Package ‘ClusterStability’

February 8, 2016

Type Package

Depends R (>= 2.2.4), Rcpp, clusterCrit, cluster, copula (>= 0.999),
 WeightedCluster

LinkingTo Rcpp

Title Assessment of Stability of Individual Objects or Clusters in
 Partitioning Solutions

Version 1.0.3

Date 2016-02-08

Author Etienne Lord, Matthieu Willems, Francois-Joseph Lapointe, and Vladimir
 Makarenkov

Maintainer Etienne Lord <m.etienne.lord@gmail.com>

Description Allows one to assess the stability of individual objects, clusters
 and whole clustering solutions based on repeated runs of the K-means and K-medoids
 partitioning algorithms.

License GPL-3

LazyLoad yes

NeedsCompilation yes

Repository CRAN

Date/Publication 2016-02-08 23:52:27

R topics documented:

ClusterStability-package .. 2
ClusterStability .. 3
ClusterStability_exact ... 3
Kcombination .. 4
Reorder .. 5
Stirling2nd ... 5
Undocumented functions ... 6

Index 7
ClusterStability-package

Assessment of the stability of individual objects, clusters and a whole clustering solution based on repeated runs of a clustering algorithm.

Description

The ClusterStability package uses a probabilistic framework and some well-known clustering criteria (e.g. Calinski-Harabasz, Silhouette, Dunn and Davies-Bouldin) to compute the stability scores (ST) of each individual object (i.e., element) in the clustering solution provided by the K-means and K-medoids partitioning algorithms.

Details

Package: ClusterStability
Type: Package
Version: 1.0.2
Date: 2015-10-14
License: GPL-2
Maintainer: Etienne Lord <m.etienne.lord@gmail.com>, Vladimir Makarenkov <makarenkov.vladimir@uqam.ca>

Function `clusterstability` computes the individual and global stability scores (ST) for a partitioning solution using either K-means or K-medoids (the approximate solution is provided).

Function `clusterstability_exact` is similar to the `clusterstability` function but uses the Stirling numbers of the second kind to compute the exact stability scores (but is limited to a small number of objects).

Function `kcombination` computes the k-combination of a set of numbers for a given k.

Function `reorder` returns the re-ordered partitioning of a series of clusters.

Function `stirlingRnd` computes the Stirling numbers of the second kind.

Author(s)

Etienne Lord, François-Joseph Lapointe and Vladimir Makarenkov

See Also

`ClusterStability, ClusterStability_exact, Kcombination, Reorder, Stirling2nd`
ClusterStability

Calculates the approximate stability score (ST) of individual objects in a clustering solution (the approximate version allowing one to avoid possible variable overflow errors).

Description

This function will return the individual stability score ST and the global score ST_{global} using either the K-means or K-medoids algorithm and four different clustering indices: Calinski-Harabasz, Silhouette, Dunn or Davies-Bouldin.

Usage

ClusterStability(dat,k,replicate,type)

Arguments

- **dat**: the input dataset: either a matrix or a dataframe.
- **k**: the number of classes for the K-means or K-medoids algorithm (default=3).
- **replicate**: the number of replicates to perform (default=1000).
- **type**: the algorithm used in the partitioning: either 'kmeans' or 'kmedoids' algorithm (default='kmeans').

Value

Returns the individual (ST) and global (ST_{global}) stability scores for the four clustering indices: Calinski-Harabasz (ch), Silhouette (sil), Dunn ($dunn$) or Davies-Bouldin (db).

Examples

```r
## Calculates the stability scores of individual objects of the Iris dataset
## using K-means, 100 replicates (random starts) and k=3
ClusterStability(dat=iris[1:4],k=3,replicate=100,type='kmeans');
```

ClusterStability_exact

Calculates the exact stability score (ST) for individual objects in a clustering solution.

Description

This function will return the exact individual stability score ST and the exact global score ST_{global} using either the K-means or K-medoids algorithm and four different clustering indices: Calinski-Harabasz, Silhouette, Dunn or Davies-Bouldin. **Variable overflow errors are possible for large numbers of objects.**
ClusterStability_exact(dat, k, replicate, type)

Arguments

- **dat**: the input dataset: either a matrix or a dataframe.
- **k**: the number of classes for the K-means or K-medoids algorithm (default=3).
- **replicate**: the number of replicates to perform (default=1000).
- **type**: the algorithm used in the partitioning: either 'kmeans' or 'kmedoids' algorithm (default=kmeans).

Value

Returns the exact individual (ST) and global (ST_global) stability scores for the four clustering indices: Calinski-Harabasz (ch), Silhouette (sil), Dunn (dunn) or Davies-Bouldin (db).

Examples

```r
## Calculate the stability scores of individual objects of the Iris dataset
## using K-means, 100 replicates (random starts) and k=3
ClusterStability_exact(dat=iris[1:4], k=3, replicate=100, type='kmeans');
```

Kcombination

Kcombination returns the list of all possible combinations of a set of numbers of a given length k.

Description

This function, given a vector of numbers, will return all the possible combinations of a given length k.

Usage

Kcombination(data, k, selector)

Arguments

- **data**: the vector of numbers (i.e. elements) to consider.
- **k**: the length of the returned combination (between 2 and 6 in this version).
- **selector**: if set, returns only the combinations containing this number.

Value

Return a list of all possible combinations for the given vector of numbers.
Examples

Returns the k-combination of the list of numbers: 1,2,3 of length=2.
i.e. (1,2), (1,3), (2,3)
Kcombination(c(1,2,3),k=2)
Returns only the k-combination containing the number 1.
i.e. (1,2), (1,3)
Kcombination(c(1,2,3),k=2,selector=1)

Reorder This function returns the ordering of a partitioning solution in ascending order.

Description

This function returns the ordered partition of a set of numbers in ascending order and reordered to start at one. This is an auxiliary function.

Usage

Reorder(data)

Arguments

data vector of partition numbers to reorder.

Value

A vector of ordered partition numbers for this data.

Examples

Reorder(c(1,3,4,4,3,1))
 # Expected : 1 2 3 3 2 1

Stirling2nd Stirling2nd function computes the Stirling numbers of the second kind.

Description

This function returns the estimated Stirling numbers of the second kind i.e., the number of ways of partitioning a set of n objects into k nonempty groups.

Usage

Stirling2nd(n,k)
Undocumented functions

Arguments

\[n \] number of objects.

\[k \] number of groups (i.e. classes).

Value

The Stirling number of the 2nd kind for \(n \) elements and \(k \) groups or NaN (if the Stirling number for those \(n \) and \(k \) is greater than 1e300).

Examples

\[
\begin{align*}
\text{Stirling2nd}(n=3, k=2) \\
& \quad \text{# Expected value=3} \\
\text{Stirling2nd}(n=300, k=20) \\
& \quad \text{# Expected value=NaN}
\end{align*}
\]

Description

The following functions are for internal computation only: \texttt{calculate_global_PSG, calculate_indices, calculate_singleton, is_partition_group, p_n_k, p_tilde_n_k, calculate_individual_PSG_approximative, calculate_individual_PSG_exact, calculate_individual_PSG}.
Index

*Topic **Stability score**, ST, individual, global, approximative
 ClusterStability, 3

*Topic **Stability score**, ST, individual, global, exact
 ClusterStability_exact, 3

*Topic **k-combination**
 Kcombination, 4

*Topic **package**
 ClusterStability-package, 2

*Topic **partitioning criteria**
 ClusterStability-package, 2

*Topic **stability score**
 ClusterStability-package, 2

a2combination (Undocumented functions), 6

calculate_global_PSG (Undocumented functions), 6

calculate_indices (Undocumented functions), 6

calculate_individual_PSG (Undocumented functions), 6

calculate_individual_PSG_approximative (Undocumented functions), 6

calculate_individual_PSG_exact (Undocumented functions), 6

calculate_singleton (Undocumented functions), 6

ClusterStability, 2, 3
ClusterStability-package, 2
ClusterStability_exact, 2, 3

is_partition_group (Undocumented functions), 6

Kcombination, 2, 4

p_n_k (Undocumented functions), 6
p_tilde_n_k (Undocumented functions), 6

Reorder, 2, 5
Stirling2nd, 2, 5

Undocumented functions, 6