage

AnalyseCTP(ctp.struc, model, data, factor.name = NULL, test.name = "F", ...)

Arguments

ctp.struc Object generated by the function IntersectHypotheses (structure of CTP)
model model of the form response~treatment. If testname="F", the model can be extended by covariates and other factors. In the case of a Logrank test the response must be imputed as Surv(time,status).
data Dataframe, missing values in the response or treatment variable are not allowed!
factor.name Character string naming the factor whose levels are compared (treatment factor). By default the first variable of the right-hand side of the model formula is used.
test.name One of the following strings
  • "F" - F-Test (ANOVA from linear model, default)
  • "glm" - generalised linear model
• "kruskal" - Kruskal-Wallis-Test
• "chisq" - Chi square test
• "prob" - Fisher's exact test for total number of observations <200 else Chi square test
• "lgrank" - Logrank-test
• "jonckheere" - Jonckheere-Terpstra test of ordered alternatives
• "glm" - generalised linear model, using function glm from stats.

... Additional arguments for the chosen test.

Details

The hypothesis tree of the closed testing procedure must be created using IntersectHypotheses. For more details on the theory and the implementation as well for many examples, see the vignettes.

Value

An object of old class(ctp), consisting of a list with:

• CTPparms: List with objects describing the CTP setup.
• pvalues: Dataframe with all tested hypotheses, raw and adjusted p-values.

Note

This procedure is constructed for testing differences and two-sided hypotheses, but not for equivalence tests. It is further based on independent samples from the population involved (i.e. on parallel group designs, but not on cross-over designs).

See Also

IntersectHypotheses, Display, summary.ctp.str, summary.ctp, Adjust_raw

Examples

data(pasi)
three.to.first <- IntersectHypotheses(list(1:2,c(1,3),c(1,4)))
Display(three.to.first)
pasi.ctp.F1 <- AnalyseCTP(three.to.first,pasi.ch~dose,pasi)
summary(pasi.ctp.F1)
Display(pasi.ctp.F1)
**colorectal**  
*Data from a Study in Colorectal Cancer*

**Description**

A dataframe containing the responders to the treatment with two doses of an experimental drug or a standard treatment.

**Usage**

```r
data(colorectal)
```

**Format**

A data frame with 104 observations and 2 variables:

- **dose** a factor with levels *control low high*
- **responder** a factor with levels *no yes*

---

**CTP**  
*CTP, a package for closed testing procedures*

**Description**

Library of functions to design and analyse closed testing procedures for the comparison of population parameters based on independent samples.

**Details**

Library of functions to design and analyse closed testing procedures for treatment comparisons. The comparison of the population parameters are based on independent samples. The function `IntersectHypotheses` creates the hypothesis tree (closure set) of a closed testing procedure. All possible intersecting hypotheses derived from the list of elementary hypotheses (i.e. the hypotheses to be tested) are produced. The resultant hypothesis tree will consist of the elementary hypotheses as well as all subsequent intersected hypotheses. The procedure ends when one hypothesis (the global hypothesis) remains. In this way, for each elementary hypothesis all hypotheses implying it can be found.

The analysis is performed using `AnalyseCTP`. First the raw p-values are computed for all hypotheses of the hypothesis tree, then the p-values of the elementary hypotheses are adjusted according to the closure principle i.e. the adjusted p-value is calculated as the maximum of the raw p-value of the hypothesis in question and of the raw p-values of all hypotheses implying it.
Instead of applying `AnalyseCTP`, the raw p-values can be computed using any other available software. For this purpose, the functions `Adjust_raw` is provided.

and `summary.ctp.str` generates a data frame comprising all the hypothesis of the hypothesis tree. The function `Adjust_raw` calculates the p-values for the given hypothesis tree from the raw p-values provided in the same order as the hypotheses occur in the data frame created by `summary.ctp.str`.

The results are presented using the generic functions `summary` and `Display`.

**Author(s)**

J. Bock & P.Jordan

---

### CTPcompare

**Comparisons of treatment levels**

**Description**

Performes all required comparisons of treatment levels

**Usage**

`CTPcompare(CTPparms, ...)`

**Arguments**

- **CTPparms**: Object of class CTPparms (i.e. generated by the function `getCTPparms`
- **...**: Additional arguments for the chosen test

**Value**

A data.frame with the hypotheses and the unadjusted p-values

---

### getCTPparms

**Auxiliary function**

**Description**

Extracting CTP - parameters
getResponse

Usage

getCodePparms(
  ctp.struc,
  model,
  dataset,
  factor.name = NULL,
  test.name = "F",
  ...
)

Arguments

ctp.struc Object of class ctp.str.
model Formula of the form response~treatment.
dataset Dataframe.
factor.name Character string naming the factor whose levels are compared (treatment factor). By default the first variable of the right-hand side of the model formula is used.
test.name One of the following strings
  • "F" - F-Test (ANOVA, default)
  • "kruskal" - Kruskal-Wallis-Test
  • "chisq" - Chi square test
  • "prob" - Fisher’s exact test for total number of observations <200 else Chi square test
  • "lgrank" - Logrank-test
  • "jonckheere" - Jonckheere-Terpstra test of ordered alternatives
  • "glm" - generalized linear model
... Additional arguments for the chosen test

Value

A list with CTP parameters

getResponse Auxiliary function

Description

Getting the response vector out of an object of class 'formula'

Usage

getAddress(formula, data)
Arguments

formula  Model formula
data  Dataframe

Value

Vector of response

Examples

data(pasi)
data(pasi)
getResponse(pasi.ch ~ dose, data=pasi)

library(survival)
data(ovarian)
ovarian$subgroups <- as.factor(10*ovarian$ecog.ps+ovarian$rx)
surv <-getResponse(Surv(futime,fustat)~rx, data=ovarian)
print(surv)
class(surv)

---

**glucose**  
*Data from a study in Diabetes II patients*

Description

The dataframe glucose comprises the baseline values of fasting plasma glucose (mmol/L) and their changes from baseline to the end of the study.

Usage

data(glucose)

Format

A data frame with 89 observations and 3 variables:

GLUCOSE.BLA  Fasting plasma glucose at baseline
GLUCOSE.CHANGE  Changes in fasting plasma glucose from baseline
DOSE  An ordered factor with levels PLACEBO < LOW < MEDIUM < HIGH
IntersectHypotheses

Intersection of hypotheses

Description

Generation of the hypotheses tree of a closed testing procedure (CTP). The function returns an object of \texttt{oldClass "ctp.str"}; \texttt{summary} and \texttt{Display} can be applied.

Usage

\texttt{IntersectHypotheses(hyplst)}

Arguments

\begin{itemize}
  \item \texttt{hyplst} \hspace{5ex} A list of integer vectors representing the elementary hypotheses.
\end{itemize}

Details

Sets of elementary hypotheses are described by lists of integer vectors e.g. \texttt{list(1:2, c(1,3), c(1,4))} if the populations 2, 3 and 4 have to be compared to population 1. For the generation of the hypothesis tree of a closed testing procedure first all intersections of the elementary hypothesis; then all intersections of these intersections etc. have to be created. The set of hypotheses at each intersection level must be reduced by deleting double hypotheses and creating unions. The size of the hypothesis tree increases rapidly with growing number of elementary hypotheses, which can lead to memory and/or time problems! The intersection procedure ends if a single hypothesis (the global hypothesis) is left.

Value

\begin{itemize}
  \item \texttt{hypothesis} The hypothesis tree described as lists hypotheses at each intersection level.
  \item \texttt{relations} The relation structure of the hypotheses tree used for plotting.
  \item \texttt{hypnames} Character representations of the hypotheses used for summary tables and plotting.
  \item \texttt{connections} The connections used for calculating the adjusted p-values.
\end{itemize}

Note

This procedure is constructed for null-hypotheses describing the equality of the same parameter for different populations.

\textbf{Warning:} The size of the hypothesis tree increases rapidly with growing number of elementary hypotheses. This can lead to memory and/or time problems!

See Also

\texttt{AnalyseCTP Adjust\_raw}
Examples

```r
hlist <- list(1:2, c(1,3), c(1,4))
htree <- IntersectHypotheses(hlist)
summary(htree)
Display(htree)

compare in a set of six means all others to the fourth mean
#
five.to.fourth <- IntersectHypotheses(list(c(1,4),c(2,4),c(3,4),c(4,5),c(4,6)))
Display(five.to.fourth)
```

pasi Data from a Psoriasis study

Description

The dataframe `pasi` comprises the changes in PASI-score (Psoriasis Area and Severity Index) from Baseline within two months in 72 patients treated with different doses of Etretin or Placebo in a double blind study.

Usage

data(pasi)

Format

A data frame with 72 observations and 3 variables:

- **treatment** a factor with levels Etretin10mg Etretin25mg Etretin50mg Placebo
- **pasi.ch** Changes in PASI score within two months
- **dose** Dose of Etretin as ordered factor with levels Placebo < ET.10mg < ET.25mg < ET.50mg

summary.ctp Summarising and plotting the results of hypothesis trees and closed testing procedures

Description

The functions `summary.ctp.str` and `Display.ctp.str` summarise and plot the hypothesis tree of a closed testing procedure, whereas the functions `summary.ctp` and `Display.ctp` summarise and plot the results of a closed testing procedure.
Usage

## S3 method for class 'ctp'
summary(object, digits = 4, ...)

## S3 method for class 'ctp.str'
Display(object, ...)  
Display.ctp

Arguments

object Object generated by AnalyseCTP or IntersectHypotheses.
digits The minimum number of significant digits to be printed for the p-values in the summary.
... Additional arguments passed to Display.
Type Type of the plotted tree: "s" straight lines, "" tree type.
arrow If TRUE, an arrow is plotted in the connections.

Details

@name Generic_Functions
@aliases summary Display

Value

• summary.ctp.str provides lists with dataframes comprising the hypothesis names as strings and the relationship between the hypotheses.

• summary.ctp provides a table of hypotheses, raw p-values and adjusted p-values.

Note

Display.ctp.str plots the hypothesis tree.
Display.ctp plots the hypothesis tree together with the unadjusted and adjusted p-values.

See Also

IntersectHypotheses, AnalyseCTP
TestingSet

Description
Testing set for an elementary hypothesis

Usage
TestingSet(ctp.struc, Hyp)

Arguments
- ctp.struc: Object of class ctp.str.
- Hyp: Elementary hypothesis (character variable).

Value
The testing set for the elementary hypothesis (character vector).

Examples
Pairwise <- IntersectHypotheses(list(c(1,2), c(1,3),
c(1,4), c(2,3), c(2,4), c(3,4)))
Set24  <- TestingSet(Pairwise,"[24]")
Set24
Index

* datasets
  colorectal, 6
  glucose, 9
  pasi, 11

Adjust_p, 2
Adjust_raw, 2, 5, 7, 10
AnalyseCTP, 3, 4, 6, 7, 10, 12

colorectal, 6
CTP, 6
CTPcompare, 7

Display, 3, 5
Display(summary.ctp), 11

getCTPparms, 7
getResponse, 8
glucose, 9

IntersectHypotheses, 3–6, 10, 12

pasi, 11

summary.ctp, 3, 5, 11
summary.ctp.str, 3, 5, 7

TestingSet, 13