Package ‘CalibratR’

August 19, 2019

Type Package
Title Mapping ML Scores to Calibrated Predictions
Version 0.1.2
Author Johanna Schwarz, Dominik Heider
Maintainer Dominik Heider <heiderd@mathematik.uni-marburg.de>
Description Transforms your uncalibrated Machine Learning scores to well-calibrated prediction estimates that can be interpreted as probability estimates. The implemented BBQ (Bayes Binning in Quantiles) model is taken from Naeini (2015, ISBN:0-262-51129-0). Please cite this paper: Schwarz J and Heider D, Bioinformatics 2019, 35(14):2458-2465.
License LGPL-3
Encoding UTF-8
LazyData true
Depends R (>= 2.10.0)
Imports ggplot2, pROC, reshape2, parallel, foreach, stats, fitdistrplus, doParallel
NeedsCompilation no
Repository CRAN
Date/Publication 2019-08-19 13:00:05 UTC

R topics documented:

BBQ.CV ... 2
binom_for_histogram .. 3
build_BBQ ... 4
build_GUESS .. 4
build_hist_binning .. 5
calibrate ... 5
calibrate_me .. 7
calibrate_me.CV_errors ... 8
compare_models_visual ... 9
evaluate_discrimination .. 9
Description

trains and evaluates the BBQ calibration model using folds-Cross-Validation (CV). The predicted values are partitioned into n subsets. A BBQ model is constructed on (n-1) subsets; the remaining set is used for testing the model. All test set predictions are merged and used to compute error metrics for the model.

Usage

\[
\text{BBQ.CV}(\text{actual, predicted, method_for_prediction = 0, n_folds = 10, seed, input})
\]
Arguments

- **actual** vector of observed class labels (0/1)
- **predicted** vector of uncalibrated predictions
- **method_for_prediction** 0=selection, 1=averaging, Default: 0
- **n_folds** number of folds in the cross-validation, Default: 10
- **seed** random seed to alternate the split of data set partitions
- **input** specify if the input was scaled or transformed, scaled=1, transformed=2

Value

- list object containing the following components:
 - **error** list object that summarizes discrimination and calibration errors obtained during the CV
 - **pred_idx** which BBQ prediction method was used during CV, 0=selection, 1=averaging
 - **type** "BBQ"
 - **probs_CV** vector of calibrated predictions that was used during the CV
 - **actual_CV** respective vector of true values (0 or 1) that was used during the CV

Examples

```r
## Loading dataset in environment
data(example)
actual <- example$actual
predicted <- example$predicted
BBQ_model <- CalibratR:::BBQ_CV(actual, predicted, method_for_prediction=0, n_folds=4, seed=1)
```

Description

p_values from stats::binom.test for each bin, if bin is empty, a p-value of 2 is returned

Usage

`binom_for_histogram(n_x)`

Arguments

- **n_x** numeric vector of two integers. The first one is the number of cases in the bin; the second the number of instances in the bin

Value

p-value from stats::binom.test method
Description

This method builds a BBQ calibration model using the trainings set provided.

Usage

build_BBQ(actual, predicted)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>actual</td>
<td>vector of observed class labels (0/1)</td>
</tr>
<tr>
<td>predicted</td>
<td>vector of uncalibrated predictions</td>
</tr>
</tbody>
</table>

Details

Based on the paper (and matlab code) : "Obtaining Well Calibrated Probabilities Using Bayesian Binning" by Naeini, Cooper and Hauskrecht: ; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410090/

Value

returns the BBQ model which includes models for all evaluated binning schemes; the prunedmodel contains only a selection of BBQ models with the best Bayesian score

Description

This method builds a GUESS calibration model using the trainings set provided.

Usage

build_GUESS(actual, predicted)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>actual</td>
<td>vector of observed class labels (0/1)</td>
</tr>
<tr>
<td>predicted</td>
<td>vector of uncalibrated predictions</td>
</tr>
</tbody>
</table>

Value

returns the trained GUESS model that can be used to calibrate a test set using the predict_GUESS method
build_hist_binning

Description

calculate estimated probability per bin, input predicted and real score as numeric vector; builds a histogram binning model which can be used to calibrate uncalibrated predictions using the predict_histogramm_binning method

Usage

```r
build_hist_binning(actual, predicted, bins = NULL)
```

Arguments

- `actual`: vector of observed class labels (0/1)
- `predicted`: vector of uncalibrated predictions
- `bins`: number of bins that should be used to build the binning model, Default: decide_on_break estimates optimal number of bins

Details

if trainings set is smaller then threshold (15 bins*5 elements=75), number of bins is decreased

Value

returns the trained histogram model that can be used to calibrate a test set using the predict_hist_binning method

calibrate

Description

Builds selected calibration models on the supplied trainings values actual and predicted and returns them to the user. New test instances can be calibrated using the predict_calibratR function. Returns cross-validated calibration and discrimination error values for the models if evaluate_CV_error is set to TRUE. Repeated cross-Validation can be time-consuming.
Usage

calibrate(actual, predicted, model_idx = c(1, 2, 3, 4, 5),
 evaluate_no_CV_error = TRUE, evaluate_CV_error = TRUE, folds = 10,
 n_seeds = 30, nCores = 4)

Arguments

- **actual**: vector of observed class labels (0/1)
- **predicted**: vector of uncalibrated predictions
- **model_idx**: which calibration models should be implemented, 1=hist_scaled, 2=hist_transformed, 3=BBQ_scaled, 4=BBQ_transformed, 5=GUESS, Default: c(1, 2, 3, 4, 5)
- **evaluate_no_CV_error**: computes internal errors for calibration models that were trained on all available actual/predicted tuples. Testing is performed with the same set. Be careful to interpret those error values, as they are not cross-validated. Default: TRUE
- **evaluate_CV_error**: computes cross-validation error. folds times cross validation is repeated n_seeds times with changing seeds. The trained models and the their calibration and discrimination errors are returned. Evaluation of CV errors can take some time to compute, depending on the number of repetitions specified in n_seeds, Default: TRUE
- **folds**: number of folds in the cross-validation of the calibration model. If folds is set to 1, no CV is performed and summary.CV can be calculated. Default: 10
- **n_seeds**: determines how often random data set partition is repeated with varying seed. If folds is 1, n_seeds should be set to 1, too. Default: 30
- **nCores**: how many cores should be used during parallelisation. Default: 4

Details

parallelised execution of random data set splits for the Cross-Validation procedure over n_seeds

Value

A list object with the following components:

- **calibration_models**: a list of all trained calibration models, which can be used in the predict_calibratR method.
- **summary.CV**: a list containing information on the CV errors of the implemented models
- **summary_no_CV**: a list containing information on the internal errors of the implemented models
- **predictions**: calibrated predictions for the original predicted values
- **n_seeds**: number of random data set partitions into training and test set for folds-times CV

Author(s)

Johanna Schwarz
Examples

```r
data(example)
actual <- example$actual
predicted <- example$predicted

# Create calibration models
calibration_model <- calibrate(actual, predicted,
   model_idx = c(1,2),
   folds = 10, n_seeds = 1, nCores = 2)
```

Description

trains calibration models on the training set of predicted/actual value pairs. `model_idx` specifies which models should be trained.

Usage

`calibrate_me(actual, predicted, model_idx)`

Arguments

- `actual` vector of observed class labels (0/1)
- `predicted` vector of uncalibrated predictions
- `model_idx` a single number from 1 to 5, indicating which calibration model should be implemented, 1=hist_scaled, 2=hist_transformed, 3=BBQ_scaled, 4=BBQ_transformed, 5=GUESS

Value

depending on the value of `model_idx`, the respective calibration model is build on the input from `actual` and `predicted`
Description

trains and evaluates calibration models using \(n _\text{seeds} \)-times repeated \(\text{folds} \)-Cross-Validation (CV). \(\text{model_idx} \) specifies which models should be trained. Model training and evaluation is repeated \(n _\text{seeds} \)-times with a different training/test set partition scheme for the CV each time.

Usage

```r
calibrate\_me\_CV\_errors(actual, predicted, model\_idx, folds = 10, n\_seeds, n\_Cores)
```

Arguments

- **actual**: vector of observed class labels (0/1)
- **predicted**: vector of uncalibrated predictions
- **model_idx**: which calibration models should be implemented, 1=\(\text{hist_scaled} \), 2=\(\text{hist_transformed} \), 3=\(\text{BBQ_scaled} \), 4=\(\text{BBQ_transformed} \), 5=\(\text{GUESS} \)
- **folds**: number of folds in the cross-validation, Default: 10
- **n_seeds**: \(n _\text{seeds} \) determines how often random data set partition is repeated with varying seed
- **n_Cores**: \(n _\text{Cores} \) how many cores should be used during parallelisation. Default: 4

Details

parallised execution over \(n _\text{seeds} \)

Value

returns all trained calibration models that were built during the \(n _\text{seeds} \)-times repeated \(\text{folds} \)-CV. Error values for each of the \(n _\text{seeds} \) CV runs are given.
compare_models_visual

Description

FUNCTION_DESCRIPTION

Usage

```r
compare_models_visual(models, seq = NULL)
```

Arguments

- `models` PARAM_DESCRIPTION
- `seq` sequence for which the calibrated predictions should be plotted, Default: NULL

Details

DETAILS

Value

OUTPUT_DESCRIPTION

See Also

- `ggplot`, `geom_line`, `aes`, `ylim`, `theme`, `labs`, `scale_color_brewer`, `melt`

evaluate_discrimination

Description

computes various discrimination error values, namely: sensitivity, specificity, accuracy, positive predictive value (ppv), negative predictive value (npv) and AUC

Usage

```r
evaluate_discrimination(actual, predicted, cutoff = NULL)
```

Arguments

- `actual` vector of observed class labels (0/1)
- `predicted` vector of uncalibrated predictions
- `cutoff` cut-off to be used for the computation of npv, ppv, sensitivity and specificity, Default: value that maximizes sensitivity and specificity (Youden-Index)
Value

list object with the following components:

- **sens**: sensitivity
- **spec**: specificity
- **acc**: accuracy
- **ppv**: positive predictive value
- **npv**: negative predictive value
- **cutoff**: cut-off that was used to compute the error values
- **auc**: AUC value

See Also

roc

Example

data(example)

Description

list object containing 1) the simulated classifiers for two classes. Distributions are simulated from Gaussian distributions with Normal(mean=1.5, sd=0) for class 1 and Normal(mean=0, sd=0) for class 0 instances. Each class consists of 100 instances. and 2) A test set of 100 instances.

Usage

data(example)

Format

predicted=vector of 200 simulated classifier values; actual=their respective true class labels (0/1)

example
element

format_values

Description

returns formatted input. If specified, the uncalibrated input is mapped to the [0;1] range using scaling (scale_me) or transforming (transform_me)

Usage

format_values(cases, control, input, min = NULL, max = NULL, mean = NULL)
getECE

Arguments

- **cases**: instances from class 1
- **control**: instances from class 0
- **input**: single integer (0, 1 or 2). specify if the input should be formatted (=0), formatted and scaled (=1) or formatted and transformed (=2)
- **min**: min value of the original data set, default=calculated on input
- **max**: max value of the original data set, default=calculated on input
- **mean**: mean value of the original data set, default=calculated on input

Value

list object with the following components:

- **formatted_values**: formatted input. If **input** is set to 1 (2), the input is additionally scaled (transformed) using the method `scale_me (transform_me)`
- **min**: minimum value among all instances
- **max**: maximum value among all instances
- **mean**: mean value among all instances

Description

Expected Calibration Error (ECE); the model is divided into 10 equal-width bins (default) and the mean of the observed (0/1) vs. mean of predicted is calculated per bin, weighted by empirical frequency of elements in bin i

Usage

`getECE(actual, predicted, n_bins = 10)`

Arguments

- **actual**: vector of observed class labels (0/1)
- **predicted**: vector of uncalibrated predictions
- **n_bins**: number of bins of the underlying equal-frequency histogram, Default: 10

Value

equal-frequency ECE value
getMCE

Description

Maximum Calibration Error (MCE), returns maximum calibration error for equal-frequency binning model.

Usage

```
getMCE(actual, predicted, n_bins = 10)
```

Arguments

- `actual`: vector of observed class labels (0/1)
- `predicted`: vector of uncalibrated predictions
- `n_bins`: number of bins of the underlying equal-frequency histogram, Default: 10

Value

equal-frequency MCE value

getRMSE

Description

calculates the root of mean square error (RMSE) in the test set of calibrated predictions

Usage

```
getRMSE(actual, predicted)
```

Arguments

- `actual`: vector of observed class labels (0/1)
- `predicted`: vector of uncalibrated predictions

Value

RMSE value
get_Brier_score

Description

FUNCTION_DESCRIPTION

Usage

get_Brier_score(actual, predicted)

Arguments

- actual: vector of observed class labels (0/1)
- predicted: vector of uncalibrated predictions

Details

DETAILS

Value

OUTPUT_DESCRIPTION

get_CLE_class

Description

calculates the class-specific classification error CLE in the test set. The method computes the deviation of the calibrated predictions of class 1 instances from their true value 1. For class 0 instances, get_CLE_class computes the deviation from 0. Class 1 CLE is 0 when all class 1 instances have a calibrated prediction of 1 regardless of potential miscalibration of class 0 instances. CLE calculation is helpful when miscalibration and -classification is more cost-sensitive for one class than for the other.

Usage

get_CLE_class(actual, predicted, bins = 10)

Arguments

- actual: vector of observed class labels (0/1)
- predicted: vector of uncalibrated predictions
- bins: number of bins for the equal-width binning model, default=10
get_ECE_equal_width

Value

object of class list containing the following components:

class_1 CLE of class 1 instances
class_0 CLE of class 0 instances

See Also

melt, ggplot, geom_line, aes, position_dodge, labs, scale_colour_manual

ggtplot2

get_CLE_comparison

Description

visualises how class 1 and class 0 classification error (CLE) differs in each trained calibration model. Comparing class-specific CLE helps to choose a calibration model for applications were classification error is cost-sensitive for one class. See get_CLE_class for details on the implementation.

Usage

get_CLE_comparison(list_models)

Arguments

list_models list object that contains all error values for all trained calibration models. For the specific format, see the calling function visualize_calibratR.

Value

ggtplot2

ggtplot2

get_ECE_equal_width

Description

Expected Calibration Error (ECE); the model is divided into 10 equal-width bins (default) and the mean of the observed (0/1) vs. mean of predicted is calculated per bin, weighted by empirical frequency of elements in bin i

Usage

get_ECE_equal_width(actual, predicted, bins = 10)
get_MCE_equal_width

Arguments
- actual: vector of observed class labels (0/1)
- predicted: vector of uncalibrated predictions
- bins: number of bins for the equal-width binning model

Value
- equal-width ECE value

Description
Maximum Calibration Error (MCE), returns maximum calibration error for equal-width binning model

Usage
get_MCE_equal_width(actual, predicted, bins = 10)

Arguments
- actual: vector of observed class labels (0/1)
- predicted: vector of uncalibrated predictions
- bins: number of bins for the binning model

Value
- equal-width MCE value

GUESS_CV

Description
trains and evaluates the GUESS calibration model using folds-Cross-Validation (CV). The predicted values are partitioned into n subsets. A GUESS model is constructed on (n-1) subsets; the remaining set is used for testing the model. All test set predictions are merged and used to compute error metrics for the model.

Usage
GUESS_CV(actual, predicted, n_folds = 10, method_of_prediction = 2, seed, input)
hist_binning_CV

Arguments

actual vector of observed class labels (0/1)
predicted vector of uncalibrated predictions
n_folds number of folds for the cross-validation, Default: 10
method_of_prediction PARAM_DESCRIPTION, Default: 2
seed random seed to alternate the split of data set partitions
input specify if the input was scaled or transformed, scaled=1, transformed=2

Value

list object containing the following components:
error list object that summarizes discrimination and calibration errors obtained during the CV
type "GUESS"
pred_idx which prediction method was used during CV
probs_CV vector of calibrated predictions that was used during the CV
actual_CV respective vector of true values (0 or 1) that was used during the CV

Description

trains and evaluates the histogram binning calibration model repeated folds-Cross-Validation (CV). The predicted values are partitioned into n subsets. A histogram binning model is constructed on (n-1) subsets; the remaining set is used for testing the model. All test set predictions are merged and used to compute error metrics for the model.

Usage

hist_binning_CV(actual, predicted, n_bins = 15, n_folds = 10, seed, input)

Arguments

actual vector of observed class labels (0/1)
predicted vector of uncalibrated predictions
n_bins number of bins used in the histogram binning scheme, Default: 15
n_folds number of folds in the cross-validation, Default: 10
seed random seed to alternate the split of data set partitions
input specify if the input was scaled or transformed, scaled=1, transformed=2
plot_class_distributions

Value

list object containing the following components:

- **error** list object that summarizes discrimination and calibration errors obtained during the CV
- **type** "hist"
- **probs.CV** vector of calibrated predictions that was used during the CV
- **actual.CV** respective vector of true values (0 or 1) that was used during the CV

Description

plots the returned conditional class probabilities $P(x|C)$ of GUESS_1 or GUESS_2 models. Which GUESS model is plotted can be specified in `pred_idx`.

Usage

`plot_class_distributions(build_guess_object, pred_idx)`

Arguments

- **build_guess_object** output from `build_GUESS()`
- **pred_idx** if `pred_idx`=1 GUESS_1 is plotted; if `pred_idx`=2 GUESS_2 is plotted

Value

ggplot object that visualizes the returned calibrated prediction estimates by GUESS_1 or GUESS_2

See Also

`melt ggplot geom_line aes scale_colour_manual theme labs geom_vline geom_text`

plot_model

Description
This method visualizes all implemented calibration models as a mapping function between original ML scores (x-axis) and calibrated predictions (y-axis).

Usage
plot_model(calibration_model, seq = NULL)

Arguments
- **calibration_model**: output from the `calibrate` method.
- **seq**: sequence of ML scores over which the mapping function should be evaluated. Default: 100 scores from the minimum to the maximum of the original ML scores.

Value
ggplot object

See Also
melt ggplot geom_line aes ylim scale_colour_manual theme labs geom_text geom_vline

predict_BBQ

Description
FUNCTION_DESCRIPTION

Usage
predict_BBQ(bbq, new, option)

Arguments
- **bbq**: output from the `build_BBQ` method
- **new**: vector of uncalibrated probabilities
- **option**: either 1 or 0; averaging=1, selecting=0
Details

Based on the paper (and matlab code) : "Obtaining Well Calibrated Probabilities Using Bayesian Binning” by Naeini, Cooper and Hauskrecht; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410090/

Value

a list object containing the following components:

- predictions: contains a vector of calibrated predictions
- pred_idx: which option was used (averaging or selecting)
- significance_test_set: the percentage of new instances that was evaluated using significant prediction estimates
- pred_per_bin: number of instances new in each bin of the selected model

Description

maps the uncalibrated predictions new into calibrated predictions using the passed over calibration models

Usage

predict_calibratR(calibration_models, new = NULL, nCores = 4)

Arguments

- calibration_models: list of trained calibration models that were constructed using the calibrate method. The list components calibration_models from the calibrate output can be used directly.
- new: vector of new uncalibrated instances. Default: 100 scores from the minimum to the maximum of the original ML scores
- nCores: nCores how many cores should be used during parallelisation. Default: 4

Details

if no new value is given, the function will evaluate a sequence of numbers ranging from the minimum to the maximum of the original values in the training set
Value

list object with the following components:

- predictions: a list containing the calibrated predictions for each calibration model
- significance_test_set: a list containing the percentage of new instances for which prediction estimates are statistically significant
- pred_per_bin: a list containing the number of instances in each bin for the binning models

Author(s)

Johanna Schwarz

Examples

```r
## Loading dataset in environment
data(example)
test_set <- example$test_set
calibration_model <- example$calibration_model

## Predict for test set
predictions <- predict_calibratR(calibration_model$calibration_models, new=test_set, nCores = 2)
```

Description

returns calibrated predictions for the instances new using the trained GUESS calibration model build_guess_object. Two different evaluation methods are available. Method 1: returns the p-value for the score new under the distribution that is handed over in the build_guess_object Method 2: returns the probability density value for the score new under the distribution that is handed over in the build_guess_object

Usage

predict_GUESS(build_guess_object, new, density_evaluation = 2, return_class_density = FALSE)

Arguments

- build_guess_object: output from the build_GUESS method
- new: vector of uncalibrated probabilities
- density_evaluation: which density evaluation method should be used to infer calculate probabilities, Default: 2
\textit{predict_hist_binning}

\begin{verbatim}
return_class_density
 if set to TRUE, class densities p(x|class) are returned, Default: FALSE

Details

dens_case and dens_control are only returned when \texttt{return_class_density} is set to TRUE

Value

a list object containing the following components:

predictions contains a vector of calibrated predictions
pred_idx which density evaluation method was used
significance_test_set the percentage of new instances that was evaluated using significant prediction estimates
dens_case a vector containing the \text{p(x|case)} values
dens_control a vector containing the \text{p(x|control)} values
\end{verbatim}

\texttt{predict_hist_binning predict_hist_binning}

\textbf{Description}

predict for a new element using histogram binning

\textbf{Usage}

\texttt{predict_hist_binning(histogram, new)}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{histogram} \hspace{1cm} the output of \texttt{build_hist_binning}
 \item \texttt{new} \hspace{1cm} vector of uncalibrated probabilities
\end{itemize}

\textbf{Value}

a list object containing the following components

predictions contains a vector of calibrated predictions
significance_test_set the percentage of new instances that was evaluated using significant prediction estimates
pred_per_bin a table containing the number of instances from \texttt{new} for each bin of the final binning scheme of \texttt{histogram}
predict_model

Description

calibrates the uncalibrated predictions `new` using `calibration_model`.

Usage

`predict_model(new, calibration_model, min, max, mean, inputtype)`

Arguments

- `new`: vector of uncalibrated predictions
- `calibration_model`: calibration model to be used for the calibration. Can be the output of `build_BBQ`, `build_hist_binning` or `build_GUESS`.
- `min`: minimum value of the original data set
- `max`: maximum value of the original data set
- `mean`: mean value of the original data set
- `inputtype`: specify if the model was build on original (=0), scaled(=1) or transformed (=2) data

Value

vector of calibrated predictions

rd_multiple_runs

Description

This functions plots all n reliability diagrams that were constructed during n-times repeated m-fold cross-validation (CV). During calibration model evaluation, CV is repeated n times, so that eventually n reliability diagrams are obtained.

Usage

`rd_multiple_runs(list_models)`

Arguments

- `list_models`: list object that contains n-times the output from the `reliability_diagramm` method.
reliability_diagramm

Value

a list object that contains a reliability diagram that visualises all reliability diagrams that were constructed during n-times repeated m-fold cross-validation.

See Also

melt ggplot.geom_line,aes.geom_abline.ylab,xlab,xlim,ylim,coord_fixed.geom_text.scale_color_discrete.ggti

reliability_diagramm reliability_diagramm

Description

Reliability curves allow checking if the predicted probabilities of a

Usage

reliability_diagramm(actual, predicted, bins = 10, plot_rd = TRUE)

Arguments

actual vector of observed class labels (0/1)
predicted vector of uncalibrated predictions
bins number of bins in the reliability diagram, Default: 10
plot_rd should the reliability diagram be plotted, Default: TRUE

Value

a list object containing the following elements
calibration_error
discrimination_error
rd_breaks histogram_plot
diagram_plot mean_pred_per_bin
accuracy_per_bin
freq_per_bin
sign

See Also

ggplot.stat_bin,aes.scale_fill_manual.theme,labs.geom_point,xlim,ylim,geom_abline,geom_line.geom_text.geom_text
Description

maps all instances in x to the [0;1] range using the equation:
y = (x-min)/(max-min)
If no values for min and max are given, they are calculated per default as min=min(x) and max=max(x)

Usage

scale_me(x, min = NULL, max = NULL)

Arguments

x vector of predictions
min minimum of x, Default: NULL
max maximum of x, Default: NULL

Details

if x is greater (smaller) than max (min), its calibrated prediction is set to 1 (0) and warning is triggered.

Value

scaled values of x

Description

this method offers a variety of statistical evaluation methods for the output of the calibrate method. All returned error values represent mean error values over the n_seeds times repeated 10-fold CV.

Usage

statistics_calibratR(calibrate_object, t.test_partitions = TRUE,
 significance_models = TRUE)
Arguments

calibrate_object
- list that is returned from the `calibrate` function. The parameter `n_seeds` is available as a list component of the `calibrate_object`

t.test_partitions
- Performs a paired two sided t.test over the error values (ECE, CLE1, CLE0, MCE, AUC, sensitivity and specificity) from the random partition splits comparing a possible significant difference in mean among the calibration models. All models and the original, scaled and transformed values are tested against each other. The p_value and the effect size of the t.test are returned to the user. Can only be performed, if the `calibrate_object` contains a `summary_CV` list object, else, an error is returned. Default: TRUE

significance_models
- returns important characteristics of the implemented calibration models, Default: TRUE

Details

DETAILS

Value

An object of class list, with the following components:

mean_calibration
- mean of calibration error values (ECE_equal_width, MCE_equal_width, ECE_equal_freq, MCE_equal_freq, RMSE, Class 1 CLE, Class 0 CLE, Brier Score, Class 1 Brier Score, Class 0 Brier Score) over `n_seeds` times repeated 10-fold CV. ECE and MCE are computed once using equal-width and once using equal-frequency binning for the construction of the underlying binning scheme. Only returned, if `calibrate_object` contains a `summary_CV` list object.

standard_deviation
- standard deviation of calibration error values over `n_seeds` times repeated 10-fold CV. Only returned, if `calibrate_object` contains a `summary_CV` list object.

var_coeff_calibration
- variation coefficient of calibration error values over `n_seeds` times repeated 10-fold CV. Only returned, if `calibrate_object` contains a `summary_CV` list object.

mean_discrimination
- mean of discrimination error (sensitivity, specificity, AUC, positive predictive value, negative predictive value, accuracy) values over `n_seeds` times repeated 10-fold CV. The "cut-off" is the cut-off value that maximizes sensitivity and specificity. Only returned, if `calibrate_object` contains a `summary_CV` list object.

sd_discrimination
- standard deviation of discrimination error values over `n_seeds` times repeated 10-fold CV. Only returned, if `calibrate_object` contains a `summary_CV` list object.
transform_me

var_coeff_discrimination
variation coefficient of discrimination error values over n_seeds times repeated
10-fold CV. Only returned, if calibrate_object contains a summary_CV list
object.

t.test_calibration
=list(p_value=t.test.calibration, effect_size=effect_size_calibration), only returned
if t.test=TRUE
t.test_discrimination
=list(p_value=t.test.discrimination, effect_size=effect_size_discrimination), only
returned if t.test=TRUE

significance_models
only returned if significance_models=TRUE

n_seeds
number of random data set partitions into training and test set for folds-times
CV

original_values
list object that consists of the actual and predicted values of the original
scores

Author(s)
Johanna Schwarz

See Also
t.test, friedman.test

Examples
Loading dataset in environment
data(example)
calibration_model <- example$calibration_model

statistics <- statistics_calibratR(calibration_model)

transform_me(x_unscaled, mean)

Description
maps all instances in x_unscaled to the [0;1] range using the equation:
y=exp(x)/(1+exp(x))

Usage
transform_me(x_unscaled, mean)
Arguments

- `x_unscaled` vector of predictions
- `mean` mean of `x`

Details

Values greater than exp(700)/ or smaller than exp(-700) are returned as "Inf". To avoid NaN values, these "Inf." values are turned into min(y) or max(y).

Value

transformed values of `x_unscaled`

Description

Performs n_folds-CV but with only input-preprocessing the test set. No calibration model is trained and evaluated in this method. The predicted values are partitioned into n subsets. The training set is constructed on (n-1) subsets; the remaining set is used for testing. Since no calibration model is used in this method, the test set predictions are only input-preprocessed (either scaled or transformed, depending on `input`). All test set predictions are merged and used to compute error metrics for the input-preprocessing methods.

Usage

`uncalibrated_CV(actual, predicted, n_folds = 10, seed, input)`

Arguments

- `actual` vector of observed class labels (0/1)
- `predicted` vector of uncalibrated predictions
- `n_folds` number of folds for the cross-validation, Default: 10
- `seed` random seed to alternate the split of data set partitions
- `input` specify if the input was scaled or transformed, scaled=1, transformed=2

Value

List object containing the following components:

- `error` list object that summarizes discrimination and calibration errors obtained during the CV
- `type` "uncalibrated"
- `probs_CV` vector of input-preprocessed predictions that was used during the CV
- `actual_CV` respective vector of true values (0 or 1) that was used during the CV
Description

plots a panel for all calibrated predictions from the respective calibration model. Allows visual comparison of the models output and their optimal cut off.

Usage

`visualize_calibrated_test_set(actual, predicted_list, cutoffs)`

Arguments

- `actual`: vector of observed class labels (0/1)
- `predicted_list`: predict_calibratR$predictions object (list of calibrated predictions from calibration models)
- `cutoffs`: vector of optimal cut-off thresholds for each calibration model

Value

ggplot2 element for visual comparison of the evaluated calibration models

See Also

`ggplot`, `geom_point`, `scale_colour_manual`, `xlab`, `ylab`, `geom_hline`, `ylim`

Description

this method offers a variety of visualisations to compare implemented calibration models.

Usage

`visualize_calibratR(calibrate_object, visualize_models = FALSE, plot_distributions = FALSE, rd_partitions = FALSE, training_set_calibrated = FALSE)`
Arguments

- `calibrate_object`: the list component `calibration_models` from the `calibrate` method
- `visualize_models`: returns the list components `plot_calibration_models` and `plot_single_models`
- `plot_distributions`: returns a density distribution plot of the calibrated predictions after CV (External) or without CV (internal)
- `rd_partitions`: returns a reliability diagram for each model
- `training_set_calibrated`: returns a list of ggplots. Each plot represents the calibrated predictions by the respective calibration model of the training set. If the list object `predictions` in the `calibrate_object` is empty, `training_set_calibrated` is returned as NULL.

Value

An object of class list, with the following components:

- `histogram_distribution`: returns a histogram of the original ML score distribution
- `density_calibration_internal`: returns a list of density distribution plots for each calibration method, the original and the two input-preprocessing methods scaling and transforming. The plot visualises the density distribution of the calibrated predictions of the training set. In this case, training and test set values are identical, so be careful to evaluate the plots.
- `density_calibration_external`: returns a list of density distribution plots for each calibration method, the original and the two input-preprocessing methods scaling and transforming. The plot visualises the density distribution of the calibrated predictions, that were returned during Cross Validation. If more than one repetition of CV was performed, run number 1 is evaluated
- `plot_calibration_models`: maps the original ML scores to their calibrated prediction estimates for each model. This enables easy model comparison over the range of ML scores See also `compare_models_visual`.
- `plot_single_models`: returns a list of ggplots for each calibration model, also mapping the original ML scores to their calibrated prediction. Significance values are indicated. See also `plot_model`
- `rd_plot`: returns a list of reliability diagrams for each of the implemented calibration models and the two input-preprocessing methods "scaled" and "transformed". The returned plot visualises the calibrated predictions that were returned for the test set during each of the n run of the n-times repeated CV. Each grey line represents one of the n runs. The blue line represents the median of all calibrated bin predictions. Insignificant bin estimates are indicated with "ns". If no CV
was performed during calibration model building using the `calibrate` method, rd_plot is returned as NULL.

calibration_error
returns a list of boxplots for the calibration error metrics ECE, MCE, CLE and RMSE. The n values for each model represent the obtained error values during the n times repeated CV. If no CV was performed during calibration model building using the `calibrate` method, calibration_error is returned as NULL.

discrimination_error
returns a list of boxplots for the discrimination error AUC, sensitivity and specificity. The n values for each model represent the obtained error values during the n times repeated CV. If no CV was performed during calibration model building using the `calibrate` method, discrimination_error is returned as NULL.

cle_class_specific_error
If no CV was performed during calibration model building using the `calibrate` method, cle_class_specific_error is returned as NULL.

training_set_calibrated
returns a list of ggplots. Each plot represents the calibrated predictions by the respective calibration model of the training set. If the list object predictions in the calibrate_object is empty, training_set_calibrated is returned as NULL.

GUESS_1_final_model
plots the the returned conditional probability p(x|Class) values of the GUESS_1 model

GUESS_2_final_model
plots the the returned conditional probability p(x|Class) values of the GUESS_2 model

Author(s)

Johanna Schwarz

See Also

ggplot, geom_density, aes, scale_colour_manual, scale_fill_manual, labs, geom_point, geom_hline, theme, element_text, melt

Examples

```r
## Loading dataset in environment
data(example)
calibration_model <- example$calibration_model

visualisation <- visualize_calibratR(calibration_model, plot_distributions=FALSE, rd_partitions=FALSE, training_set_calibrated=FALSE)
```
visualize_distribution

Description

FUNCTION_DESCRIPTION

Usage

visualize_distribution(actual, predicted)

Arguments

actual vector of observed class labels (0/1)
predicted vector of uncalibrated predictions

Value

list object containing the following components:
plot_distribution ggplot histogram that visualizes the observed class distributions
parameter list object that summarizes all relevant parameters (mean, sd, number) of the observed class distributions

See Also

ggplot, geom_histogram, aes, scale_colour_manual, scale_fill_manual, labs

visualize_error_boxplot

Description

compares error values among different calibration models. A boxplots is created from the n error values that were obtained during the n-times repeated Cross-Validation procedure. Different error values are implemented and can be compared:
discrimination error = sensitivity, specificity, accuracy, AUC (when discrimination=TRUE)
calibration error = ece, mce, rmse, class 0 cle, class 1 cle (when discrimination=FALSE) For the calculation of the errors, see the respective methods listed in the "see also" section

Usage

visualize_error_boxplot(list_models, discrimination = TRUE)
visualize_error_boxplot

Arguments

list_models list object that contains all error values for all trained calibration models. For the specific format, see the calling function visualize_calibratR.

discrimination boolean (TRUE or FALSE). If TRUE, discrimination errors are compared between models; if FALSE calibration error is compared, Default: TRUE

Value

An object of class list, with the following components:

if discrimination=TRUE

sens ggplot2 boxplot that compares all evaluated calibration models with regard to sensitivity.

spec ggplot2 boxplot that compares all evaluated calibration models with regard to specificity.

acc ggplot2 boxplot that compares all evaluated calibration models with regard to accuracy.

auc ggplot2 boxplot that compares all evaluated calibration models with regard to AUC.

list_errors list object that contains all discrimination error values that were used to construct the boxplots.

if discrimination=FALSE

ece ggplot2 boxplot that compares all evaluated calibration models with regard to expected calibration error.

mce ggplot2 boxplot that compares all evaluated calibration models with regard to maximum expected calibration error (MCE).

rmse ggplot2 boxplot that compares all evaluated calibration models with regard to root mean square error (RMSE).

cle_0 ggplot2 boxplot that compares all evaluated calibration models with regard to class 0 classification error (CLE).

cle_1 ggplot2 boxplot that compares all evaluated calibration models with regard to class 1 classification error (CLE).

list_errors list object that contains all calibration error values that were used to construct the boxplots.

See Also

ggplot,aes,ggtitle,scale_x_discrete.geom_boxplot.theme;element_text.melt.get_CLE_class.getECE.getMCE.getRMSE.evaluate_discrimination
Index

*Topic datasets
 example, 10
 aes, 9, 14, 17, 18, 23, 30–32
 BBQ_CV, 2
 binom_for_histogram, 3
 build_BBQ, 4, 18, 22
 build_GUESS, 4, 20, 22
 build_hist_binning, 5, 21, 22
 calibrate, 5, 18, 19, 24, 25, 29, 30
 calibrate_me, 7
 calibrate_me_CV_errors, 8
 compare_models_visual, 9, 29
 coord_fixed, 23
 denscomp, 5
 element_text, 30, 32
 evaluate_discrimination, 9, 32
 example, 10
 format_values, 10
 friedman.test, 26
 geom_abline, 23
 geom_boxplot, 32
 geom_density, 30
 geom_histogram, 31
 geom_hline, 28, 30
 geom_label, 23
 geom_line, 9, 14, 17, 18, 23
 geom_point, 23, 28, 30
 geom_text, 17, 18, 23
 geom_vline, 17, 18
 get_Brier_score, 13
 get_CLE_class, 13, 14, 32
 get_CLE_comparison, 14
 get_ECE_equal_width, 14
 get_MCE_equal_width, 15
 getECE, 11, 32
 getMCE, 12, 32
 getRMSE, 12, 32
 ggplot, 9, 14, 17, 18, 23, 28, 30–32
 ggtitle, 23, 32
 GUESS_CV, 15
 hist_binning_CV, 16
 labs, 9, 14, 17, 18, 23, 30, 31
 melt, 9, 14, 17, 18, 23, 30, 32
 plot_class_distributions, 17
 plot_model, 18, 29
 position_dodge, 14
 predict_BBQ, 18
 predict_calibratR, 5, 6, 19
 predict_GUESS, 4, 20
 predict_hist_binning, 5, 21
 predict_model, 22
 rd_multiple_runs, 22
 reliability_diagramm, 22, 23
 roc, 10
 scale_color_brewer, 9
 scale_color_discrete, 23
 scale_colour_manual, 14, 17, 18, 23, 30, 31
 scale_fill_manual, 23, 30, 31
 scale_me, 10, 11, 24
 scale_x_discrete, 32
 stat_bin, 23
 statistics_calibratR, 24
 t.test, 26
 theme, 9, 17, 18, 23, 30, 32
 transform_me, 10, 11, 26
 uncalibrated_CV, 27
 visualize_calibrated_test_set, 28
visualize_calibratR, 14, 28, 32
visualize_distribution, 31
visualize_error_boxplot, 31

xlab, 23, 28
xlim, 23

ylab, 23, 28
ylim, 9, 18, 23, 28