Package ‘CarletonStats’

August 22, 2023

Title Functions for Statistics Classes at Carleton College
Version 2.2
Description Includes commands for bootstrapping and permutation tests, a command for created grouped bar plots, and a demo of the quantile-normal plot for data drawn from different distributions.
License GPL-2
URL https://github.com/aloy/CarletonStats
BugReports https://github.com/aloy/CarletonStats/issues
Suggests grDevices, MASS, testthat
Encoding UTF-8
LazyData TRUE
NeedsCompilation no
RoxygenNote 7.2.3
Imports ggplot2, scales, patchwork
Author Laura Chihara [aut],
Adam Loy [aut, cre] (<https://orcid.org/0000-0002-5780-4611>)
Maintainer Adam Loy <aloy@carleton.edu>
Repository CRAN
Date/Publication 2023-08-22 16:50:09 UTC

R topics documented:

anovaSummarized ... 2
boot ... 3
bootCor ... 5
bootPaired .. 7
bootSlope .. 9
confint.carlboot .. 11
confIntDemo ... 11
corDemo .. 12
anovaSummarized

Description

ANOVA F test when given summarized data (sample sizes, means and standard deviations).

Usage

anovaSummarized(N, mn, stdev)

Arguments

N
mn
stdev

a vector with the sample sizes
a vector of means, one for each group in the sample
a vector of standard deviations, one for each group in the sample

Details

Perform an ANOVA F test when presented with summarized data: sample sizes, sample means and sample standard deviations.

Value

Returns invisibly a list

Treatment SS
Residual SS
Degrees of Freedom

The treatment sum of squares (also called the "between sum of squares").
Residual sum of squares (also called the "within sum of squares").
a vector with the numerator and denominator degrees of freedom.
Examples

```r
# use the data set chickwts from base R
table(chickwts$feed)
head(chickwts)
N <- table(chickwts$feed)
stdev <- tapply(chickwts$weight, chickwts$feed, sd)
mn <- tapply(chickwts$weight, chickwts$feed, mean)
anovaSummarized(N, mn, stdev)
```

Description

Bootstrap a single variable or a grouped variable

Usage

```r
boot(x, ...)
```

```r
## Default S3 method:
boot(
  x,
  group = NULL,
  statistic = mean,
  conf.level = 0.95,
  B = 10000,
  plot.hist = TRUE,
  plot.qq = FALSE,
```
x.name = deparse(substitute(x)),
xlab = NULL,
ylab = NULL,
title = NULL,
seed = NULL,
...
)

S3 method for class 'formula'
boot(formula, data, subset, ...)

Arguments

- **x**: a numeric vector
- **...**: further arguments to be passed to or from methods.
- **group**: an optional grouping variable (vector), usually a factor variable. If it is a binary numeric variable, it will be coerced to a factor.
- **statistic**: function that computes the statistic of interest. Default is the mean.
- **conf.level**: confidence level for the bootstrap percentile interval. Default is 95%.
- **B**: number of times to resample (positive integer greater than 2).
- **plot.hist**: logical value. If TRUE, plot the histogram of the bootstrap distribution.
- **plot.qq**: Logical value. If TRUE, create a normal quantile-quantile plot of the bootstrap distribution.
- **x.name**: Label for variable name
- **xlab**: an optional character string for the x-axis label
- **ylab**: an optional character string for the y-axis label
- **title**: an optional character string giving the plot title
- **seed**: optional argument to `set.seed`
- **formula**: a formula `y ~ g` where `y` is a numeric vector and `g` a factor variable with two levels. If `g` is a binary numeric vector, it will be coerced to a factor variable. For a single numeric variable, formula may also be `~ y`.
- **data**: a data frame that contains the variables given in the formula.
- **subset**: an optional expression indicating what observations to use.

Details

Perform a bootstrap of a statistic applied to a single variable, or to the difference of the statistic computed on two samples (using the grouping variable). If `x` is a binary vector of 0’s and 1’s and the function is the mean, then the statistic of interest is the proportion.

Observations with missing values are removed.

Value

A vector with the resampled statistics is returned invisibly.
Methods (by class)

- `boot(default)`: Bootstrap a single variable or a grouped variable
- `boot(formula)`: Bootstrap a single variable or a grouped variable

Author(s)

Laura Chihara

References

Tim Hesterberg’s website https://www.timhesterberg.net/bootstrap-and-resampling

Examples

```r
#ToothGrowth data (supplied by R)
#bootstrap mean of a single numeric variable
boot(ToothGrowth$len)

#bootstrap difference in mean of tooth length for two groups.
boot(ToothGrowth$len, ToothGrowth$supp, B = 1000)

#same as above using formula syntax
boot(len ~ supp, data = ToothGrowth, B = 1000)
```

bootCor

Bootstrap the correlation

Description

Bootstrap the correlation of two numeric variables.

Usage

```r
bootCor(x, ...)
```

Default S3 method:

```r
bootCor(
    x,
    y,
    conf.level = 0.95,
    B = 10000,
    plot.hist = TRUE,
    xlab = NULL,
    ylab = NULL,
    title = NULL,
    plot.qq = FALSE,
)```
## S3 method for class 'formula'
bootCor(formula, data, subset, ...)

### Arguments

- **x**: a numeric vector.
- **y**: a numeric vector.
- **conf.level**: confidence level for the bootstrap percentile interval.
- **B**: number of times to resample (positive integer greater than 2).
- **plot.hist**: a logical value. If TRUE, plot the bootstrap distribution of the resampled correlation.
- **xlab**: an optional character string for the x-axis label
- **ylab**: an optional character string for the y-axis label
- **title**: an optional character string giving the plot title
- **plot.qq**: a logical value. If TRUE a normal quantile-quantile plot of the bootstrapped values is created.
- **x.name**: Label for variable x
- **y.name**: Label for variable y
- **seed**: optional argument to set.seed
- **formula**: a formula of the form lhs ~ rhs where lhs is a numeric variable giving the data values and rhs a factor with two levels giving the corresponding groups.
- **data**: an optional data frame containing the variables in the formula formula. By default the variables are taken from environment(formula).
- **subset**: an optional vector specifying a subset of observations to be used.

### Details

Bootstrap the correlation of two numeric variables. The bootstrap mean and standard error are printed as well as a bootstrap percentile confidence interval.

Observations with missing values are removed.

### Value

The command returns the correlations of the resampled observations.

### Methods (by class)

- `bootCor(default)`: Bootstrap the correlation of two numeric variables.
- `bootCor(formula)`: Bootstrap the correlation of two numeric variables.
**bootPaired**

**Author(s)**

Laura Chihara

**References**

Tim Hesterberg’s website [https://www.timhesterberg.net/bootstrap-and-resampling](https://www.timhesterberg.net/bootstrap-and-resampling)

**Examples**

```r
plot(states03$ColGrad, states03$InfMortality)
bootCor(InfMortality ~ ColGrad, data = states03, B = 1000)
bootCor(states03$ColGrad, states03$InfMortality, B = 1000)
```

---

**bootPaired**

*Bootstrap paired data*

**Description**

Perform a bootstrap of two paired variables.

**Usage**

```r
bootPaired(x, ...)
```

### Default S3 method:

```r
bootPaired(
x,
y,
conf.level = 0.95,
B = 10000,
plot.hist = TRUE,
xlab = NULL,
ylab = NULL,
title = NULL,
plot.qq = FALSE,
x.name = deparse(substitute(x)),
y.name = deparse(substitute(y)),
seed = NULL,
...)
```

### S3 method for class 'formula'

```r
bootPaired(formula, data, subset, ...)
```
Arguments

x a numeric vector.

... further arguments to be passed to or from methods.

y a numeric vector.

conf.level confidence level for the bootstrap percentile interval.

B number of resamples (positive integer greater than 2).

plot.hist logical. If TRUE, plot the histogram of the bootstrap distribution.

xlab an optional character string for the x-axis label

ylab an optional character string for the y-axis label

title an optional character string giving the plot title

plot.qq logical. If TRUE, a normal quantile-quantile plot of the replicates will be created.

x.name Label for variable x

y.name Label for variable y

seed optional argument to set.seed

formula a formula y ~ x where x, y are both numeric vectors

data a data frame that contains the variables given in the formula.

subset an optional expression indicating what observations to use.

Details

The command will compute the difference of x and y and bootstrap the difference. The mean and standard error of the bootstrap distribution will be printed as well as a bootstrap percentile interval. Observations with missing values are removed.

Value

The command returns a vector with the replicates of the statistic being bootstrapped.

Methods (by class)

• bootPaired(default): Perform a bootstrap of two paired variables.

• bootPaired(formula): Perform a bootstrap of two paired variables.

Author(s)

Laura Chihara

References

Tim Hesterberg’s website https://www.timhesterberg.net/bootstrap-and-resampling
Examples

# Bootstrap the mean difference of fat content in vanilla and chocolate ice cream. Data are paired because ice cream from the same manufacturer will have similar content.
Icecream
bootPaired(ChocFat ~ VanillaFat, data = Icecream)
bootPaired(Icecream$VanillaFat, Icecream$ChocFat)

bootSlope

Bootstrap the slope of a simple linear regression line

Description

Bootstrap the slope of a simple linear regression line. The bootstrap mean and standard error are printed as well as a bootstrap percentile confidence interval.

Usage

bootSlope(x, ...)

## Default S3 method:
bootSlope(
  x,
  y,
  conf.level = 0.95,
  B = 10000,
  plot.hist = TRUE,
  xlab = NULL,
  ylab = NULL,
  title = NULL,
  plot.qq = FALSE,
  x.name = deparse(substitute(x)),
  y.name = deparse(substitute(y)),
  seed = NULL,
  ...
)

## S3 method for class 'formula'
bootSlope(formula, data, subset, ...)

Arguments

x       a numeric vector.

...      further arguments to be passed to or from methods.

y       a numeric vector.
conf.level  | confidence level for the bootstrap percentile interval.
B           | number of times to resample (positive integer greater than 2).
plot.hist   | a logical value. If TRUE, plot the bootstrap distribution of the resampled slope.
xlab        | an optional character string for the x-axis label
ylab        | an optional character string for the y-axis label
title       | an optional character string giving the plot title
plot.qq     | a logical value. If TRUE a normal quantile-quantile plot of the bootstrapped values is created.
x.name      | Label for variable x
y.name      | Label for variable y
seed        | optional argument to set.seed
formula     | a formula of the form lhs ~ rhs where lhs is a numeric variable giving the data values and rhs a factor with two levels giving the corresponding groups.
data        | an optional data frame containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset      | an optional vector specifying a subset of observations to be used.

Details
Observations with missing values are removed.

Value
The command returns the slopes of the resampled observations.

Methods (by class)
- bootSlope.default: Bootstrap the slope of a simple linear regression line
- bootSlope.formula: Bootstrap the slope of a simple linear regression line

Author(s)
Adam Loy, Laura Chihara

References
Tim Hesterberg’s website https://www.timhesterberg.net/bootstrap-and-resampling

Examples
plot(states03$ColGrad, states03$InfMortality)
bootSlope(InfMortality ~ ColGrad, data = states03, B = 1000)
bootSlope(states03$ColGrad, states03$InfMortality, B = 1000)
**confint.carlboot**  
*Calculate a CI from a carlboot object*

**Description**

Calculate percentile confidence intervals for a carlboot object.

**Usage**

```r
S3 method for class 'carlboot'
confint(object, parm = NULL, level = 0.95, ...)
```

**Arguments**

- `object`  
The carlboot object to print.
- `parm`  
  not used in CarletonStats, just for generic consistency
- `level`  
  the confidence level
- `...`  
  not used

**confIntDemo**  
*Confidence Interval Demonstration*

**Description**

Draw many random samples and compute confidence interval. How many intervals capture the true mean?

**Usage**

```r
confIntDemo(distr = "normal", size = 20, conf.level = 0.95)
```

**Arguments**

- `distr`  
  distribution of the population to be sampled. Options include "normal", "exponential", "uniform" and "binary" (partial match allowed).
- `size`  
  sample size
- `conf.level`  
  confidence level.

**Details**

This simulation will draw 100 random samples from a given population distribution and compute the corresponding confidence intervals. The 100 intervals will be drawn with an indication of the ones that missed the true mean. A histogram of the population will also be created.
**Value**

The command invisibly returns the fraction of intervals that capture the true mean.

**Author(s)**

Laura Chihara

**Examples**

```r
corDemo()
corDemo(distr = "exponential", size = 40)
```

---

**corDemo**

*Correlation demonstration*

**Description**

For a given $r$, create a scatterplot of two variables with that correlation.

**Usage**

```r
corDemo(r = 0)
```

**Arguments**

$r$ a number between -1 and 1. Enter any number $r$, _latex_, to exit the interactive session.

**Details**

Demonstrate the concept of correlation by inputting a number between -1 and 1 and seeing a scatter plot of two variables with that correlation. Once you invoke this command, you can continue to enter values for $r$. Type any number _latex_ to exit.

**Author(s)**

Laura Chihara

**Examples**

```r
Not run:
corDemo()
End(Not run)
```
**groupedBar**

| groupedBar | Grouped bar chart |

**Description**

Create a bar chart of a single categorical variable or a grouped bar chart of two categorical variables.

**Usage**

```r
groupedBar(resp, ...)
```

```r
Default S3 method:
groupedBar(
 resp,
 condvar = NULL,
 percent = TRUE,
 print = TRUE,
 cond.name = deparse(substitute(condvar)),
 resp.name = deparse(substitute(resp)),
 ...
)
```

```r
S3 method for class 'formula'
groupedBar(formula, data = parent.frame(), subset, ...)
```

**Arguments**

- `resp` a factor variable. If `resp` is numeric, it will be coerced to a factor variable.
- `...` further arguments to be passed to or from methods.
- `condvar` a factor variable to condition on. If `NULL`, then a bar plot of just the `resp` variable will be created. If `condvar` is numeric, it will be coerced to a factor variable.
- `percent` a logical value. Should the y-axis give percent or counts?
- `print` a logical value. If `TRUE`, print out the table.
- `cond.name` Label for variable `condvar`.
- `resp.name` Label for variable `resp`.
- `formula` a formula of the form `x ~ condvar`. If `x` or `condvar` is (are) not a factor variable, then it (they) will be coerced into one. Formula can also be `~ x` for a single factor variable.
- `data` a data frame that contains the variables in the formula.
- `subset` an optional vector specifying a subset of observations to be used.

**Details**

For a single factor variable, a bar plot. If two factor variables are given, then a bar plot of `x` conditioned by `condvar`. This command uses R’s `table` command so missing values are automatically removed.
Value

Returns invisibly a table of the variable(s).

Methods (by class)

• groupedBar(default): Grouped bar chart
• groupedBar(formula): Grouped bar chart

Author(s)

Laura Chihara

Examples

groupedBar(states03$Region)

## Not run:
groupedBar(states03$DeathPenalty, states03$Region, legend.loc = "topleft")

#Using a formula syntax:

groupedBar(~Region, data = states03)
groupedBar(DeathPenalty ~ Region, data = states03, legend.loc = "topleft")

## End(Not run)

---

### Icecream

**Ice cream data**

Description

Nutritional information on vanilla and chocolate ice cream from a sample of companies.

Format

A data frame with 39 observations on the following 7 variables.

- **Brand**  Brand name
- **VanillaCalories**  Calories per serving in vanilla
- **VanillaFat**  Fat per serving (g) in vanilla
- **VanillaSugar**  Sugar per serving (g) in vanilla
- **ChocCalories**  Calories per serving in chocolate
- **ChocFat**  Fat per serving (g) in chocolate
- **ChocSugar**  Sugar per serving (g) in chocolate
Milkshakes

Source
Data collected by Carleton student Ann Butkowski (2008).

Examples

head(Icecream)
t.test(Icecream$VanillaCalories, Icecream$ChocCalories, paired = TRUE)

Description
Milkshakes (chocolate) Nutritional information on chocolate milkshakes from a sample of restaurants.

Format
A data frame with 29 observations on the following 11 variables.

Restaurant  Names of restaurants
Type  Type of restaurant, Dine In Fast Food
Calories  Calories per serving
Fat  Fat per serving (g)
Sodium  Sodium per serving (mg)
Carbs  Carbohydrates per serving (g)
SizeOunces  Size of milkshake (ounces)
CalPerOunce  Calories per ounce
FatPerOunce  Fat per ounce
CarbsPerOunce  Carbohydrates per ounce

Source
Data collected by Carleton students Yoni Blumberg (2013) and Lindsay Guthrie (2013).
Description

In data frames with factor variables, convert any observation with "" into <NA>.

Usage

missingLevel(data)

Arguments

data a data frame with factor variables.

Details

In a factor variable with the level """, this command will convert this to an <NA>.

Value

Returns the same data frame with """" replaced by <NA> in factor variables.

Note

When importing data from comma separated files (for example), missing values in a categorical variable are often denoted by """". We often do not want to treat this as a level of a factor variable in R.

Author(s)

Laura Chihara

Description

Permutation test to test a hypothesis involving two samples.
Usage

permTest(x, ...)

## Default S3 method:
permTest(
  x,
  group,
  statistic = mean,
  B = 9999,
  alternative = "two.sided",
  plot.hist = TRUE,
  plot.qq = FALSE,
  xlab = NULL,
  ylab = NULL,
  title = NULL,
  seed = NULL,
...
)

## S3 method for class 'formula'
permTest(formula, data = parent.frame(), subset, ...)

Arguments

x a numeric vector. If the function is the mean (fun = mean) and x is a binary numeric vector of 0's and 1's, then the test is between proportions.
...
Further arguments to be passed to or from methods.
group a factor variable with two levels. If group is a binary numeric vector, it will be coerced into a factor variable.
statistic the statistic of interest.
B the number of resamples (positive integer greater than 2).
alternative the alternative hypothesis. Options are "two.sided", "less" or "greater".
plot.hist a logical value. If TRUE, the permutation distribution of the statistic is plotted.
plot.qq a logical value. If TRUE, then a normal quantile-quantile plot of the resampled test statistic is created.
xlab an optional character string for the x-axis label
ylab an optional character string for the y-axis label
title an optional character string giving the plot title
seed optional argument to set.seed
formula a formula of the form y ~ group where y is numeric and group is a factor variable.
data a data frame with the variables in the formula.
subset an optional expression specifying which observations to keep.
Details

Permutation test to see if a population parameter is the same for two populations. For instance, test \( \mu \) where \( \mu \) denotes the population mean. The values of the numeric variable are randomly assigned to the two groups and the difference of the statistic for each group is calculated. The command will print the mean and standard error of the distribution of the test statistic as well as a P-value.

Observations with missing values are removed.

Value

Returns invisibly a vector of the replicates of the test statistic.

Methods (by class)

- \code{permTest(default)}: Permutation test
- \code{permTest(formula)}: Permutation test

Author(s)

Laura Chihara

References

Tim Hesterberg’s website: \url{https://www.timhesterberg.net/bootstrap-and-resampling}

Examples

\footnotesize

```r
permTest(states03$ViolentCrime, states03$DeathPenalty)

using formula syntax
permTest(ViolentCrime ~ DeathPenalty, data = states03, alt = "less")
```

\footnotesize

\begin{itemize}
  \item \texttt{permTestAnova} \quad \emph{Permutation test for ANOVA F-test}
\end{itemize}

Description

Permutation test to see if the population mean is the same for two or more populations. For instance, test \( \mu \) where \( \mu \) denotes the population mean. The values of the numeric variable are randomly assigned to the groups and the ANOVA F statistic is calculated. The command will print the mean and standard error of the distribution of the test statistic as well as a P-value.
Usage

permTestAnova(x, ...)

## Default S3 method:
permTestAnova(
  x,
  group,
  B = 9999,
  plot.hist = TRUE,
  plot.qq = FALSE,
  xlab = NULL,
  ylab = NULL,
  title = NULL,
  seed = NULL,
  ...
  )

## S3 method for class 'formula'
permTestAnova(formula, data = parent.frame(), subset, ...)

Arguments

x         a numeric vector.
...        further arguments to be passed to or from methods.
group     a factor variable with two or more levels. If group is a numeric vector, it will be coerced into a factor variable.
B          the number of resamples (positive integer greater than 2).
plot.hist  a logical value. If TRUE, the permutation distribution of the statistic is plotted.
plot.qq    a logical value. If TRUE, then a normal quantile-quantile plot of the resampled test statistic is created.
xlab       an optional character string for the x-axis label
ylab       an optional character string for the y-axis label
title      an optional character string giving the plot title
seed       optional argument to {set.seed
formula    a formula of the form y ~ group where y is numeric and group is a factor variable.
data       a data frame with the variables in the formula.
subset     an optional expression specifying which observations to keep.

Details

Observations with missing values are removed.

Value

Returns invisibly a vector of the replicates of the test statistic.
Methods (by class)

- `permTestAnova(default)`: Permutation test for ANOVA F-test
- `permTestAnova(formula)`: Permutation test for ANOVA F-test

Author(s)

Adam Loy, Laura Chihara

References

Tim Hesterberg’s website: [https://www.timhesterberg.net/bootstrap-and-resampling](https://www.timhesterberg.net/bootstrap-and-resampling)

Examples

```r
permTestAnova(states03$ViolentCrime, states03$Region, B = 499)

using formula syntax
Not run:
permTestAnova(ViolentCrime ~ Region, data = states03, B = 9999)
End(Not run)
```

---

**permTestCor**

*Permutation test for the correlation of two variables.*

Description

Hypothesis test for a correlation of two variables. The null hypothesis is that the population correlation is 0.

Usage

```r
permTestCor(x, ...)```

Default S3 method:
```r
permTestCor(
    x,
    y,
    B = 999,
    alternative = "two.sided",
    plot.hist = TRUE,
    plot.qq = FALSE,
    x.name = deparse(substitute(x)),
    y.name = deparse(substitute(y)),
    xlab = NULL,
    ...)```
permTestCor

    ylab = NULL,
    title = NULL,
    seed = NULL,
    ...
)

## S3 method for class 'formula'
permTestCor(formula, data, subset, ...)

Arguments

x  a numeric vector.
...
 further arguments to be passed to or from methods.
y  a numeric vector.
B  the number of resamples to draw (positive integer greater than 2).
alternative alternative hypothesis. Options are "two.sided", "less" or "greater".
plot.hist a logical value. If TRUE, plot the distribution of the correlations obtained from each resample.
plot.qq a logical value. If TRUE, plot the normal quantile-quantile plot of the correlations obtained from each resample.
x.name Label for variable x
y.name Label for variable y
xlab an optional character string for the x-axis label
ylab an optional character string for the y-axis label
title an optional character string giving the plot title
seed optional argument to set.seed
formula a formula y ~ x where x, y are numeric vectors.
data a data frame that contains the variables given in the formula.
subset an optional expression indicating what observations to use.

Details

Perform a permutation test to test \( \rho \), where \( \rho \) is the population correlation. The rows of the second variable are permuted and the correlation is re-computed.

The mean and standard error of the permutation distribution is printed as well as a P-value.

Observations with missing values are removed.

Value

Returns invisibly a vector of the correlations obtained by the randomization.

Methods (by class)

- \( \text{permTestCor}(\text{default}) \): Permutation test for the correlation of two variables.
- \( \text{permTestCor}(\text{formula}) \): Permutation test for the correlation of two variables.
permTestPaired

Author(s)
Laura Chihara

References
Tim Hesterberg’s website: https://www.timhesterberg.net/bootstrap-and-resampling

Examples
plot(states03$HSGrad, states03$TeenBirths)
cor(states03$HSGrad, states03$TeenBirths)
permTestCor(states03$HSGrad, states03$TeenBirths)
permTestCor(TeenBirths ~ HSGrad, data = states03)

Description
Permutation test for paired data.

Usage
permTestPaired(x, ...)

## Default S3 method:
permTestPaired(
  x,
  y,
  B = 9999,
  alternative = "two.sided",
  plot.hist = TRUE,
  plot.qq = FALSE,
  x.name = deparse(substitute(x)),
  y.name = deparse(substitute(y)),
  xlab = NULL,
  ylab = NULL,
  title = NULL,
  seed = NULL,
  ...
)

## S3 method for class 'formula'
permTestPaired(formula, data, subset, ...)

permTestPaired
Permutation test for paired data.
Arguments

x  a numeric vector.

... further arguments to be passed to or from methods.

y  a numeric vector.

B  the number of resamples.

alternative  the alternative hypothesis. Options are "two.sided", "less" and "greater".

plot.hist  a logical value. If TRUE, create a histogram displaying the permutation distribution of the statistic.

plot.qq  a logical value. If TRUE, include a quantile-normal plot of the permutation distribution.

x.name  Label for x variable

y.name  Label for y variable

xlab  an optional character string for the x-axis label

ylab  an optional character string for the y-axis label

title  an optional character string giving the plot title

seed  optional argument to set.seed

formula  a formula of the form y \sim x, where x, y are both numeric variables.

data  an optional data frame containing the variables in the formula. By default the variables are taken from environment(formula).

subset  an optional vector specifying a subset of observations to be used.

Details

For two paired numeric variables with n rows, randomly select k of the n rows (k also is random) and switch the entries \( \text{latex} \) and then compute the mean of the difference of the two variables (\( y-x \)).

Observations with missing values are removed.

Value

Returns invisibly a vector of the replicates of the test statistic (ex. mean of the difference of the resampled variables).

Methods (by class)

- \( \text{permTestPaired}(\text{default}) \): Permutation test for paired data.
- \( \text{permTestPaired}(\text{formula}) \): Permutation test for paired data.

Author(s)

Laura Chihara

References

Tim Hesterberg’s website: https://www.timhesterberg.net/bootstrap-and-resampling
Examples

#Does chocolate ice cream have more calories than vanilla ice cream, on average?
#H0: mean number of calories is the same
#HA: mean number of calories is greater in chocolate ice cream

permTestPaired(Icecream$VanillaCalories, Icecream$ChocCalories, alternative = "less")
permTestPaired(ChocCalories ~ VanillaCalories, data = Icecream, alternative = "greater")

Description

Hypothesis test for a slope of a simple linear regression model. The null hypothesis is that the population slope is 0.

Usage

permTestSlope(x, ...)

## Default S3 method:
permTestSlope(
  x,
  y,
  B = 999,
  alternative = "two.sided",
  plot.hist = TRUE,
  plot.qq = FALSE,
  x.name = deparse(substitute(x)),
  y.name = deparse(substitute(y)),
  xlab = NULL,
  ylab = NULL,
  title = NULL,
  seed = NULL,
  ...
)

## S3 method for class 'formula'
permTestSlope(formula, data, subset, ...)

Arguments

x a numeric vector.

... further arguments to be passed to or from methods.

y a numeric vector.
permTestSlope

8
alternative
plot.hist
plot.qq
x.name
y.name
xlab
ylab
title
seed
formula
data
subset

Details
Perform a permutation test to test \( \hat{\beta} \), where \( \hat{\beta} \) is the population slope. The rows of the second variable are permuted and the slope is re-computed.

The mean and standard error of the permutation distribution is printed as well as a P-value.

Observations with missing values are removed.

Value
Returns invisibly a vector of the slopes obtained by the randomization.

Methods (by class)
- permTestSlope(default): Permutation test for the slope
- permTestSlope(formula): Permutation test for the slope

Author(s)
Adam Loy, Laura Chihara

References
Tim Hesterberg’s website: https://www.timhesterberg.net/bootstrap-and-resampling
plot.carlboot

Plot the bootstrap distribution in carlboot object

Description

Plot the bootstrap distribution returned as a carlboot object.

Usage

```r
S3 method for class 'carlboot'
plot(x, bins = 15, size = 5, xlab = NULL, ylab = NULL, title = NULL, ...)

S3 method for class 'carlperm'
plot(x, bins = 15, size = 5, xlab = NULL, ylab = NULL, title = NULL, ...)
```

Arguments

- `x` The carlboot object to print.
- `bins` number of bins in histogram.
- `size` size of points.
- `xlab` an optional character string for the x-axis label
- `ylab` an optional character string for the y-axis label
- `title` an optional character string giving the plot title
- `...` not used

Examples

```r
boot_dist <- boot(ToothGrowth$len, ToothGrowth$supp, B = 1000)
plot(boot_dist)

perm_dist <- permTest(states03$ViolentCrime, states03$DeathPenalty, B = 999)
plot(perm_dist)
```
print.carlboot  

Print a summary of an carlboot object

Description

Print summary statistics and confidence intervals for an carlboot object.

Usage

```r
S3 method for class 'carlboot'
print(x, ...)

S3 method for class 'carlperm'
print(x, ...)
```

Arguments

- `x` The carlboot object to print.
- `...` not used

qqPlotDemo  

Demonstration of the normal qq-plot.

Description

Demonstrate the normal quantile-quantile plot for samples drawn from different populations.

Usage

```r
qqPlotDemo(
 n = 25,
 distribution = "normal",
 mu = 0,
 sigma = 1,
 df = 10,
 lambda = 10,
 numdf = 10,
 dendf = 16,
 shape1 = 40,
 shape2 = 5
)
```
Arguments

- **n**: sample size
- **distribution**: population distribution. Options are "normal","t","exponential","chi.square","F" or "beta" (partial matches are accepted).
- **mu**: mean for the normal distribution.
- **sigma**: (positive) standard deviation for the normal distribution.
- **df**: (positive) degrees of freedom for the t-distribution.
- **lambda**: positive rate for the exponential distribution.
- **numdf**: (positive) numerator degrees of freedom for the chi-square distribution.
- **dendf**: (positive) denominator degrees of freedom for the chi-square distribution.
- **shape1**: positive parameter for the beta distribution (shape1 = a).
- **shape2**: positive parameter for the beta distribution (shape2 = b).

Details

Draw a random sample from the chosen sample and display the normal qq-plot as well as the histogram of its distribution.

Value

Returns invisibly the random sample.

Author(s)

Laura Chihara

Examples

```r
qqPlotDemo(n = 30, distr = "exponential", lambda = 1/3)
```

Description

Census data on the 50 states from 2003.
Format

A data frame with 50 observations on the following 24 variables.

- **State**: the 50 states
- **Region**: a factor with levels Midwest, Northeast, South, West
- **Pop**: Population in 1000
- **Births**: Number of births
- **Deaths**: Number of deaths
- **Pop18**: Percent of population 18 years of age or younger
- **Pop65**: Percent of population 65 years of age or older
- **HSGrad**: Percent of population 25 years of age or older with a high school degree
- **ColGrad**: Percent of population 25 years of age or older with a college degree
- **TeacherPay**: Average teachers salary in dollars
- **InfMortality**: Infant mortality per 1000 live births
- **TeenBirths**: Live births per 1000 15-19 year old females
- **ViolentCrime**: Violent crime per 100000 population
- **PropertyCrime**: Property crime per 100000 population
- **DeathPenalty**: State has death penalty?
- **Executions**: Number of executions 1977-2003
- **Poverty**: Percent of population below the poverty level
- **Unemp**: Percent unemployed (of population 16 years or older)
- **Uninsured**: Percent uninsured (3 year average)
- **Income**: Median household income in 1998 dollars
- **Earnings**: Average hourly earnings of production workers in manufacturing
- **Heart**: Deaths by heart disease per 100000 population
- **Vehicles**: Deaths by motor vehicle accidents per 100000 population
- **Homeowners**: Home ownership rate

Source

United States Census Bureau [https://www.census.gov/](https://www.census.gov/)
stemPlot  

*Stem and leaf plot*

**Description**

Stem and leaf plot. Will accept a factor variable as a second argument to create stem plots for each of the levels.

**Usage**

`stemPlot(x, ...)`

```
Default S3 method:
stemPlot(x, grpvar = NULL, varname = NULL, grpvarname = NULL, ...)

S3 method for class 'formula'
stemPlot(formula, data = parent.frame(), subset, ...)
```

**Arguments**

- `x` a numeric variable.
- `...` further arguments to be passed to or from methods.
- `grpvar` a factor variable. A stem plot of `x` will be created for each level of the factor variable.
- `varname` name of the numeric variable. This is for printing the output only. Change if you want to print out a name different from the actual variable name.
- `grpvarname` name of the factor variable. This is for printing the output only. Change if you want to print out a name different from the actual variable name.
- `formula` a formula of the form `x ~ grpvar` where `x` is numeric and `grpvar` is a factor variable.
- `data` a data frame with the variables in the formula.
- `subset` an optional expression specifying which observations to keep.

**Details**

This command is just an enhanced version of R’s `stem` command. It allows the user to create the stem plot for a numeric variable grouped by the levels of a factor variable.

**Methods (by class)**

- `stemPlot(default): Stem and leaf plot`
- `stemPlot(formula): Stem and leaf plot`

**Author(s)**

Laura Chihara
summary.carlboot

Examples

stemPlot(states03$Births, states03$Region)
stemPlot(Births ~ Region, data = states03)

summary.carlboot  Print a summary of an carlboot object

Description

Print summary statistics and confidence intervals, if desired, for an lmeresamp object.

Usage

## S3 method for class 'carlboot'
summary(object, ...)

## S3 method for class 'carlperm'
summary(object, ...)

Arguments

object The carlboot object to print.
...
not used

Examples

boot_dist <- boot(ToothGrowth$len, ToothGrowth$supp, B = 1000)
summary(boot_dist)
perm_dist <- permTest(states03$ViolentCrime, states03$DeathPenalty, B = 999)
summary(perm_dist)
Index

* ANOVA
  anovaSummarized, 2
* Correlation
  corDemo, 12
* Summarized
  anovaSummarized, 2
* bar
  groupedBar, 13
* bootstrap
  boot, 3
  bootPaired, 7
* confidence
  confIntDemo, 11
* correlation
  permTestCor, 20
  permTestSlope, 24
* datasets
  Icecream, 14
  Milkshakes, 15
  states03, 28
* data
  anovaSummarized, 2
  permTestPaired, 22
* grouped
  groupedBar, 13
* interval
  confIntDemo, 11
* missing
  missingLevel, 16
* normal
  qqPlotDemo, 27
* paired
  permTestPaired, 22
* permutation
  permTest, 16
  permTestAnova, 18
  permTestCor, 20
  permTestPaired, 22
  permTestSlope, 24
* plot
  groupedBar, 13
  qqPlotDemo, 27
  stemPlot, 30
* quantile-quantile
  qqPlotDemo, 27
* randomization
  boot, 3
  bootPaired, 7
  permTest, 16
  permTestAnova, 18
  permTestCor, 20
  permTestPaired, 22
  permTestSlope, 24
* resampling
  boot, 3
  bootCor, 5
  bootPaired, 7
  bootSlope, 9
  permTest, 16
  permTestAnova, 18
  permTestCor, 20
  permTestPaired, 22
  permTestSlope, 24
* stem
  stemPlot, 30
* test
  permTest, 16
  permTestAnova, 18
  permTestCor, 20
  permTestPaired, 22
  permTestSlope, 24
* values
  missingLevel, 16
  anovaSummarized, 2
INDEX

boot, 3
bootCor, 5
bootPaired, 7
bootSlope, 9

confint.carlboot, 11
confIntDemo, 11
corDemo, 12
groupedBar, 13
Icecream, 14
Milkshakes, 15
missingLevel, 16

permTest, 16
permTestAnova, 18
permTestCor, 20
permTestPaired, 22
permTestSlope, 24
plot.carlboot, 26
plot.carlperm(plot.carlboot), 26
print.carlboot, 27
print.carlperm(print.carlboot), 27

qqPlotDemo, 27

set.seed, 4, 6, 8, 10, 17, 19, 21, 23, 25
states03, 28
stemPlot, 30
summary.carlboot, 31
summary.carlperm(summary.carlboot), 31