Package ‘ClustGeo’

October 12, 2022

Type Package
Title Hierarchical Clustering with Spatial Constraints
Version 2.1
Author Marie Chavent [aut, cre],
 Vanessa Kuentz [aut],
 Amaury Labenne [aut],
 Jerome Saracco [aut]
Maintainer Marie Chavent <Marie.Chavent@u-bordeaux.fr>
Description Implements a Ward-like hierarchical clustering
 algorithm including soft spatial/geographical constraints.
Depends R (>= 3.0.0)
Imports graphics, stats, sp, spdep
License GPL (>= 2.0)
LazyData true
Suggests knitr, rmarkdown
VignetteBuilder knitr
RoxygenNote 7.1.2
NeedsCompilation no
Repository CRAN
Date/Publication 2021-09-30 14:20:13 UTC

R topics documented:

 choicealpha ... 2
 estuary ... 3
 hclustgeo .. 4
 inert ... 6
 inertdiss ... 6
 plot.choicealpha .. 7
 wardinit ... 8
 withindiss ... 9
Index

choicealpha Choice of the mixing parameter

Description

This function calculates the proportion of inertia explained by the partitions in \(K \) clusters for a range of mixing parameters \(\alpha \). When the proportion of explained inertia calculated with \(D_0 \) decreases, the proportion of explained inertia calculated with \(D_1 \) increases. The plot of the two curves of explained inertia (one for \(D_0 \) and one for \(D_1 \)) helps the user to choose the mixing parameter \(\alpha \).

Usage

\[
\text{choicealpha}(D0, D1, range\.alpha, K, wt = NULL, scale = TRUE, graph = TRUE)
\]

Arguments

- \(D0 \): a dissimilarity matrix of class \texttt{dist}. The function \texttt{as.dist} can be used to transform an object of class \texttt{matrix} to object of class \texttt{dist}.
- \(D1 \): another dissimilarity matrix of class \texttt{dist}.
- \(\text{range\.alpha} \): a vector of real values between 0 and 1.
- \(K \): the number of clusters.
- \(wt \): vector with the weights of the observations. By default, \(wt=\text{NULL} \) corresponds to the case where all observations are weighted by \(1/n \).
- \(\text{scale} \): if \(\text{TRUE} \) the two dissimilarity matrices are scaled i.e. divided by their max.
- \(\text{graph} \): if \(\text{TRUE} \), two graphics (proportion and normalized proportion of explained inertia) are drawn.

Value

An object with S3 class "choicealpha" and the following components:

- \(Q \): a matrix of dimension \(\text{length(range\.alpha)} \times 2 \) with the proportion of explained inertia calculated with \(D_0 \) (first column) and calculated with \(D_1 \) (second column).
- \(Q_{\text{norm}} \): a matrix of dimension \(\text{length(range\.alpha)} \times 2 \) with the proportion of normalized explained inertia calculated with \(D_0 \) (first column) and calculated with \(D_1 \) (second column).

References

See Also

- \texttt{plot\.choicealpha}\n- \texttt{hclustgeo}
Examples

```r
data(estuary)
D0 <- dist(estuary$dat) # the socio-demographic distances
D1 <- as.dist(estuary$D.geo) # the geographic distances between the cities
range.alpha <- seq(0,1,0.1)
K <- 5
cr <- choicealpha(D0,D1,range.alpha,K,graph=TRUE)
cr$Q # proportion of explained pseudo inertia
cr$Qnorm # normalized proportion of explained pseudo inertia
```

Description

Data referring to \(n=303 \) French municipalities of gironde estuary (a south-ouest French county). The data are issued from the French population census conducted by the National Institute of Statistics and Economic Studies. The dataset is an extraction of four quantitative socio-economic variables for a subsample of 303 French municipalities located on the atlantic coast between Royan and Mimizan.

- **employ-rate.city** is the employment rate of the municipality, that is the ratio of the number of individuals who have a job to the population of working age (generally defined, for the purposes of international comparison, as persons of between 15 and 64 years of age).
- **graduate-rate** refers to the level of education of the population that is the highest degree declared by the individual. It is defined here as the ratio for the whole population having completed a diploma equivalent or of upper level to two years of higher education (DUT, BTS, DEUG, nursing and social training courses, license, maitrise, master, DEA, DESS, doctorate, or Grande Ecole diploma).
- **housing.appart** is the ratio of apartment housing.
- **agri.land** is the part of agricultural area of the municipality.

Format

The R dataset estuary is a list of three objects:

- **dat**: a data frame with the description of the \(n=303 \) municipalities on \(p=4 \) socio-demographic variables.
- **D.geo**: a matrix with the geographical distances between the town hall of the \(n=303 \) municipalities.
- **map**: an object of class SpatialPolygonsDataFrame with the map of the gironde estuary.

Source

Original data are issued from the French population census of National Institute of Statistics and Economic Studies for year 2009. The agricultural surface has been calculated on data coming from the French National Institute of Geographical and Forestry Information. The calculation of the ratio and recoding of categories have been made by Irstea Bordeaux.
References

Examples

data(estuary)
names(estuary)
head(estuary$dat)

hclustgeo

Ward clustering with soft contiguity constraints

Description

Implements a Ward-like hierarchical clustering algorithm including soft contiguity constraints. The algorithm takes as input two dissimilarity matrices D_0 and D_1 and a mixing parameter α between 0 and 1. The dissimilarities can be non euclidean and the weights of the observations can be non uniform. The first matrix gives the dissimilarities in the "feature space". The second matrix gives the dissimilarities in the "constraint" space. For instance, D_1 can be a matrix of geographical distances or a matrix build from a contiguity matrix. The mixing parameter α sets the importance of the constraint in the clustering process.

Usage

```
hclustgeo(D0, D1 = NULL, alpha = 0, scale = TRUE, wt = NULL)
```

Arguments

- **D0**: an object of class `dist` with the dissimilarities between the n observations. The function `as.dist` can be used to transform an object of class `matrix` to object of class `dist`.
- **D1**: an object of class "dist" with other dissimilarities between the same n observations.
- **alpha**: a real value between 0 and 1. This mixing parameter gives the relative importance of D_0 compared to D_1. By default, this parameter is equal to 0 and D_0 is used alone in the clustering process.
- **scale**: if TRUE the two dissimilarity matrix D_0 and D_1 are scaled i.e. divided by their max. If D_1=NULL, this parameter is no used and D_0 is not scaled.
- **wt**: vector with the weights of the observations. By default, wt=NULL corresponds to the case where all observations are weighted by 1/n.
Details

The criterion minimized at each stage is a convex combination of the homogeneity criterion calculated with D_0 and the homogeneity criterion calculated with D_1. The parameter α (the weight of this convex combination) controls the importance of the constraint in the quality of the solutions. When α increases, the homogeneity calculated with D_0 decreases whereas the homogeneity calculated with D_1 increases.

Value

Returns an object of class `hclust`.

References

See Also

`choicealpha`

Examples

data(estuary)
with one dissimilarity matrix
w <- estuary$map@data$POPULATION # non uniform weights
D <- dist(estuary$dat)
tree <- hclustgeo(D,wt=w)
sum(tree$height)
inertdiss(D,wt=w)
inert(estuary$dat,w=w)
plot(tree,labels=FALSE)
part <- cutree(tree,k=5)
sp::plot(estuary$map, border = "grey", col = part)

with two dissimilarity matrix
D0 <- dist(estuary$dat) # the socio-demographic distances
D1 <- as.dist(estuary$D.geo) # the geographical distances
alpha <- 0.2 # the mixing parameter
tree <- hclustgeo(D0,D1,alpha=alpha,wt=w)
plot(tree,labels=FALSE)
part <- cutree(tree,k=5)
sp::plot(estuary$map, border = "grey", col = part)
inert

Inertia of a cluster

Description
Computes the inertia of a cluster i.e. on a subset of rows of a data matrix.

Usage
inert(
 Z,
 indices = 1:nrow(Z),
 wt = rep(1/nrow(Z), nrow(Z)),
 M = rep(1, ncol(Z))
)

Arguments
Z
matrix data
indices
vectors representing the subset of rows
wt
weight vector
M
diagonal distance matrix

Examples
data(estuary)
n <- nrow(estuary$dat)
Z <- scale(estuary$dat)*sqrt(n/(n-1))
inert(Z) # number of variables

w <- estuary$map@data$POPULATION # non uniform weights
inert(Z,wt=w)

inertdiss
Pseudo inertia of a cluster

Description
The pseudo inertia of a cluster is calculated from a dissimilarity matrix and not from a data matrix.

Usage
inertdiss(D, indices = NULL, wt = NULL)
Arguments

D an object of class "dist" with the dissimilarities between the n observations. The function as.dist can be used to transform an object of class matrix to object of class "dist".

indices a vector with the indices of the subset of observations.

wt vector with the weights of the n observations

References

Examples

data(estuary)
n <- nrow(estuary$dat)
Z <- scale(estuary$dat)*sqrt(n/(n-1))
inertdiss(dist(Z)) # pseudo inertia
inert(Z) #equals for euclidean distance

w <- estuary$map@data$POPULATION # non uniform weights
inertdiss(dist(Z), wt=w)

plot.choicealpha

Plot to choose the mixing parameter

Description

Plot two curves of explained inertia (one for D0 and one for D1) calculated with choicealpha.

Usage

S3 method for class 'choicealpha'
plot(
 x,
 norm = FALSE,
 lty = 1:2,
 pch = c(8, 16),
 type = c("b", "b"),
 col = 1:2,
 xlab = "alpha",
 ylab = NULL,
 legend = NULL,
 cex = 1,
 ...
)
Arguments

- \(x \) an object of class \texttt{choicealpha}.
- \texttt{norm} if \texttt{TRUE}, the normalized explained inertia are plotted. Otherwise, the explained inertia are plotted.
- \texttt{lty} a vector of size 2 with the line types of the two curves. See \texttt{par}
- \texttt{pch} a vector of size 2 specifying the symbol for the points of the two curves. See \texttt{par}
- \texttt{type} a vector of size 2 specifying the type of lines of the two curves. See \texttt{par}
- \texttt{col} a vector of size 2 specifying the colors the two curves. See \texttt{par}
- \texttt{xlab} the title for the x axis.
- \texttt{ylab} the title for the y axis.
- \texttt{legend} a vector of size two the the text for the legend of the two curves.
- \texttt{cex} text size in the legend.
- \ldots further arguments passed to or from other methods.

References

See Also

\texttt{choicealpha}

Examples

```r
data(estuary)
D0 <- dist(estuary$dat)
D1 <- as.dist(estuary$D.geo) # the geographic distances between the cities
range.alpha <- seq(0,1,0.1)
K <- 5
cr <- choicealpha(D0,D1,range.alpha,K,graph=FALSE)
plot(cr,cex=0.8,norm=FALSE,cex.lab=0.8,ylab="pev",
     col=3:4,legend=c("socio-demo","geo"), xlab="mixing parameter")
plot(cr,cex=0.8,norm=TRUE,cex.lab=0.8,ylab="pev",
     col=5:6,pch=5:6,legend=c("socio-demo","geo"), xlab="mixing parameter")
```

\textbf{wardinit} \hspace{1cm} Ward aggregation measures between singletons

Description

This function calculates the Ward aggregation measures between pairs of singletons.
withindiss

Usage

wardinit(D, wt = NULL)

Arguments

D

a object of class "dist" with the dissimilarities between the n observations. The function as.dist can be used to transform an object of class matrix to object of class "dist".

wt

vector with the weights of the observations. By default, wt=NULL corresponds to the case where all observations are weighted by 1/n.

Details

The Ward aggregation measure between to singletons i and j weighted by wi and wj is : (wiwj)/(wi+wj)dij^2 where dij is the dissimilarity between i and j.

Value

Returns an object of class dist with the Ward aggregation measures between the n singletons.

References

withindiss

Dissimilarity based pseudo within-cluster inertia of a partition

Description

This function performs the pseudo within-cluster inertia of a partition from a dissimilarity matrix.

Usage

withindiss(D, part, wt = NULL)

Arguments

D

an object of class "dist" with the dissimilarities between the n observations. The function as.dist can be used to transform an object of class matrix to object of class "dist".

part

a vector with group membership.

wt

vector with the weights of the observations

References

Index

* data
 estuary, 3

as.dist, 2, 4, 7, 9

choicealpha, 2, 5, 8

estuary, 3

hclust, 5
hclustgeo, 2, 4

inert, 6
inertdiss, 6

par, 8
plot.choicealpha, 2, 7

wardinit, 8
within.diss, 9