Package ‘CircE’

February 19, 2015

Version 1.1
Date 2014/7/8
Title Circumplex models Estimation
Author Michele Grassi <grassi.mic@gmail.com>
Maintainer Michele Grassi <grassi.mic@gmail.com>
Depends R (>= 1.6.0), stats
Description This package contains functions for fitting circumplex structural models for correlation matrices (with negative correlation) by the method of maximum likelihood.
License GPL (>= 2)
LazyLoad true
NeedsCompilation no
Repository CRAN
Date/Publication 2014-09-09 14:12:27

R topics documented:

 CircE-package ... 2
 Block ... 2
 bound.assign .. 3
 char.assign .. 4
 CircE.BFGS .. 6
 CircE.Plot ... 10
 residual.CircE ... 12
 SELF5 ... 13
 Verbal ... 14

Index 15
CircE-package

Description
An R package for circumplex models estimation. This package contains functions for fitting circumplex structural models for correlation matrices (with negative correlation) by the method of maximum likelihood.

Details

Package:	CircE
Type:	Package
Version:	1.0
Date:	2014/3/4
License:	GPL (>= 2)

Author(s)

Michele Grassi <grassi.mic@gmail.com>

Block

Description
The Osgood’s “semantic differential” form was administered to 40 male and 48 female college students in an undergraduate psychology course. Fifteen emotions, selected a priori but with the intention of comprehensive coverage of the affective sphere, were used as the concepts to be defined. Each concept was evaluated in terms of twenty connotative 7-point scales. The intercorrelations matrix based upon the female sample is given in this object.

Usage
data(Block)

Source
Examples

data(Block)

Block

block.names=colnames(Block)

block.names

Not run:
Block.m1<-CircE.BFGS(R=Block,v.names=block.names,m=1,N=48,start.values="IFA")
You will get the following warnings:
WARNING!
INPUT COVARIANCE/CORRELATION MATRIX IS NOT POSITIVE DEFINITE.
STARTING VALUES CANNOT BE COMPUTED USING 'IFA': SET start.values='PFA'
Error in ifa(R, k):
Make sure the listwise, not pairwise, missing data treatment has been selected
in computing the input matrix
#
The error message reported by CircE highlights that the problem in fitting a CSPMF
to Block's data occurs at the early stage of starting values computation.
CircE offers a way to sidestep this problem without actually trying to discern its cause:
In fact, at this stage, the IFA cannot be carried out since the inverse of the
non-positive definite Block's matrix has negative values
on the diagonal (Joreskog, 1969, p. 54):

diag(solve(Block))

To overcome this problem, CircE offers an alternative ways to obtain initial
parameters estimation, based on Principal Factor Analysis (PFA):

Block.m1<-CircE.BFGS(R=Block,v.names=block.names,m=1,N=48,start.values="PFA")

End(Not run)
Arguments

- **sc.names**: character string containing the names of the variables to be matched in the given character vector v.names. It must contains the patterns that identify the variables belongingness in the variable (or items) names.
- **v.names**: a character vector where matches are sought (e.g. the variables (or items) names).
- **lower**: a vector of lower bounds.
- **upper**: a vector of upper bounds.

Author(s)

Michele Grassi <grassi.mic@gmail.com>

Examples

data(SELF5)
v.names=names(SELF5)
v.names

sc.names=c("LM","NO","PA","BC","DE","FG","HI","JK")
lower<-c(-22.5,292.5,247.5,202.5,157.5,112.5,67.5,22.5)
upper<-c(22.5,337.5,292.5,247.5,202.5,157.5,112.5,67.5)
B$<bound.assign(sc.names=sc.names,v.names=v.names,lower=lower,upper=upper)

B$upper

B$lower

Each one of the 48 items (v.names) is provided with an upper and lower bound:
bounds<-data.frame(v.names,B$upper,B$lower)

bounds[order(B$upper),]

char.assign

Points character and color assignation for CircE.Plot

Description

This function allows to quickly assign different point characters and color to the different variables. It is especially useful in working with raw items whose names are usually composed by a serial number and the name of the main variable to which they refer to.

Usage

char.assign(sc.names,v.names,point.char,bg.point)
char.assign

Arguments

- **sc.names**: character string containing the names of the variables to be matched in the given character vector `v.names`. It must contain the patterns that identify the variables belongingness in the variable (or items) names.
- **v.names**: a character vector where matches are sought (e.g. the variables (or items) names).
- **point.char**: points character, i.e., symbol to use for each variable.
- **bg.point**: background (fill) color for the open plot symbols given by `pch=21:25`.

Details

The pattern matching between the character string given in `sc.names` and the `v.names` is based on `grep` function.

Author(s)

Michele Grassi <grassi.mic@gmail.com>

Examples

```r
library(CircE)
data(SELF5)
v.names<-names(SELF5)
v.names
RS5<-cor(SELF5,use="pairwise.complete.obs")
RS5<-round(RS5,3)
## Not run:
# The "convergence to a solution" requires more than 200 iterations (e.g., set `iterlim=250`).
# This is long-running test made optional for checking.
Child<-CircE.BFGS(R=RS5,v.names=v.names,m=3,N=286,equal.com=FALSE,equal.ang=FALSE,
  mcsc="unconstrained",iterlim = 250,factr=1e10)

# The features of `char.assign` can be effectively highlighted limiting the number
# of iterations allowed (e.g., set `iterlim=5`). This option makes the example faster.
Child<-CircE.BFGS(R=RS5,v.names=v.names,m=3,N=286,equal.com=FALSE,equal.ang=FALSE,
  mcsc="unconstrained",iterlim = 5,factr=1e10)
## End(Not run)
# To simplify the assignation of color and character type of each point on the graph,
# which are required as arguments by the function CircE.Plot(),
# in the case of a large number of items, the function char.assign() can be used as follows:
# Supposing that the items are tagged with a reference to the relative scale (e.g., `v.names`),
# it is sufficient to create a string with scale names (`sc.names`),
sc.names=c("LM","NO","PA","BC","DE","FG","HI","JK")
# a vector of the same length containing the point characters (`point.char`),
```
CircE.BFGS

Circumplex models estimation

Description

This function fits circumplex models for correlation matrices as described in Browne (1992). Results are convergent with those obtained using CIRCUM program wrote by Michael W. Browne and Stephen H.C. Du Toit (1992), available for download at this address http://faculty.psychology.ohio-state.edu/browne/software.php.

Usage

CircE.BFGS(R, v.names, m, N, r = 1, equal.com = FALSE, equal.ang = FALSE, mcsc = "unconstrained", start.values="IFA", ci.level=0.95, factr = 1e+09, pgtol = 0, lmm = NULL, iterlim = 250, upper = NULL, lower = NULL, print.level = 1, file = NULL, title = "Circumplex Estimation", try.refit.BFGS=FALSE)

Arguments

R input covariance/correlation matrix. If the matrix is obtained through cov or cor, the precision to be used (decimal places) must be specified with round.
CircE.BFGS

v.names a string that contains the name of the variable used in R.

m numbers of betas to use in the Fourier correlation function.

N number of observation.

r the reference variable in the correlation matrix. This variable will be positioned at 0 degree.

equal.com logical: does the communality (radius length) for each variable have to been considered as equal? Default equal.com=FALSE.

equal.ang logical: does the circular position of the variables have to been considered as equal spaced? Default equal.ang=FALSE.

mcsc minimum common score correlation value: "unconstrained" (default), "-1" or "0".

start.values if start.values="IFA" (default), initial estimates are provided by the factor analysis method described in Browne (1992; section 6.7) and based on Image Factor Analysis (IFA). When the input covariance/correlation matrix is not positive definite, the IFA cannot be carried out; in this case the Principal Factor Analysis (PFA) supply likely starting values (start.values="IFA").

ci.level level for confidence interval for the parameter estimates (default is .95).

factr controls the convergence of the "L-BFGS-B" method. Convergence occurs when the reduction in the objective is within this factor of the machine tolerance. Default is 1e09, that is a tolerance of about 2e-07.

pgtol helps control the convergence of the "L-BFGS-B" method. It is a tolerance on the projected gradient in the current search direction. This defaults to zero, when the check is suppressed.

lmm is an integer giving the number of BFGS updates retained in the "L-BFGS-B" method. It defaults to number of free parameters estimated.

iterlim maximum number of iterations.

upper,lower Bounds on the variables for the "L-BFGS-B" method. See bound.assign

print.level Integer. Higher values may produce more tracing information on the progress of the optimization (print.level=0 no information is generated,print.level=1 print F value at every iterations, print.level=3 print F and also ||proj||).

file a connection or a character string naming the file to write to, or NULL (default) for do not send R output to a file.

title title for the output (for identification purpose).

try.refit.BFGS if TRUE, attempt to refit the model removing default box constraints on z,v, and a parameters, if L-BFGS-B fails to converge.

Details

Optimization is based on L-BFGS-B algorithm. See optim for further details.
Value

AGFI adjusted goodness-of-fit index
AIC Akaike Information Criterion
BCI ECVI- expected cross-validation index
BIC Schwarz's Bayesian Information Criterion
CAIC Bozdogans's Consistent AIC
CFI Bentler CFI
CNI Hoelter's critical N (CN) index
Cs reproduced covariance matrix
Fzero population discrepancy function value; point estimate
Fzero.L population discrepancy function value; lower 90% confidence limit
Fzero.U population discrepancy function value; upper 90% confidence limit
GFI goodness-of-fit index
MCSC minimum common score correlation
NFI Bentler-Bonnett NFI
NNFI Tucker-Lewis TLI (or NNFI)
Pc reproduced common score correlation matrix
R observed covariance/correlation matrix
RMSEA root mean square error of approximation; point estimate
RMSEA.L root mean square error of approximation; lower 90% confidence limit
RMSEA.U root mean square error of approximation; upper 90% confidence limit
S reproduced correlation matrix
SRMR standardized root mean squared residual
beta Fourier correlation function’s betas
chisq the chisquare test statistic for the model
chisqNull the chisquare value associated with a null model in which all of the observed variables are uncorrelated
coeff data frame containing parameters value and their standard errors after convergence
communality communality values for each observed variable
communality.index communality index values for each observed variable
criterion sample discrepancy function value
d degree of freedom of the model
dfNull degree of freedom of the Null model
equal.ang if TRUE, the variables are constrained to be equally distributed on the circumference. The default is FALSE
equal.com if TRUE, the communality indices are constrained to be equal. The default is FALSE
m number of free parameters in the Fourier correlation function
n number of observations
polar.angles data frame containing the estimated polar angles, the lower (L) and the upper (U) limits of an approximate 95% confidence interval for each variable
q effective number of parameters
residuals The residuals are defined as R - S (or R- Cs), where R is the sample correlation (or sample covariance) matrix of the observed variables and S (or Cs) is the model-reproduced correlation (or covariance) matrix
standardized.residuals The standardized residual covariance for a pair of variables divides the residual covariance by the product of the sample standard deviations of the two variables
v.names variable names

Author(s)
Michele Grassi <grassi.mic@gmail.com>

References

Examples

```r
# Vocational Interests Scale: Sample Correlation Matrix. N=175

vocational=matrix(c(1,0,0,0,0,0,
0.654,1,0,0,0,0,
0.453,0.644,1,0,0,0,
0.251,0.440,0.757,1,0,0,
0.122,0.158,0.551,0.493,1,0,0,
0.218,0.210,0.570,0.463,0.754,1,0,
0.496,0.264,0.366,0.202,0.471,0.650,1),7,7,byrow=TRUE)
R=R.vocational+t(R.vocational)-diag(diag(R.vocational))

v.names=c("Health","Science","Technology","Trades","Business Operations",
"Business Contact","Social")
dimnames(R)=list(v.names,v.names)
```
model=CircE.BFGS(R,v.names,m=3,N=175,r=1)

#______ Some useful residual matrix with residual.CircE() function...
residual.CircE(model,digits=3)

#______ Save output on .txt file at the current directory _________________
get current directory
getwd()

save the example.txt file at the current directory with
Not run:
CircE.BFGS(R,v.names,m=3,N=175,r=1,file="example CircE.BFGS.txt")

End(Not run)

CircE.Plot

Circumplex Estimates Plot

Description

CircE.Plot produces the graphical representations of the estimated circular position of the variables and the Fourier correlation function. The function uses dev.new to create two different devices preserving an appropriate aspect ratio.

Usage

CircE.Plot(object, pchar = NULL, bg.points = "red", ef = 0.4, big.points = 10, big.labels = 10, bg.plot = "gray80", col.axis = "black", color = "black", col.text = "white", twodim=TRUE, bound=TRUE, labels=TRUE, reverse=FALSE)

Arguments

- **object**: a circumplex model produced by CircE.BFGS.
- **pchar**: plotting character, i.e., symbol to use. It can be either a single value or a vector of length equal to numbers of variables used in correlation matrix. For further details see ?par.
- **bg.points**: background color for the symbols selected with pchar. Either a single value or a vector of color.
- **ef**: "explosion factor". It specifies the distances at which the name of the variables are drawn around the circumference. Default to 0.4 (if negative labels are drawn inside the circumference).
- **big.points**, **big.labels**: numerical values giving the amount by which plotting labels and symbols should be magnified relative to the default (cex = 1/(number of observed variables)).
CircE.Plot

bg.plot background color of the plot region.
col.axis the color to be used for axis annotation, axis line and labels.
color the color to be used for plot lines and symbols foreground.
col.text the color to be used for plot texts.
twodim logical. If FALSE (default), two reference axes are drawn.
bound logical. If arguments upper and lower in object are not NULL, the bound lines are drawn on the circumference. Default is TRUE.
labels logical. If TRUE (default), variable labels are reported in the plot.
reverse logical. If TRUE, plot the figure using the 360-angular positions (just reversing the circular order).

Author(s)

Michele Grassi <grassi.mic@gmail.com>

See Also

See Also plot, points, par.

Examples

#_____ Vocational Interests Scale: Sample Correlation Matrix. N=175 _____

R.vocational=matrix(c(
 1,0,0,0,0,0,
 0.654,1,0,0,0,0,
 0.453,0.644,1,0,0,0,
 0.251,0.440,0.757,1,0,0,
 0.122,0.158,0.551,0.493,1,0,
 0.218,0.210,0.570,0.463,0.754,1,
 0.496,0.264,0.366,0.202,0.471,0.650,1
),7,7,byrow=TRUE)
R=R.vocational+t(R.vocational)-diag(diag(R.vocational))

v.names=c("Health","Science","Technology","Trades","Business Operations",
"Business Contact","Social")
dimnames(R)=list(v.names,v.names)

Not run:

model=CircE.BFGS(R,v.names,m=3,N=175,r=1)

CircE.Plot(object=model, pchar = 24, bg.points = "transparent", ef = -0.4,
 big.points = 15, big.labels=6, bg.plot = "white", col.axis = "black",
 color = "black", col.text = "black",
 twodim=FALSE,bound=TRUE,labels=TRUE)
Sample, reproduced observed scores, reproduced common scores and residual matrices

Description
This function produces several matrices useful to assess model fit.

Usage
residual.CircE(object, file=NULL, digits=3)

Arguments

object a circumplex model produced by CircE.BFGS.
file a connection or a character string naming the file to write to, or NULL (default) for do not send R output to a file.
digits number of digits for printed output.
SELF5

Author(s)
Michele Grassi <grassi.mic@gmail.com>

Examples

```r
#_____ Vocational Interests Scale: Sample Correlation Matrix. N=175 _____

R.vocational=matrix(c(1,0,0,0,0,0,0.654,1,0,0,0,0,0.453,0.644,1,0,0,0,0.251,0.440,0.757,1,0,0,0,0.122,0.158,0.551,0.493,1,0,0,0.218,0.210,0.570,0.463,0.754,1,0,0.496,0.264,0.366,0.202,0.471,0.650,1),byrow=TRUE)
R=R.vocational+t(R.vocational)-diag(diag(R.vocational))

v.names=c("Health","Science","Technology","Trades","Business Operations","Business Contact","Social")
dimnames(R)=list(v.names,v.names)

model=CircE.BFGS(R,v.names,m=3,N=175,r=1)

residual.CircE(model,digits=3)
```

Description

This data set contains 286 self-reports provided by 5th grade children who rated their interpersonal behavior along 48 items, i.e. six items for each of eight scales octants, conceptually organized around Dominance (DOM) and Love (LOV) domains according to Wiggins‘ interpersonal circumplex (IPC) model (Wiggins, 1979; Wiggins & Trapnell, 1996). Briefly, Wiggins‘ model is based on the idea that people in interaction attempt to negotiate relations of hierarchy and cooperation by granting or denying the resources of power (Dominance) and warmth (Love). Accordingly, the IPC model differently combines elements of the reference axes (DOM and LOV) and defines eight possible interpersonal styles circularly ordered around DOM and LOV in compliance with a law of neighboring, positing that two variables are neighbors if they share more variance with each other than with other variables.

Usage

data(SELF5)
References

Examples
data(SELF5)
dim(SELF5)
RS5<-cor(SELF5,use="pairwise.complete.obs")
colnames(RS5)

| Verbal | Verbal Ability Tests correlation matrix |

Description
Intercorrelations of six Verbal Ability Tests for 1046 Bucknell College Sophomores.

Usage
data(Verbal)

Source

Examples
data(Verbal)
Verbal
Index

Block, 2
bound.assign, 3, 7
char.assign, 4
CircE (CircE-package), 2
CircE-package, 2
CircE.BFGS, 6
CircE.Plot, 10
cor, 6
cov, 6
dev.new, 10
grep, 5
optim, 7
par, 11
plot, 11
points, 11
residual.CircE, 12
round, 6
SELF5, 13
Verbal, 14