Package ‘ClassComparison’

May 17, 2018

Version 3.1.6
Date 2018-05-17
Title Classes and Methods for "Class Comparison" Problems on Microarrays
Author Kevin R. Coombes
Maintainer Kevin R. Coombes <krc@silicovore.com>
Description Defines the classes used for "class comparison" problems in the OOMPA project (<http://oompa.r-forge.r-project.org/>). Class comparison includes tests for differential expression; see Simon's book for details on typical problem types.
Depends R (>= 3.0), oompaBase (>= 3.0)
Imports methods, graphics, stats, splines, Biobase
License Apache License (== 2.0)
LazyLoad yes
biocViews Microarray, DifferentialExpression, MultipleComparisons
URL http://oompa.r-forge.r-project.org/
NeedsCompilation no
Repository CRAN
Date/Publication 2018-05-17 18:09:26 UTC

R topics documented:

Bum-class ... 2
BumSummary-class ... 5
Dudoit-class .. 6
dwil ... 9
MultiLinearModel-class ... 10
MultiTTest-class ... 13
MultiWilcoxonTest-class ... 15
rankSum .. 18
Sam-class ... 19
Bum-class

The `Bum` class is used to fit a beta-uniform mixture model to a set of p-values.

Usage

```r
Bum(pvals, ...)
## S4 method for signature 'Bum'
summary(object, tau=0.01, ...)
## S4 method for signature 'Bum'
hist(x, res=100, xlab='P Values', main='', ...)
## S4 method for signature 'Bum'
image(x, ...)
## S4 method for signature 'Bum'
cutoffSignificant(object, alpha, by='FDR', ...)
## S4 method for signature 'Bum'
selectSignificant(object, alpha, by='FDR', ...)
## S4 method for signature 'Bum'
countSignificant(object, alpha, by='FDR', ...)
likelihoodBum(object)
```

Arguments

- `pvals` numeric vector containing values between 0 and 1
- `object` object of class `Bum`
- `tau` numeric scalar between 0 and 1, representing a cutoff on the p-values
- `x` object of class `Bum`
- `res` positive integer scalar specifying the resolution at which to plot the fitted distribution curve
- `xlab` character string specifying the label for the x axis
- `main` character string specifying the graph title
alpha

Either the false discovery rate (if `by = 'FDR'`) or the posterior probability (if `by = 'EmpiricalBayes'`)

by

character string denoting the method to use for determining cutoffs. Valid values are:

• FDR
• FalseDiscovery
• EmpiricalBayes

... extra arguments for generic or plotting routines

Details

The BUM method was introduced by Stan Pounds and Steve Morris, although it was simultaneously discovered by several other researchers. It is generally applicable to any analysis of microarray or proteomics data that performs a separate statistical hypothesis test for each gene or protein, where each test produces a p-value that would be valid if the analyst were only performing one statistical test. When performing thousands of statistical tests, however, those p-values no longer have the same interpretation as Type I error rates. The idea behind BUM is that, under the null hypothesis that none of the genes or proteins is interesting, the expected distribution of the set of p-values is uniform. By contrast, if some of the genes are interesting, then we should see an overabundance of small p-values (or a spike in the histogram near zero). We can model the alternative hypothesis with a beta distribution, and view the set of all p-values as a mixture distribution.

Fitting the BUM model is straightforward, using a nonlinear optimizer to compute the maximum likelihood parameters. After the model has been fit, one can easily determine cutoffs on the p-values that correspond to desired false discovery rates. Alternatively, the original Pounds and Morris paper shows that their results can be reinterpreted to recover the empirical Bayes method introduced by Efron and Tibshirani. Thus, one can also determine cutoffs by specifying a desired posterior probability of significance.

Value

Graphical functions (`hist` and `image`) invisibly return the object on which they were invoked.

The `cutoffSignificant` method returns a real number between zero and one. P-values below this cutoff are considered statistically significant at either the specified false discovery rate or at the specified posterior probability.

The `selectSignificant` method returns a vector of logical values whose length is equal to the length of the vector of p-values that was used to construct the `Bum` object. True values in the return vector mark the statistically significant p-values.

The `countSignificant` method returns an integer, the number of statistically significant p-values.

The `summary` method returns an object of class `BumSummary`.

Creating Objects

Although objects can be created directly using `new`, the most common usage will be to pass a vector of p-values to the `Bum` function.
Slots

 pvals: numeric vector of p-values used to construct the object.
 ahat: Model parameter
 lhat: Model parameter
 pihat: Model parameter

Methods

summary(object, tau=0.01, ...) For each value of the p-value cutoff tau, computes estimates of the fraction of true positives (TP), false negatives (FN), false positives (FP), and true negatives (TN).

hist(x, res=100, xlab="P Values", main=", ...) Plots a histogram of the object, and overlays (1) a straight line to indicate the contribution of the uniform component and (2) the fitted beta-uniform distribution from the observed values. Colors in the plot are controlled by oompaColor$EXPECTED and oompaColor$OBSERVED.

image(x, ...) Produces four plots in a 2x2 layout: (1) the histogram produced by hist; (2) a plot of cutoffs against the desired false discovery rate; (3) a plot of cutoffs against the posterior probability of coming from the beta component; and (4) an ROC curve.

cutoffSignificant(object, alpha, by='FDR', ...) Computes the cutoff needed for significance, which in this case means arising from the beta component rather than the uniform component of the mixture. Significance is specified either by the false discovery rate (when by = 'FDR' or by = 'FalseDiscovery') or by the posterior probability (when by = 'EmpiricalBayes')

selectSignificant(object, alpha, by='FDR', ...) Uses cutoffSignificant to determine a logical vector that indicates which of the p-values are significant.

countSignificant(object, alpha, by='FDR', ...) Uses selectSignificant to count the number of significant p-values.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

References

See Also

Two classes that produce lists of p-values that can (and often should) be analyzed using BUM are `MultiTtest` and `MultiLinearModel`. Also see `BumSummary`.

Examples

```r
showClass("Bum")
fake.data <- c(runif(700), rbeta(300, 0.3, 1))
a <- Bum(fake.data)
hist(a, res=200)

alpha <- (1:25)/100
plot(alpha, cutoffSignificant(a, alpha, by='FDR'),
    xlab='Desired False Discovery Rate', type='l',
    main='FDR Control', ylab='Significant P Value')

GAMMA <- 5*(10:19)/100
plot(GAMMA, cutoffSignificant(a, GAMMA, by='EmpiricalBayes'),
    ylab='Significant P Value', type='l',
    main='Empirical Bayes', xlab='Posterior Probability')

b <- summary(a, (0:100)/100)
be <- b@estimates
sens <- be$TP/(be$TP+be$FN)
spec <- be$TN/(be$TN+be$FP)
plot(1-spec, sens, type='l', ylim=c(0,1), xlim=c(0,1), main='ROC Curve')
points(1-spec, sens)
abline(0,1)

image(a)

countSignificant(a, 0.05, by='FDR')
countSignificant(a, 0.99, by='Emp')
```

Description

An implementation class. Users are not expected to create these objects directly; they are produced as return objects from the summary method for Bum.

Slots

- `bum`: object of class Bum
- `estimates`: data.frame
- `Fhat`: numeric
Methods

show signature(object = "BumSummary"): Print the object, which contains a summary of the underlying Bum object. The summary contains a data frame with estimates of the fraction of true positives (TP), false positives (FP), true negatives (TN) and false negatives (FN) at the set of p-value cutoffs specified in the call to the summary method.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

See Also

Bum

Examples

showClass("BumSummary")

Dudoit-class

Class "Dudoit"

Description

An implementation of the method of Dudoit and colleagues to apply the Westfall-Young adjustment to p-values to control the family-wise error rate when analyzing microarray data.

Usage

Dudoit(data, classes, nPerm=1000, verbose=TRUE)

plot(x, y, xlab='T-Statistic', ylab='P-Value', ...)

cutoffSignificant(object, alpha, ...)

selectSignificant(object, alpha, ...)

countSignificant(object, alpha, ...)

Arguments

data either a data frame or matrix with numeric values, or an ExpressionSet as defined in the BioConductor tools for analyzing microarray data.

classes If data is a data frame or matrix, then classes must be either a logical vector or a factor. If data is an ExpressionSet, then classes can be a character string that names one of the factor columns in the associated phenoData subobject.

nPerm integer scalar specifying the number of permutations to perform

verbose logical scalar. If TRUE, prints additional output
Dudoit-class

object object of class Dudoit
alpha numeric scalar specifying the target family-wise error rate
x object of class Dudoit
y Nothing, since it is supposed to be missing. Changes to the Rd processor require documenting the missing entry.
xlab character string specifying label for the x axis
ylab character string specifying label for the y axis
... extra arguments for generic or plotting routines

Details

In 2002, Dudoit and colleagues introduced a method to adjust the p-values when performing gene-by-gene tests for differential expression. The adjustment was based on the method of Westfall and Young, with the goal of controlling the family-wise error rate.

Value

The standard method for plot returns what you would expect.

The cutoffSignificant method returns a real number (its input value alpha). The selectSignificant method returns a vector of logical values identifying the significant test results, and countSignificant returns an integer counting the number of significant test results.

Objects from the Class

As usual, objects can be created by new, but better methods are available in the form of the Dudoit function. The basic inputs to this function are the same as those used for row-by-row statistical tests throughout the ClassComparison package; a detailed description can be found in the MultiTtest class.

The additional input determines the number, nPerm, of permutations to perform. The accuracy of the p-value adjustment depends on this value. Since the implementation is in R (and does not call out to something compiled like C or FORTRAN), however, the computations are slow. The default value of 1000 can take a long time with modern microarrays that contain 40,000 spots.

Slots

adjusted.p: numeric vector of adjusted p-values.
t.statistics: Object of class numeric containing the computed t-statistics.
p.values: Object of class numeric containing the computed p-values.
groups: Object of class character containing the names of the classes being compared.
call: Object of class call containing the function call that created the object.

Extends

Class MultiTtest, directly. In particular, objects of this class inherit methods for summary, hist, and plot from the base class.
Methods

cutoffSignificant(object, alpha, ...) Determine cutoffs on the adjusted p-values at the desired significance level. In other words, this function simply returns alpha.

selectSignificant(object, alpha, ...) Compute a logical vector for selecting significant test results.

countSignificant(object, alpha, ...) Count the number of significant test results.

plot signature(x=Dudoit, y=missing): ...

Author(s)

Kevin R. Coombes <krc@silicovore.com>

References

See Also

Bum, MultiTtest, SmoothTtest

Examples

showClass("Dudoit")
ng <- 10000
ns <- 15
nd <- 200
fake.class <- factor(rep(c('A', 'B'), each=ns))
fake.data <- matrix(rnorm(ng*ns*2), nrow=ng, ncol=2*ns)
fake.data[(nd+1):(2*nd), 1:ns] <- fake.data[(nd+1):(2*nd), 1:ns] - 2

the permutation test is slow. it really needs many more
than 10 permutations, but this is just an example...
dud <- Dudoit(fake.data, fake.class, nPerm=10)
summary(dud)
plot(dud)
countSignificant(dud, 0.05)
Description
Computes the density function for the Wilcoxon rank-sum distribution without centering.

Usage
dwil(q, m, n)

Arguments
q vector of quantiles
m number of observations in the first sample
n number of observations in the second sample

Details
Computes the density function for the Wilcoxon rank-sum distribution, using exact values when both groups have fewer than 50 items and switching to a normal approximation otherwise. It was originally written for S-Plus, which still perversely insists that \(m \) and \(n \) must be less than 50. The function was retained when the OOMPA library was ported to R, since S-Plus keeps the actual rank-sum but R centers the distribution at zero. This function encapsulated the difference, allowing everything else to continue to work as it had worked previously.

Value
A vector of the same length as \(q \) containing (approximate or exact) values of the density function.

Author(s)
Kevin R. Coombes <krc@silicovore.com>

See Also
MultiWilcoxonTest

Examples
dwil(51:60, 9, 3)
dwil(51:60, 9, 51)
MultiLinearModel-class

Class "MultiLinearModel"

Description

Class to fit multiple (row-by-row) linear (fixed-effects) models on microarray or proteomics data.

Usage

```r
MultiLinearModel(form, clindata, arraydata)
## S4 method for signature 'MultiLinearModel'
summary(object, ...)
## S4 method for signature 'MultiLinearModel'
hist(x, xlab='F Statistics', main=NULL, ...)
## S4 method for signature 'MultiLinearModel,missing'
plot(x, y, xlab='F Statistics', ...)
## S4 method for signature 'MultiLinearModel,ANY'
plot(x, y, xlab='F Statistics',
     ylab=deparse(substitute(y)), ...)
## S4 method for signature 'MultiLinearModel'
anova(object, ob2, ...)
multiTukey(object, alpha)
```

Arguments

- `form` formula object specifying the linear model
- `clindata` either a data frame of "clinical" or other covariates, or an `ExpressionSet`
- `arraydata` matrix or data frame of values to be explained by the model. If `clindata` is an `ExpressionSet`, then `arraydata` can be omitted, since it is assumed to be part of the ExpressionSet.
- `object` object of class `MultiLinearModel`
- `ob2` object of class `MultiLinearModel`
- `x` object of class `MultiLinearModel`
- `y` optional numeric vector
- `xlab` character string specifying label for the x-axis
- `ylab` character string specifying label for the y-axis
- `main` character string specifying graph title
- `...` extra arguments for generic or plotting functions
- `alpha` numeric scalar between 0 and 1 specifying the significance level for the Tukey test.
Value

The `anova` method returns a data frame. The rows in the data frame correspond to the rows in the `arraydata` object that was used to construct the `MultiLinearModel` objects. The first column contains the F-statistics and the second column contains the p-values.

The `multiTukey` function returns a vector whose length equals the number of rows in the `arraydata` object used to construct the `MultiLinearModel`. Assuming that the overall F-test was significant, differences in group means (in each data row) larger than this value are significant by Tukey's test for honestly significant difference. (Of course, that statement is incorrect, since we haven't fully corrected for multiple testing. Our standard practice is to take the p-values from the row-by-row F-tests and evaluate them using the beta-uniform mixture model (see `bum`). For the rows that correspond to models whose p-values are smaller than the `bum` cutoff, we simply use the Tukey HSD values without further modification.)

Creating Objects

Objects should be created by calling the `MultiLinearModel` function. The first argument is a `formula` specifying the linear model, in the same manner that it would be passed to `lm`. We will fit the linear model separately for each row in the `arraydata` matrix. Rows of `arraydata` are attached to the `clindata` data frame and are always referred to as "Y" in the formulas. In particular, this implies that `clindata` can not include a column already called "Y". Further, the implementation only works if "Y" is the response variable in the model.

Multiple linear models with "ExpressionSet" objects

The BioConductor packages uses an `ExpressionSet` to combine microarray data and clinical covariates (known in their context as `phenoData` objects) into a single structure. You can call `MultiLinearModel` using an `ExpressionSet` object for the `clindata` argument. In this case, the function extracts the `phenoData` slot of the `ExpressionSet` to use for the clinical covariates, and extracts the `exprs` slot of the `ExpressionSet` object to use for the array data.

Slots

call: A call object describing how the object was constructed.
model: The `formula` object specifying the linear model.
F.statistics: A numeric vector of F-statistics comparing the linear model to the null model.
p.values: A numeric vector containing the p-values associated to the F-statistics.
coefficients: A matrix of the coefficients in the linear models.
predictions: A matrix of the (Y-hat) values predicted by the models.
sse: A numeric vector of the sum of squared error terms from fitting the models.
ssr: A numeric vector of the sum of squared regression terms from the model.
df: A numeric vector (of length two) containing the degrees of freedom for the F-tests.
Methods

summary(object, ...) Write out a summary of the object.

hist(x, xlab='F Statistics', main=NULL, ...) Create a histogram of the F-statistics.

plot(x, ylab='F Statistics', ...) Plot the F-statistics as a function of the row index.

plot(x, y, xlab='F Statistics', ylab=deparse(substitute(y)), ...) Plot the F-statistics against the numeric vector y.

anova(object, ob2, ...) Perform row-by-row F-tests comparing two different linear models.

Details

The MultiLinearModel constructor computes row-by-row F-tests comparing each linear model to the null model $Y \sim 1$. In many instances, one wishes to use an F-test to compare two different linear models. For instance, many standard applications of analysis of variance (ANOVA) can be described using such a comparison between two different linear models. The anova method for the MultiLinearModel class performs row-by-row F-tests comparing two competing linear models.

The implementation of MultiLinearModel does not take the naive approach of using either apply or a for-loop to attach rows one at a time and fit separate linear models. All the models are actually fit simultaneously by a series of matrix operations, which greatly reduces the amount of time needed to compute the models. The constraint on the column names in clindata still holds, since one row is attached to allow model.matrix to determine the contrasts matrix.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

See Also

anova, lm, Bum, MultiTtest, MultiWilcoxonTest

Examples

```r
showClass("MultiLinearModel")
ng <- 10000
ns <- 50
dat <- matrix(rnorm(ng*ns), ncol=ns)
cla <- factor(rep(c('A', 'B'), 25))
cla2 <- factor(rep(c('X', 'Y', 'Z'), times=c(15, 20, 15)))
covars <- data.frame(Grade=cla, Stage=cla2)
res <- MultiLinearModel(Y ~ Grade + Stage, covars, dat)
summary(res)
hist(res, breaks=101)
plot(res)
plot(res, res@p.values)

graded <- MultiLinearModel(Y ~ Grade, covars, dat)
summary(graded)

hist(graded@p.values, breaks=101)
hist(res@p.values, breaks=101)
```
Description

Class to perform row-by-row t-tests on microarray or proteomics data.

Usage

```r
Multitest(data, classes, na.rm=TRUE)
## S4 method for signature 'Multitest'
summary(object, ...)
## S4 method for signature 'Multitest'
as.data.frame(x, row.names=NULL, optional=FALSE, ...)
## S4 method for signature 'Multitest'
hist(x, xlab='T Statistics', main=NULL, ...)
## S4 method for signature 'Multitest,missing'
plot(x, y, ylab='T Statistics', ...)
## S4 method for signature 'Multitest,ANY'
plot(x, y, xlab='T Statistics', ylab=deparse(substitute(y)), ...)
```

Arguments

data: either a data frame or matrix with numeric values, or an ExpressionSet as defined in the BioConductor tools for analyzing microarray data

classes: If data is a data frame or matrix, then classes must be either a logical vector or a factor. If data is an ExpressionSet, then classes can be a character string that names one of the factor columns in the associated phenoData subobject.

na.rm: logical scalar. If TRUE, compute t-statistics after omitting NA values from individual rows of the data matrix

object: object of class Multitest

x: object of class Multitest

y: numeric vector

xlab: character string specifying the label for the x axis

ylab: character string specifying the label for the y axis

main: character string specifying the plot title

row.names: see the base version

optional: see the base version

... extra arguments for generic or plotting routines
Value

The graphical routines invisibly return the object against which they were invoked.

Creating objects

Although objects can be created using new, the preferred method is to use the MultiTtest generator. In the simplest case, you simply pass in a data matrix and a logical vector assigning classes to the columns, and the constructor performs row-by-row two-sample t-tests and computes the associated (single test) p-values. To adjust for multiple testing, you can pass the p-values on to the Bum class.

If you use a factor instead of a logical vector, then the t-test compares the first level of the factor to everything else. To handle the case of multiple classes, see the MultiLinearModel class.

As with other class comparison functions that are part of the OOMPA, we can also perform statistical tests on ExpressionSet objects from the BioConductor libraries. In this case, we pass in an ExpressionSet object along with the name of a factor to use for splitting the data.

Slots

t.statistics: Object of class numeric containing the computed t-statistics.
p.values: Object of class numeric containing the computed p-values.
df: Numeric vector of the degrees of freedom per gene. Introduced to allow for missing data.
groups: Object of class character containing the names of the classes being compared.
call: Object of class call containing the function call that created the object.

Methods

summary(object, ...) Write out a summary of the object.

hist(x, xlab='T Statistics', main=NULL, ...) Produce a histogram of the t-statistics.

plot(x) Produces a scatter plot of the t-statistics against their index.

plot(x,y) Produces a scatter plot of the t-statistics in the object x against the numeric vector y.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

See Also

matrixT, Bum, Dudoit, MultiLinearModel

Examples

showClass("MultiTtest")
ng <- 10000
ns <- 50
dat <- matrix(rnorm(ng*ns), ncol=ns)
cla <- factor(rep(c('A', 'B'), each=25))
res <- MultiTtest(dat, cla)
summary(res)
The MultiWilcoxonTest class is used to perform row-by-row Wilcoxon rank-sum tests on a data matrix. Significance cutoffs are determined by the empirical Bayes method of Efron and Tibshirani.

Usage

```r
MultiWilcoxonTest(data, classes, histsize=NULL)
```

Arguments

- **data**: either a data frame or matrix with numeric values, or an ExpressionSet as defined in the BioConductor tools for analyzing microarray data.
- **classes**: If data is a data frame or matrix, then classes must be either a logical vector or a factor. If data is an ExpressionSet, then classes can be a character string that names one of the factor columns in the associated phenoData subobject.
- **histsize**: An integer; the number of bins used for the histogram summarizing the Wilcoxon statistics. When NULL, each discrete rank-sum value gets its own bin.
MultiWilcoxonTest-class

object: an object of the MultiWilcoxonTest class.
x: an object of the MultiWilcoxonTest class.
xlab: character string specifying label for the x axis
ylab: character string specifying label for the y axis
ylim: Plotting limits on the y-axis
main: character string specifying graph title
prior: Prior probability that an arbitrary gene is not differentially expressed, or that an arbitrary row does not yield a significant Wilcoxon rank-sum statistic.
significance: Desired level of posterior probability
...: extra arguments for generic or plotting routines

Details

See the paper by Efron and Tibshirani.

Value

The standard methods summary, hist, and plot return what you would expect.
The cutoffSignificant method returns a list of two integers. Rank-sum values smaller than the first value or larger than the second value are statistically significant in the sense that their posterior probability exceeds the specified significance level given the assumptions about the prior probability of not being significant.
The selectSignificant method returns a vector of logical values identifying the significant test results, and countSignificant returns an integer counting the number of significant test results.

Creating Objects

As usual, objects can be created by new, but better methods are available in the form of the MultiWilcoxonTest function. The inputs to this function are the same as those used for row-by-row statistical tests throughout the ClassComparison package; a detailed description can be found in the MultiTest class.
The constructor computes row-by-row Wilcoxon rank-sum statistics on the input data, comparing the two groups defined by the classes argument. It also estimates the observed and theoretical (expected) density functions for the collection of rank-sum statistics.
The additional input argument, histsize is usually best left to its default value. In certain pathological cases, we have found it necessary to use fewer bins; one suspects that the underlying model does not adequately capture the complexity of those situations.

Slots

rank.sum.statistics: numeric vector containing the computed rank-sum statistics.
xvals: numeric vector, best thought of as the vector of possible rank-sum statistics given the sizes of the two groups.
theoretical.pdf: numeric vector containing the theoretical density function evaluated at the points of xvals.
pdf: numeric vector containing the empirical density function computed at the points of xvals.

unravel: numeric vector containing a smoothed estimate (by Poisson regression using B-splines) of the empirical density function evaluated at xvals.

groups: A vector containing the names of the groups defined by classes.

call: object of class call representing the function call that created the object.

Methods

summary(object, prior=1, significance=0.9, ...) Write out a summary of the object. For a given value of the prior probability of not being differentially expressed and a given significance cutoff on the posterior probability, reports the cutoffs and number of items in both tails of the distribution.

hist(x, xlab='Rank Sum', ylab='Prob(Different|Y)', main='', ...) Plot a histogram of the rank-sum statistics, with overlaid curves representing the expected and observed distributions. Colors of the curves are controlled by oompaColor$EXPECTED and oompaColor$OBSERVED.

plot(x, prior=1, significance=0.9, ylim=c(-0.5, 1), xlab='Rank Sum', ylab='Prob(Different | Y)', ...) Plots the posterior probability of being differentially expressed for given values of the prior. Horizontal lines are added at each specified significance level for the posterior probability.

cutoffSignificant(object, prior, significance, ...) Determine cutoffs on the rank-sum statistic at the desired significance level.

selectSignificant(object, prior, significance, ...) Compute a logical vector for selecting significant test results.

countSignificant(object, prior, significance, ...) Count the number of significant test results.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

References

See Also

Implementation is handled in part by the functions dwil and rankSum. The empirical Bayes results for alternative tests (such as MultiTtest) can be obtained using the beta-uniform mixture model in the Bum class.
Examples

```r
showClass("MultiWilcoxonTest")
ng <- 10000
ns <- 15
nd <- 200
fake.class <- factor(rep(c('A', 'B'), each=ns))
fake.data <- matrix(rnorm(ng*ns*2), nrow=ng, ncol=2*ns)
fake.data[(nd+1):(2*nd), 1:ns] <- fake.data[(nd+1):(2*nd), 1:ns] - 2

a <- MultiWilcoxonTest(fake.data, fake.class)
hist(a)
plot(a)
plot(a, prior=0.85)
abline(h=0)
cutoffSignificant(a, prior=0.85, signif=0.95)
countSignificant(a, prior=0.85, signif=0.95)
```

Description

Compute the Wilcoxon rank-sum statistic.

Usage

```r
rankSum(data, selector)
```

Arguments

- **data**: numeric vector
- **selector**: logical vector the same length as data

Details

This is an efficient function to compute the value of the Wilcoxon rank-sum statistic without the extra overhead of the full `wilcox.test` function. It is used internally by the `MultiWilcoxonTest` class to perform row-by-row Wilcoxon tests.

Value

Returns an integer, the rank-sum of the subset of the data for which the selector is true.

Author(s)

Kevin R. Coombes <krc@silicovore.com>
See Also
dwil, MultiWilcoxonTest

Examples

dd <- rnorm(100)
cc <- rep(c(TRUE, FALSE), each=50)
rankSum(dd, cc)

Description

Implements the "Significance Analysis of Microarrays" approach to detecting differentially expressed genes.

Usage

Sam(data, classes, nPerm=100, verbose=TRUE)
S4 method for signature 'Sam,missing'
plot(x, y, tracks=NULL, xlab='Expected T Statistics (Empirical)',
 ylab='Observed T Statistics', ...)
S4 method for signature 'Sam'
summary(object, cutoff=1, ...)
S4 method for signature 'Sam'
selectSignificant(object, cutoff=1, ...)
S4 method for signature 'Sam'
countSignificant(object, cutoff=1, ...)

Arguments

data Either a data frame or matrix with numeric values or an ExpressionSet as
defined in the BioConductor tools for analyzing microarray data.
classes If data is a data frame or matrix, then classes must be either a logical vector or
a factor. If data is an ExpressionSet, then classes can be a character string
that names one of the factor columns in the associated phenoData subobject.
nPerm An integer; the number of permutations
verbose A logical flag
x A Sam object
y Nothing, since it is supposed to be missing. Changes to the Rd processor require
documenting the missing entry.
tracks a numeric vector
xlab Label for the x axis
ylab Label for the y axis
Sam-class

object A Sam object
cutoff A numeric value
... The usual extra arguments to generic functions

Details

The SAM approach to analyzing microarray data was developed by Tusher and colleagues; their implementation is widely available. This is an independent implementation based on the description in their original paper, customized to use the same interface (and thus work with ExpressionSet objects) used by the rest of the ClassComparison package. The fundamental idea behind SAM is that the observed distribution of row-by-row two-sample t-tests should be compared not to the theoretical null distribution but to a null distribution estimated by a permutation test. The Sam constructor performs the permutation test.

Value

summary returns an object of class SamSummary.
selectSignificant returns a vector of logical values.
countSignificant returns an integer.

Creating Objects

As usual, objects can be created by new, but better methods are available in the form of the Sam function. The inputs to this function are the same as those used for row-by-row statistical tests throughout the ClassComparison package; a detailed description can be found in the MultiTtest class.

Slots

t.statistics: numeric vector containing the observed t-statistics.
observed: numeric vector containing the sorted observed t-statistics.
expected: numeric vector of the expected distribution of t-statistics based on a permutation test.
sim.data: numeric matrix containing all the t-statistics from all the permutations.
call: object of class call specifying the function call that was used to create this object.

Methods

summary(object, cutoff=1, ...) Compute a summary of the object.
plot(x, tracks=NULL, xlab='Expected T Statistics (Empirical)', ylab='Observed t Statistics', ...) Plot the observed and expected t-statistics. The tracks argument causes parallel lines to be drawn on either side of the quantile-quantile central line, at the specified offsets. Colors in the plot are controlled by the current values of oompaColor$CENTRAL.LINE and oompaColor$CONFIDENCE CURVE
selectSignificant(object, cutoff=1, ...) Compute a vector that selects significant values
countSignificant(object, cutoff=1, ...) Count the number of significant values
Author(s)
Kevin R. Coombes <krc@silicovore.com>

References
Tusher VG, Tibshirani R, Chu G.
Significance analysis of microarrays applied to the ionizing radiation response.

See Also
bum, MultiTtest

Examples

```
showClass("Sam")
ng <- 10000
ns <- 50
nd <- 100
dat <- matrix(rnorm(ng*ns), ncol=ns)
dat[1:nd, 1:(ns/2)] <- dat[1:nd, 1:(ns/2)] + 2
dat[(nd+1):(2*nd), 1:(ns/2)] <- dat[(nd+1):(2*nd), 1:(ns/2)] - 2
cla <- factor(rep(c('A', 'B'), each=25))

res <- Sam(dat, cla)
plot(res)
plot(res, tracks=1:3)
summary(res)
summary(res, cutoff=2)

a <- summary(res)
plot(a@significant.calls)
plot(a@significant.calls[1:300])

countSignificant(res, 1)
```

```
SamSummary-class

Class "SamSummary"

Description

An implementation class. Users are not expected to create these objects directly; they are produced as return objects from the summary method for Sam.
```
Slots

fdr: numeric scalar between 0 and 1 specifying the expected false discovery rate
hi: Upper threshold for significance
lo: Lower threshold for significance
cutoff: numeric scalar specified in the call to the `sam` summary method.
significant.calls: vector of logical values
average.false.count: The average number of false positives in the permuted data at this cutoff level.

Methods

show signature(object = SamSummary): Print the object, which contains a summary of the underlying Sam object.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

See Also

`Sam`

Examples

showClass("SamSummary")

Description

In the world of multiple testing that is inhabited by most microarray or protein profiling experiments, analysts frequently perform separate statistical tests for each gene or protein in the experiment. Determining cutoffs that achieve statistical significance (in a meaningful way) is an inherent part of the procedure. It is then common to select the significant items for further processing or for preparing reports, or at least to count the number of significant items. These generic functions provide a standard set of tools for selecting and counting the significant items, which can be used with various statistical tests and various ways to account for multiple testing.

Usage

```r
## S4 method for signature 'ANY'
cutoffSignificant(object,...)
## S4 method for signature 'ANY'
selectSignificant(object,...)
## S4 method for signature 'ANY'
countSignificant(object,...)
```
SingleGroup-class

Arguments

- `object` an object that performs multiple statistical tests on microarray or proteomics data
- `...` additional arguments affecting these generic methods

Value

cutoffSignificant returns appropriate cutoff values that achieve specified significance criteria.
selectSignificant returns a logical vector, with TRUE values indicating items that satisfy the cutoff making them statistically significant.
countSignificant returns an integer, representing the number of significant items.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

Description

Preliminary analysis of one group of samples for use in the SmoothTtest class. A key feature is the standard quality control plot.

Usage

```r
SingleGroup(avg, sd, span=0.5, name='')
## S4 method for signature 'SingleGroup'
as.data.frame(x, row.names=NULL, optional=FALSE)
## S4 method for signature 'SingleGroup'
summary(object, ...)
## S4 method for signature 'SingleGroup'
print(x, ...)
## S4 method for signature 'SingleGroup'
show(object)
## S4 method for signature 'SingleGroup,missing'
plot(x, multiple=3, ccl=0, main=x@name,
xlab='Mean', ylab='Std Dev', xlim=0, ylim=0, ...)
```

Arguments

- `avg` numeric vector of mean values
- `sd` numeric vector of standard deviations
- `span` parameter is passed onto `loess`
- `name` character string specifying the name of this object
object object of class SingleGroup
x object of class SingleGroup
multiple numeric scalar specifying the multiple of the smoothed standard deviation to call significant
ccl list containing objects of the ColorCoding class. If left at its default value of zero, colors are chosen automatically.
main character string specifying plot title
xlab character string specifying label for the x axis
ylab character string specifying label for the y axis
xlim Plotting limits for the x axis. If left at the default value of zero, then the limits are automatically generated
ylim Plotting limits for the y axis. If left at the default value of zero, then the limits are automatically generated
row.names See the base version of as.data.frame.default
optional See the base version of as.data.frame.default
... extra arguments for generic or plotting routines

Details
In 2001 and 2002, Baggerly and Coombes developed the smooth t-test for finding differentially expressed genes in microarray data. Along with many others, they began by log-transforming the data as a reasonable step in the direction of variance stabilization. They observed, however, that the gene-by-gene standard deviations still seemed to vary in a systematic way as a function of the mean log intensity. By borrowing strength across genes and using loess to fit the observed standard deviations as a function of the mean, one presumably got a better estimate of the true standard deviation.

Creating Objects
Objects can be created by calls to the SingleGroup constructor. Users rarely have need to create these objects directly; they are usually created as a consequence of the construction of an object of the SmoothTtest class.

Slots
name: character string specifying the name of this object
avg: numeric vector of mean values
sd: numeric vector of standard deviations
span: parameter used in the loess function to fit sd as a function of avg.
fit: list containing components x and y resulting from the loess fit
score: numeric vector specifying the ratio of the pointwise standard deviations to their smooth (loess) estimates
SingleGroup-class

Methods

as.data.frame(x, row.names=NULL, optional=FALSE) Combine the slots containing numeric vectors into a data frame, suitable for printing or exporting.

summary(object, ...) Write out a summary of the object.

print(x, ...) Print the entire object. You never want to do this.

show(object) Print the entire object. You never want to do this.

plot(x, multiple=3, ccl=0, main=x@name, xlab='Mean', ylab='Std Dev', xlim=0, ylim=0, ...) Produce a scatter plot of the standard deviations (x@sd) as a function of the means (x@avg). The appropriate multiple of the loess fit is overlaid, and points that exceed this multiple are flagged in a different color. Colors in the plot are controlled by the current values of oompacolor$CENTRAL.LINE, oompacolor$CONFIDENCE.CURVE, oompacolor$BORING, oompacolor$BAD.REPLICATE, and oompacolor$WORST.REPLICATE.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

References

See Also

SmoothTtest

Examples

showClass("SingleGroup")
m <- rnorm(1000, 8, 2.5)
v <- rnorm(1000, 0.7)
plot(m, v)

x <- SingleGroup(m, v, name='bogus')

summary(x)

plot(x)
plot(x, multiple=2)
SmoothTtest-class Class "SmoothTtest"

Description

Implements the smooth t-test for differential expression as developed by Baggerly and Coombes.

Usage

SmoothTtest(stats, aname='Group One', bname='Group Two',
name=paste(aname, 'vs.', bname))
S4 method for signature 'SmoothTtest'
as.data.frame(x, row.names=NULL, optional=FALSE)
S4 method for signature 'SmoothTtest'
summary(object, ...)
S4 method for signature 'SmoothTtest,missing'
plot(x, folddiff=3, goodflag=2, badch=4, ccl=0,
name=x@name, pch='.', xlab='log intensity', ylab='log ratio', ...)

Arguments

stats object of class TwoGroupStats
aname character string specifying the name of the first group
bname character string specifying the name of the second group
name character string specifying the name of this object
object object of class SmoothTtest
x object of class SmoothTtest
row.names See the base version of as.data.frame.default
optional See the base version of as.data.frame.default
folddiff numeric scalar specifying the level of fold difference considered large enough
to be indicated in the plots
goodflag numeric scalar specifying the level (in standard deviation units) of the smooth
t-statistic considered large enough to be indicated in the plot
badch numeric scalar specifying the level of variability in single groups considered
large enough to be worrisome. See the multiple argument to the plot method
in the SingleGroup class.
ccl list containing objects of class ColorCoding. If left at its default value of zero,
colors are chosen automatically.
pch default plotting character
xlab character string specifying label for the x axis
ylab character string specifying label for the y axis
... extra arguments for generic or plotting routines
Details

In 2001 and 2002, Baggerly and Coombes developed the smooth t-test for finding differentially expressed genes in microarray data. Along with many others, they began by log-transforming the data as a reasonable step in the direction of variance stabilization. They observed, however, that the gene-by-gene standard deviations still seemed to vary in a systematic way as a function of the mean log intensity. By borrowing strength across genes and using loess to fit the observed standard deviations as a function of the mean, one presumably got a better estimate of the true standard deviation.

These smooth estimates are computed for each of two groups of samples being compared. They are then combined (gene-by-gene using the usual univariate formulas) to compute pooled "smooth" estimates of the standard deviation. These smooth estimates are then used in gene-by-gene t-tests.

The interesting question then arises of how to compute and interpret p-values associated to these individual tests. The liberal argument asserts that, because smoothing uses data from hundreds of measurements to estimate the standard deviation, it can effectively be treated as "known" in the t-tests, which should thus be compared against the normal distribution. A conservative argument claims that the null distribution should still be the t-distribution with the degrees of freedom determined in the usual way by the number of samples. The truth probably lies somewhere in between, and is probably best approximated by some kind of permutation test. In this implementation, we take the coward’s way out and don’t provide any of those alternatives. You have to extract the t-statistics (from the smooth.t.statistics slot of the object) and compute your own p-values in your favorite way. If you base the computations on a theoretical model rather than a permutation test, then the Bum class provides a convenient way to account for multiple testing.

Creating Objects

In practice, users will first use a data frame and a classification vector (or an ExpressionSet) to construct an object of the TwoGroupStats object. This object can then be handed directly to the SmoothTtest function to perform the smooth t-test.

Slots

one: object of class SingleGroup representing a loess smooth of standard deviation as a function of the mean in the first group of samples
two: object of class SingleGroup representing a loess smooth of standard deviation as a function of the mean in the second group of samples
smooth.t.statistics: numeric vector containing the smooth t-statistics
fit: data.frame with two columns, x and y, containing the smooth estimates of the pooled standard deviation
dif: numeric vector of the differences in mean values between the two groups
avg: numeric vector of the overall mean value
aname: character string specifying the name of the first group
bname: character string specifying the name of the second group
name: character string specifying the name of this object
stats: object of class TwoGroupStats that was used to create this object
Methods

as.data.frame(x, row.names=NULL, optional=FALSE) Convert the object into a data frame suitable for printing or exporting.

summary(object, ...) Write out a summary of the object.

plot(x, folddiff=3, badch=4, ccl=0, name=x@name, pch='.', xlab='log intensity', ylab='log ratio', ...) Create a set of six plots. The first two plots are the QC plots from the SingleGroup objects representing the two groups of samples. The third plot is a scatter plot comparing the means in the two groups. The fourth plot is Bland-Altman plot of the overall mean against the difference in means (also known colloquially as an M-vs-A plot). The fifth plot is a histogram of the smooth t-statistics. The final plot is a scatter plot of the smooth t-statistics as a function of the mean intensity. Colors in the plots are controlled by the current values of oompacolor$BORING, oompacolor$SIGNIFICANT, oompacolor$BAD.REPLICATE, oompacolor$WORST.REPLICATE, oompacolor$FOLD.DIFFERENCE, oompacolor$CENTRAL.LINE, and oompacolor$CONFIDENCE.CURVE.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

References

Identifying differentially expressed genes in cDNA microarray experiments.

Coombes KR, Highsmith WE, Krogmann TA, Baggerly KA, Stivers DN, Abruzzo LV.
Identifying and quantifying sources of variation in microarray data using high-density cDNA membrane arrays.

Altman DG, Bland JM.
Measurement in Medicine: the Analysis of Method Comparison Studies.

See Also

Bum, MultiTtest, SingleGroup, TwoGroupStats

Examples

showClass("SmoothTtest")
bogus <- matrix(rnorm(30*1000, 8, 3), ncol=30, nrow=1000)
splitter <- rep(FALSE, 30)
splitter[16:30] <- TRUE
x <- TwoGroupStats(bogus, splitter)
y <- SmoothTtest(x)

opar <- par(mfrow=c(2, 3), pch='.')
plot(y, badch=2, goodflag=1)
par(opar)
TNoM-class

Classes "TNoM" and "fullTNoM"

Description

Implements the "Total Number of Misclassifications" method for finding differentially expressed genes.

Usage

```r
TNoM(data, classes, verbose=TRUE)
## S4 method for signature 'TNoM'
summary(object, ...)
## S4 method for signature 'TNoM'
update(object, nPerm, verbose=FALSE, ...)
## S4 method for signature 'TNoM'
selectSignificant(object, cutoff, ...)
## S4 method for signature 'TNoM'
countSignificant(object, cutoff, ...)
## S4 method for signature 'fullTNoM,missing'
plot(x, y, ...)
## S4 method for signature 'fullTNoM'
hist(x, ...)
```

Arguments

- `data` Either a data frame or matrix with numeric values or an `ExpressionSet` as defined in the BioConductor tools for analyzing microarray data.
- `classes` If `data` is a data frame or matrix, then `classes` must be either a logical vector or a factor. If `data` is an `ExpressionSet`, then `classes` can be a character string that names one of the factor columns in the associated `phenoData` subobject.
- `verbose` logical scalar. If `TRUE`, print out intermediate results
- `object` object of class `TNoM`
- `nPerm` integer scalar specifying the number of permutations to perform
- `cutoff` integer scalar
- `x` object of class `fullTNoM`
- `y` Nothing, since it is supposed to be missing. Changes to the Rd processor require documenting the missing entry.
- `...` extra arguments to generic or plotting routines
Details

The TNoM method was developed by Yakhini and Ben-Dor and first applied in the melanoma microarray study by Bittner and colleagues (see references). The goal of the method is to detect genes that are differentially expressed between two groups of samples. The idea is that each gene serves as a potential classifier to distinguish the two groups. One starts by determining an optimal cutoff on the expression of each gene and counting the number of misclassifications that gene makes. Next, we bin genes based on the total number of misclassifications. This distribution can be compared with the expected value (by simulating normal data sets of the same size). Alternatively, one can estimate the null distribution directly by scrambling the sample labels to perform a permutation test.

The TNoM constructor computes the optimal cutoffs and the misclassification rates. The update method performs the simulations and permutation tests, producing an object of the fullTNoM class.

Value

summary returns a TNoMSummary object.
update returns a fullTNoM object.
selectSignificant returns a vector of logical values.
countSignificant returns an integer.

Creating Objects

Although objects of the class can be created by a direct call to new, the preferred method is to use the TNoM generator. The inputs to this function are the same as those used for row-by-row statistical tests throughout the ClassComparison package; a detailed description can be found in the MultiTtest class.

Slots

Objects of the TNoM class have the following slots:

data: The data matrix used to construct the object
tnomData: numeric vector, whose length is the number of rows in data, recording the minimum number of misclassification achieved using this data row.
ncol: The number of columns in data
nrow: The number of rows in data
classifier: The classification vector used to create the object.
call: The function call that created the object

Objects of the fullTNoM class have the following slots:
dex: Numeric vector of the different possible numbers of misclassifications
fakir: Numeric vector of expected values based on simulations
obs: Numeric vector of observed values
scr: Numeric vector of values based on a permutation test
name: A character string with a name for the object
Methods

Objects of the TNoM class have the following methods:

- `summary(object, ...)` Write out a summary of the object, including the number of genes achieving each possible number of misclassifications.
- `countSignificant(object, cutoff, ...)` Count the number of significant genes at the given cutoff.
- `selectSignificant(object, cutoff, ...)` Get a vector for selecting the number of significant genes at the given cutoff.
- `update(object, nPerm, verbose=FALSE, ...)` Perform simulation and permutation tests on the TNoM object.

Objects of the fullTNoM class have the following methods:

- `plot(x, ...)` Plot a summary of the TNoM object. This consists of three curves: the observed cumulative number of genes at each misclassification level, along with the corresponding numbers expected based on simulations or permutation tests. The colors of the curves are controlled by the values of `oompaColor$OBSERVED`, `oompaColor$EXPECTED`, and `oompaColor$PERMTEST`.
- `hist(x, ...)` Plot a not terribly useful nor informative histogram of the results.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

References

See Also

`bum`, `MultiTtest`, `MultiWilcoxonTest`

Examples

```r
showClass("TNoM")
showClass("fullTNoM")
n.genes <- 200
n.samples <- 10
bogus <- matrix(rnorm(n.samples*n.genesis, 0, 3), ncol=n.samples)
splitter <- rep(FALSE, n.samples)
splitter[sample(1:n.samples, trunc(n.samples/2))] <- TRUE

tn <- TNoM(bogus, splitter)
summary(tn)

tnf <- update(tn)
```
TwoGroupStats-class

Description

Compute row-by-row means and variances for a data matrix whose columns belong to two different groups of interest.

TNoMSummary-class

Class "TNoMSummary"

Description

An implementation class. Users are not expected to create these objects directly; they are produced as return objects from the summary method for TNoM.

Slots

TNoM: object of class TNoM ~

counts: object of class numeric ~

Methods

show signature(object = TNoMSummary): Print the object, which contains a summary of the underlying TNoM object. In particular, the summary reports the number of genes achieving each possible number of misclassifications.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

See Also

TNoM

Examples

showClass("TNoMSummary")

TwoGroupStats-class

Class "TwoGroupStats"
Usage

TwoGroupStats(data, classes, name=comparison, name1=A, name2=B)
S4 method for signature 'TwoGroupStats'
as.data.frame(x, row.names=NULL, optional=FALSE)
S4 method for signature 'TwoGroupStats'
summary(object, ...)
S4 method for signature 'TwoGroupStats'
plot(x, main=x@name, useLog=FALSE, ...)

Arguments

data
Either a data frame or matrix with numeric values or an ExpressionSet as
defined in the BioConductor tools for analyzing microarray data.
classes
If data is a data frame or matrix, then classes must be either a logical vector or
a factor. If data is an ExpressionSet, then classes can be a character string
that names one of the factor columns in the associated phenoData subobject.
name
A character string; the name of this object
name1
A character string; the name of the first group
name2
A character string; the name of the second group
x
A TwoGroupStats object
row.names
See the base version of as.data.frame.default
optional
See the base version of as.data.frame.default
object
A TwoGroupStats object
main
Plot title
useLog
a logical flag; should the values be log-transformed before plotting?
...
The usual extra arguments to generic functions

Details

This class was one of the earliest developments in our suite of tools to analyze microarrays. Its
main purpose is to segregate out the preliminary computation of summary statistics on a row-by-
row basis, along with a set of plots that could be generated automatically and used for quality
control.

Creating Objects

Although objects of the class can be created by a direct call to new, the preferred method is to use
the TwoGroupStats generator. The inputs to this function are the same as those used for row-by-
row statistical tests throughout the ClassComparison package; a detailed description can be found
in the MultiTtest class.
One should note that this class serves as the front end to the SmoothTtest class, providing it with an interface that accepts ExpressionSet objects compatible with the other statistical tests in the ClassComparison package.

Slots

mean1: numeric vector of means in the first group
mean2: numeric vector of means in the second group
overallMean: numeric vector of overall row means
var1: numeric vector of variances in the first group
var2: numeric vector of variances in the second group
overallVar: numeric vector of variances assuming the two groups have the same mean
pooledVar: numeric vector of row-by-row pooled variances, assuming the two groups have the same variance but different means
n1: numeric scalar specifying number of items in the first group
n2: numeric scalar specifying number of items in the second group
name1: character string specifying name of the first group
name2: character string specifying name of the second group
name: character string specifying name of the object

Methods

`as.data.frame(x, row.names=NULL, optional=FALSE)` Collect the numeric vectors from the object into a single data frame, suitable for printing or exporting.
`summary(object, ...)` Write out a summary of the object.
`print(x, ...)` Print the object. (Actually, it only prints a summary, since the whole object is almost always more than you really want to see. If you insist on printing everything, use `as.data.frame`.)
`show(object)` Print the object (same as print method).
`plot(x, main=x@name, useLog=FALSE, ...)` This function actually produces six different plots of the data, so it is usually wrapped by a graphical layout command like `par(mfrow=c(2,3))`. The first two plots show the relation between the mean and standard deviation for the two groups separately; the third plot does the same for the overall mean and variance. The fourth plot is a Bland-Altman plot of the difference between the means against the overall mean. (In the microarray world, this is usually called an M-vs-A plot.) A loess fit is overlaid on the scatter plot, and points outside confidence bounds based on the fit are printed in a different color to flag them as highly variable. The fifth plot shows a loess fit (with confidence bounds) of the difference as a function of the row index (which often is related to the geometric position of spots on a microarray). Thus, this plot gives a possible indication of regions of an array where unusual things happen. The final plot compares the overall variances to the pooled variances.

Author(s)

Kevin R. Coombes <krc@silicovore.com>
References

See Also

MultiTtest, SmoothTtest

Examples

showClass("TwoGroupStats")
bogus <- matrix(rnorm(30*1000, 8, 3), ncol=30, nrow=1000)
splitter <- rep(FALSE, 30)
splitter[16:30] <- TRUE

x <- TwoGroupStats(bogus, splitter)
summary(x)

opar<-par(mfrow=c(2,3), pch='.')
plot(x)
par(opar)

variantT Classes for Variant T-tests

Description

Classes to perform row-by-row paired or unequal variance t-tests on microarray or proteomics data.

Usage

MultiTtestPaired(data, classes, pairing)
MultiTtestUnequal(data, classes)
S4 method for signature 'MultiTtestPaired'
summary(object, ...)
S4 method for signature 'MultiTtestUnequal'
summary(object, ...)

Arguments

data Either a data frame or matrix with numeric values or an ExpressionSet as defined in the BioConductor tools for analyzing microarray data.
classes If data is a data frame or matrix, then classes must be either a logical vector or a factor. If data is an ExpressionSet, then classes can be a character string that names one of the factor columns in the associated phenoData subobject.
pairing A numerical vector indicating which samples are paired.
object A MultiTtest object
...
Unused; optional extra parameters for summary.
Creating objects

Although objects can be created using `new`, the better method is to use the `MultiTtestPaired` or `MultiTtestUnequal` functions. In the simplest case, you simply pass in a data matrix and a logical vector assigning classes to the columns (and, in the case of a paired t-test, a numeric vector describing the pairing), and the constructor performs row-by-row two-sample t-tests and computes the associated (single test) p-values. To adjust for multiple testing, you can pass the p-values on to the `Bum` class.

If you use a factor instead of a logical vector, then the t-test compares the first level of the factor to everything else. To handle the case of multiple classes, see the `MultiLinearModel` class.

As with other class comparison functions that are part of the OOMPA, we can also perform statistical tests on `ExpressionSet` objects from the BioConductor libraries. In this case, we pass in an `ExpressionSet` object along with the name of a factor to use for splitting the data.

Extends

Both classes extend class `MultiTtest`, directly. See that class for descriptions of the inherited methods and slots.

Slots

df: The `MultiTtestUnequal` class adds a slot to record e gene-by-gene degrees of freedom, which can change along with the variances.

Methods

`summary` signature(object = `MultiTtestPaired`): Write out a summary of the object.

`summary` signature(object = `MultiTtestUnequal`): Write out a summary of the object.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

References

OOMPA

See Also

Bum, MultiTtest

Examples

```r
showClass("MultiTtestPaired")
showClass("MultiTtestUnequal")
ng <- 10000
ns <- 50
dat <- matrix(rnorm(ng*ns), ncol=ns)
cla <- factor(rep(c('A', 'B'), each=25))
res <- MultiTtestUnequal(dat, cla)
```
summary(res)
hist(res, breaks=101)
plot(res, res@p.values)

pairing <- rep(1:25, 2)
res <- MultiTestPaired(dat, cla, pairing)
summary(res)
plot(res)
hist(res@p.values, breaks=101)
Index

*Topic classes
 Bum-class, 2
 BumSummary-class, 5
 Dudoit-class, 6
 MultiLinearModel-class, 10
 MultiTest-class, 13
 MultiWilcoxonTest-class, 15
 Sam-class, 19
 SamSummary-class, 21
 SingleGroup-class, 23
 SmoothTtest-class, 26
 TNoM-class, 29
 TNoMSummary-class, 32
 TwoGroupStats-class, 32
 variantT, 35

*Topic distribution
 dwil, 9

*Topic hplot
 TwoGroupStats-class, 32

*Topic htest
 Bum-class, 2
 Dudoit-class, 6
 MultiLinearModel-class, 10
 MultiTest-class, 13
 MultiWilcoxonTest-class, 15
 rankSum, 18
 significant, 22
 SmoothTtest-class, 26
 TNoM-class, 29
 variantT, 35

*Topic loess
 SingleGroup-class, 23

*Topic methods
 significant, 22

*Topic multivariate
 Bum-class, 2
 Dudoit-class, 6
 MultiLinearModel-class, 10
 MultiTest-class, 13
 MultiWilcoxonTest-class, 15
 SmoothTtest-class, 26
 TNoM-class, 29
 variantT, 35

*Topic univar
 TwoGroupStats-class, 32

anova, 12
anova, MultiLinearModel-method
 (MultiLinearModel-class), 10
apply, 12
as.data.frame, MultiTest-method
 (MultiTest-class), 13
as.data.frame, SingleGroup-method
 (SingleGroup-class), 23
as.data.frame, SmoothTtest-method
 (SmoothTtest-class), 26
as.data.frame, TwoGroupStats-method
 (TwoGroupStats-class), 32
as.data.frame.default, 24, 26, 33

Bum, 6, 8, 11, 12, 14, 17, 21, 27, 28, 31, 36
Bum (Bum-class), 2
Bum-class, 2
BumSummary, 3, 5
BumSummary (BumSummary-class), 5
BumSummary-class, 5

ColorCoding, 24, 26
countSignificant (significant), 22
countSignificant, ANY-method
 (significant), 22
countSignificant, Bum-method
 (Bum-class), 2
countSignificant, Dudoit-method
 (Dudoit-class), 6
countSignificant, MultiWilcoxonTest-method
 (MultiWilcoxonTest-class), 15
countSignificant, Sam-method
 (Sam-class), 19
countSignificant, TNoM-method (TNoM-class), 29
countSignificant-method (significant), 22
cutoffSignificant (significant), 22
cutoffSignificant, ANY-method (significant), 22
cutoffSignificant, Bum-method (Bum-class), 2
cutoffSignificant, Dudoit-method (Dudoit-class), 6
cutoffSignificant, MultiWilcoxonTest-method (MultiWilcoxonTest-class), 15
cutoffSignificant-method (significant), 22

Dudoit, 14
Dudoit (Dudoit-class), 6
Dudoit-class, 6
dwil, 9, 17, 19

ExpressionSet, 6, 10, 13–15, 19, 20, 29, 33–36

for, 12
formula, 11
fullTNoM-class (TNoM-class), 29

hist, Bum-method (Bum-class), 2
hist, fullTNoM-method (TNoM-class), 29
hist, MultiLinearModel-method (MultiLinearModel-class), 10
hist, MultiTest-method (MultiTest-class), 13
hist, MultiWilcoxonTest-method (MultiWilcoxonTest-class), 15

image, Bum-method (Bum-class), 2

likelihoodBum (Bum-class), 2
lm, 11, 12
loess, 23, 24, 27

matrixT, 14
model.matrix, 12
MultiLinearModel, 5, 14, 36
MultiLinearModel (MultiLinearModel-class), 10
MultiLinearModel-class, 10

MultiTTest, 5, 7, 8, 12, 16, 17, 21, 28, 31, 35, 36
MultiTTest (MultiTTest-class), 13
MultiTTest-class, 13
MultiTTestPaired (variantT), 35
MultiTTestPaired-class (variantT), 35
MultiTTestUnequal (variantT), 35
MultiTTestUnequal-class (variantT), 35
tukey (MultiLinearModel-class), 10
MultiWilcoxonTest, 9, 12, 18, 19, 31
MultiWilcoxonTest (MultiWilcoxonTest-class), 15
MultiWilcoxonTest-class, 15

new, 30, 33

oompColor.BAD.REPLICATE, 25, 28
oompColor.BORING, 25, 28
oompColor.CENTRAL.LINE, 20, 25, 28
oompColor.CONFIDENCE.CURVE, 20, 25, 28
oompColor.EXPECTED, 4, 17, 31
oompColor.FOLD.DIFFERENCE, 28
oompColor.OBSERVED, 4, 17, 31
oompColor.PERMTEST, 31
oompColor.SIGNIFICANT, 28
oompColor.WORST.REPLICATE, 25, 28

phenData, 6, 11, 13, 15, 19, 29, 33–36
plot, Dudoit.missing-method (Dudoit-class), 6
plot, fullTNoM.missing-method (TNoM-class), 29
plot, MultiLinearModel, ANY-method (MultiLinearModel-class), 10
plot, MultiLinearModel, missing-method (MultiLinearModel-class), 10
plot, MultiTTest, ANY-method (MultiTTest-class), 13
plot, MultiTTest, missing-method (MultiTTest-class), 13
plot, MultiWilcoxonTest, missing-method (MultiWilcoxonTest-class), 15
plot, Sam.missing-method (Sam-class), 19
plot, SingleGroup, missing-method (SingleGroup-class), 23
plot, SmoothTtest, missing-method (SmoothTtest-class), 26
plot, TwoGroupStats.missing-method (TwoGroupStats-class), 32
print, SingleGroup-method (SingleGroup-class), 23
print, TwoGroupStats-method (TwoGroupStats-class), 32

rankSum, 17, 18

Sam, 22
Sam (Sam-class), 19
Sam-class, 19
SamSummary, 20
SamSummary (SamSummary-class), 21
SamSummary-class, 21
selectSignificant (significant), 22
selectSignificant, ANY-method (significant), 22
selectSignificant, Bum-method (Bum-class), 2
selectSignificant, Dudoit-method (Dudoit-class), 6
selectSignificant, MultiWilcoxonTest-method (MultiWilcoxonTest-class), 15
selectSignificant, Sam-method (Sam-class), 19
selectSignificant, TNoM-method (TNoM-class), 29
selectSignificant-method (significant), 22
show, BumSummary-method (BumSummary-class), 5
show, SamSummary-method (SamSummary-class), 21
show, SingleGroup-method (SingleGroup-class), 23
show, TNoMSummary-method (TNoMSummary-class), 32
show, TwoGroupStats-method (TwoGroupStats-class), 32

significant, 22
SingleGroup, 26, 28
SingleGroup (SingleGroup-class), 23
SingleGroup-class, 23
SmoothTtest, 8, 23–25, 34, 35
SmoothTtest (SmoothTtest-class), 26
SmoothTtest-class, 26
summary, Bum-method (Bum-class), 2
summary, MultiLinearModel-method (MultiLinearModel-class), 10
summary, MultiTest-method (MultiTest-class), 13
summary, MultiTestPaired-method (variantT), 35
summary, MultiTestUnequal-method (variantT), 35
summary, MultiWilcoxonTest-method (MultiWilcoxonTest-class), 15
summary, Sam-method (Sam-class), 19
summary, SingleGroup-method (SingleGroup-class), 23
summary, SmoothTtest-method (SmoothTtest-class), 26
summary, TNoM-method (TNoM-class), 29
summary, TwoGroupStats-method (TwoGroupStats-class), 32

TNoM, 32
TNoM (TNoM-class), 29
TNoM-class, 29
TNoMSummary, 30
TNoMSummary (TNoMSummary-class), 32
TNoMSummary-class, 32
TwoGroupStats, 26–28
TwoGroupStats (TwoGroupStats-class), 32
TwoGroupStats-class, 32

update, TNoM-method (TNoM-class), 29

variantT, 35