ClusterR: Gaussian Mixture Models, K-Means, Mini-Batch-Kmeans and K-Medoids Clustering

Gaussian mixture models, k-means, mini-batch-kmeans and k-medoids clustering with the option to plot, validate, predict (new data) and estimate the optimal number of clusters. The package takes advantage of 'RcppArmadillo' to speed up the computationally intensive parts of the functions.

Version: 1.1.1
Depends: R (≥ 3.2.3), gtools
Imports: Rcpp (≥ 0.12.5), OpenImageR, graphics, grDevices, utils, gmp, FD, stats, ggplot2
LinkingTo: Rcpp, RcppArmadillo (≥ 0.7.2)
Suggests: testthat, covr, knitr, rmarkdown
Published: 2018-02-26
Author: Lampros Mouselimis
Maintainer: Lampros Mouselimis <mouselimislampros at>
License: MIT + file LICENSE
NeedsCompilation: yes
Materials: README NEWS
CRAN checks: ClusterR results


Reference manual: ClusterR.pdf
Vignettes: Functionality of the ClusterR package
Package source: ClusterR_1.1.1.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
OS X El Capitan binaries: r-release: ClusterR_1.1.1.tgz
OS X Mavericks binaries: r-oldrel: ClusterR_1.0.9.tgz
Old sources: ClusterR archive

Reverse dependencies:

Reverse imports: CensMixReg


Please use the canonical form to link to this page.