Package ‘ChannelAttribution’

April 10, 2019

Type Package
Title Markov Model for the Online Multi-Channel Attribution Problem
Version 1.16
Date 2019-04-10
Author Davide Altomare, David Loris
Maintainer Davide Altomare <davide.altomare@gmail.com>
Description Advertisers use a variety of online marketing channels to reach consumers and they want to know the degree each channel contributes to their marketing success. This is called the online multi-channel attribution problem. This package contains a probabilistic algorithm for the attribution problem. The model uses a k-order Markov representation to identify structural correlations in the customer journey data. The package also contains three heuristic algorithms (first-touch, last-touch and linear-touch approach) for the same problem. The algorithms are implemented in C++.
License GPL (>= 2)
URL
http://www.slideshare.net/adavide1982/markov-model-for-the-multichannel-attribution-problem
http://www.lunametrics.com/blog/2016/06/30/marketing-channel-attribution-markov-models-r/
http://analyzecore.com/2016/08/03/attribution-model-r-part-1/

LinkingTo Rcpp, RcppArmadillo
Imports Rcpp
NeedsCompilation yes
Repository CRAN
Date/Publication 2019-04-10 16:35:53 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChannelAttribution-package</td>
<td>2</td>
</tr>
<tr>
<td>auto_markov_model</td>
<td>3</td>
</tr>
<tr>
<td>choose_order</td>
<td>4</td>
</tr>
</tbody>
</table>
Description

Advertisers use a variety of online marketing channels to reach consumers and they want to know the degree each channel contributes to their marketing success. This is called the online multi-channel attribution problem. In many cases, advertisers approach this problem through some simple heuristics methods that do not take into account any customer interactions and often tend to underestimate the importance of small channels in marketing contribution. This package provides a function that approaches the attribution problem in a probabilistic way. It uses a k-order Markov representation to identify structural correlations in the customer journey data. This would allow advertisers to give a more reliable assessment of the marketing contribution of each channel. The approach basically follows the one presented in Eva Anderl, Ingo Becker, Florian v. Wangenheim, Jan H. Schumann (2014). Differently for them, we solved the estimation process using stochastic simulations. In this way it is also possible to take into account conversion values and their variability in the computation of the channel importance. The package also contains a function that estimates three heuristic models (first-touch, last-touch and linear-touch approach) for the same problem.

Details

Package: ChannelAttribution
Type: Package
Version: 1.16
Date: 2019-04-10
License: GPL (>= 2)

Package contains functions for channel attribution in web marketing.

Author(s)

Davide Altomare, David Loris

Maintainer Davide Altomare <davide.altomare@gmail.com>
auto_markov_model

Description

Estimate a Markov model from customer journey data after automatically choosing a suitable order. It requires paths that do not lead to conversion as input.

Usage

```r
auto_markov_model(Data, var_path, var_conv, var_null, var_value=NULL, max_order=10, roc_npt=100, plot=FALSE, nsim_start=1e5, max_step=NULL, out_more=FALSE, sep=">", ncore=Inf, nfold=10, seed=0, conv_par=0.05, rate_step_sim=1.5, verbose=TRUE)
```

Arguments

- **Data**: data.frame containing customer journeys data.
- **var_path**: column name containing paths.
- **var_conv**: column name containing total conversions.
- **var_null**: column name containing total paths that do not lead to conversions.
- **var_value**: column name containing total conversion value.
- **max_order**: maximum Markov Model order considered.
- **roc_npt**: number of points used for approximating roc and auc.
- **plot**: if TRUE, a plot with penalized auc with respect to order is displayed.
- **nsim_start**: minimum number of simulations used in computation.
- **max_step**: maximum number of steps for a single simulated path.
- **out_more**: if TRUE returns the transition probabilities between channels and removal effects.
- **sep**: separator between the channels.
- **ncore**: number of threads used in computation. Default is number of CPUs available.
- **nfold**: how many repetitions are used to verify if convergence is reached at each iteration.
- **seed**: random seed. Giving this parameter the same value over different runs guarantees that results will not vary.

References

choose_order

conv_par convergence parameter for the algorithm. The estimation process ends when the percentage of variation of the results over different repetitions is less than convergence parameter.

rate_step_sim number of simulations used at each iteration is equal to the number of simulations used at previous iteration multiplied by rate_step_sim.

verbose show additional information about process convergence.

Value

An object of class data.frame with the estimated number of conversions and the estimated conversion value attributed to each channel.

Author(s)

Davide Altomare (<davide.altomare@gmail.com>).

Examples

```r
## Not run:
library(ChannelAttribution)
data(PathData)
auto_markov_model(Data, "path", "total_conversions", "total_null")
## End(Not run)
```

choose_order Choose order for Markov model.

Description

Find the minimum Markov Model order that gives a good representation of customers’ behaviour for data considered. It requires paths that do not lead to conversion as input. Minimum order is found maximizing a penalized area under ROC curve.

Usage

```r
choose_order(Data, var_path, var_conv, var_null, max_order=10, sep=">",
ncore=Inf, roc_npt=100, plot=TRUE)
```
choose_order

Arguments

Data
var_path
data.frame containing customer journeys.
column name of Data containing paths.
var_conv
column name of Data containing total conversions.
var_null
column name of Data containing total paths that do not lead to conversion.
max_order
maximum Markov Model order considered.
sep
separator between channels.
ncore
number of threads used in computation. Default is number of CPUs available.
roc_npt
number of points used for approximating roc and auc.
plot
if TRUE, a plot with penalized auc with respect to order is displayed.

Value
An object of class List with the estimated roc, auc and penalized auc.

Author(s)
Davide Altomare (<davide.altomare@gmail.com>.

Examples

Not run:

library(ChannelAttribution)
data(PathData)
res=choose_order(Data, var_path="path", var_conv="total_conversions", var_null="total_null")

plot auc and penalized auc

plot(resaucorder, resaucauc, type="l", xlab="order", ylab="auc", main="AUC")
lines(resaucorder, resaucpauc, col="red")
legend("right", legend=c("auc", "penalized auc"),
 col=c("black", "red"), lty=1)

End(Not run)
heuristic_models

Data

Customer journeys data.

Description

Example dataset.

Usage

data(PathData)

Format

Data is a data.frame with 10,000 rows and 4 columns: "path" containing customer paths, "total_conversions" containing total number of conversions, "total_conversion_value" containing total conversion value and "total_null" containing total number of paths that do not lead to conversion.

heuristic_models

Heuristic models for the online attribution problem.

Description

Estimate three heuristic models (first-touch, last-touch, linear) from customer journey data.

Usage

heuristic_models(Data, var_path, var_conv, var_value=NULL, sep=">")

Arguments

Data
data.frame containing paths and conversions.

var_path
column name containing paths.

var_conv
column name containing total conversions.

var_value
column name containing total conversion value.

sep
separator between the channels.

Value

An object of class data.frame with the estimated number of conversions and the estimated conversion value attributed to each channel for each model.

Author(s)

Davide Altomare (<davide.altomare@gmail.com>).
markov_model

Examples

```r
## Not run:

library(ChannelAttribution)

data(PathData)

heuristic_models(Data, "path", "total_conversions")
heuristic_models(Data, "path", "total_conversions", var_value="total_conversion_value")

## End(Not run)
```

markov_model
Markov model for the online attribution problem.

Description

Estimate a k-order Markov model from customer journey data.

Usage

```r
markov_model(Data, var_path, var_conv, var_value=NULL, var_null=NULL, 
order=1, nsim=NULL, max_step=NULL, out_more=FALSE, sep=">", 
seed=NULL)
```

Arguments

- `Data`
 data.frame containing paths and conversions.
- `var_path`
 column name containing paths.
- `var_conv`
 column name containing total conversions.
- `var_value`
 column name containing total conversion value.
- `var_null`
 column name containing total paths that do not lead to conversions.
- `order`
 Markov Model order.
- `nsim`
 total simulations from transition matrix.
- `max_step`
 maximum number of steps for a single simulated path.
- `out_more`
 if TRUE returns the transition probabilities between channels and removal effects.
- `sep`
 separator between the channels.
- `seed`
 random seed. Giving to this parameter the same value over different runs guarantee that results will not vary.
Value

An object of class data.frame with the estimated number of conversions and the estimated conversion value attributed to each channel.

Author(s)

Davide Altomare (<davide.altomare@gmail.com>).

Examples

```r
# Not run:
library(ChannelAttribution)
data(PathData)
markov_model(Data, "path", "total_conversions")
markov_model(Data, "path", "total_conversions", var_value="total_conversion_value")
markov_model(Data,"path","total_conversions", var_value="total_conversion_value", var_null="total_null")
markov_model(Data, "path", "total_conversions", var_value="total_conversion_value", var_null="total_null", out_more=TRUE)
# End(Not run)
```

markov_model_mp

Multiprocessing Markov model function.

Description

This function is a multiprocessing version of markov_model function.

Usage

```r
markov_model_mp(Data, var_path, var_conv, var_value=NULL, var_null=NULL, order=1, nsim_start=1e5, max_step=NULL, out_more=FALSE, sep=">", ncore=Inf, nfold=10, seed=0, conv_par=0.05, rate_step_sim=1.5, verbose=TRUE)
```

Arguments

- **Data**
 data.frame containing customer journeys data.
- **var_path**
 column name containing paths.
- **var_conv**
 column name containing total conversions.
- **var_value**
 column name containing total conversion value.
markov_model_mp

var_null column name containing total paths that do not lead to conversions.
order Markov Model order.
nsim_start minimum number of simulations used in computation.
max_step maximum number of steps for a single simulated path.
out_more if TRUE returns the transition probabilities between channels and removal effects.
sep separator between the channels.
ncore number of threads used in computation. Default is number of CPUs available.
nfold how many repetitions are used to verify if convergence is reached at each iteration.
seed random seed. Giving this parameter the same value over different runs guarantees that results will not vary.
conv_par convergence parameter for the algorithm. The estimation process ends when the percentage of variation of the results over different repetitions is less than convergence parameter.
rate_step_sim number of simulations used at each iteration is equal to the number of simulations used at previous iteration multiplied by rate_step_sim.
verbose show additional information about process convergence.

Value

An object of class data.frame with the estimated number of conversions and the estimated conversion value attributed to each channel.

Author(s)

Davide Altomare (<davide.alтомare@gmail.com>).

Examples

Not run:
library(ChannelAttribution)
data(PathData)
markov_model_mp(Data,"path","total_conversions", var_null="total_null")

End(Not run)
transition_matrix

Transition matrix.

Description

Estimate a k-order transition matrix from customer journey data.

Usage

```r
transition_matrix(Data, var_path, var_conv, var_null, order=1, sep=">", flg_equal=TRUE)
```

Arguments

- **Data**: data.frame containing customer journeys data.
- **var_path**: column name containing paths.
- **var_conv**: column name containing total conversions.
- **var_null**: column name containing paths that do not lead to conversions.
- **order**: Markov Model order.
- **sep**: separator between the channels.
- **flg_equal**: if TRUE transitions from a channel to itself are considered.

Value

An object of class List containing a dataframe with channel names and a dataframe with the estimated transition matrix.

Author(s)

Davide Altomare (<davide.altomare@gmail.com>).

Examples

```r
# Not run:
library(ChannelAttribution)
data(PathData)
transition_matrix(Data, var_path="path", var_conv="total_conversions", var_null="total_null", order=1, sep=">", flg_equal=TRUE)
transition_matrix(Data, var_path="path", var_conv="total_conversions", var_null="total_null", order=3, sep=">", flg_equal=TRUE)
```
transition_matrix

End (Not run)
Index

*Topic channel attribution
 ChannelAttribution-package, 2
*Topic channel marketing
 ChannelAttribution-package, 2
*Topic choose markov graph order
 choose_order, 4
*Topic choose markov model order
 choose_order, 4
*Topic customer journey dataset
 Data, 6
*Topic customer journey
 ChannelAttribution-package, 2
*Topic customer path data
 Data, 6
*Topic dataset
 Data, 6
*Topic first touch
 heuristic_models, 6
*Topic last touch
 heuristic_models, 6
*Topic linear touch
 heuristic_models, 6
*Topic marketing attribution
 ChannelAttribution-package, 2
*Topic markov graph
 auto_markov_model, 3
 markov_model, 7
 markov_model_mp, 8
 transition_matrix, 10
*Topic markov model
 auto_markov_model, 3
 markov_model, 7
 markov_model_mp, 8
 transition_matrix, 10
*Topic multi channel funnel
 ChannelAttribution-package, 2
*Topic multi channel marketing
 ChannelAttribution-package, 2
*Topic online attribution
 ChannelAttribution-package, 2
*Topic web marketing
 ChannelAttribution-package, 2
*Topic web statistics
 ChannelAttribution-package, 2
 auto_markov_model, 3
 Data, 6
 heuristic_models, 6
 markov_model, 7
 markov_model_mp, 8
 transition_matrix, 10