Package ‘CoDiNA’

October 12, 2022

Type Package
Title Co-Expression Differential Network Analysis
Version 1.1.2
Author Deisy Morselli Gysi, Tiago de Miranda Fragoso, Eivind Almaas and Katja Nowick.
Maintainer Deisy Morselli Gysi <deisy.ccnr@gmail.com>
Description Categorize links and nodes from multiple networks in 3 categories: Common links (alpha) specific links (gamma), and different links (beta). Also categorizes the links into sub-categories and groups. The package includes a visualization tool for the networks. More information about the methodology can be found at: Gysi et. al., 2018 <arXiv:1802.00828>.
License GPL-2
LazyData TRUE
Depends R (>= 3.1)
Imports data.table, igraph, magrittr, plyr, visNetwork, reshape2
RoxygenNote 7.1.0
Suggests knitr, rmarkdown, wTO
NeedsCompilation no
Repository CRAN
Date/Publication 2020-07-15 12:30:02 UTC

R topics documented:

.Random.seed ... 2
as.igraph ... 2
AST ... 3
ClusterNodes .. 4
CTR ... 4
GLI ... 5
MakeDiffNet ... 6
normalize ... 7
OLI ... 7
OrderNames .. 8
Description

Random numbers generated by set.seed(123)

as.igraph

Description

Converts the CoDiNA.plot into an igraph object.

Usage

as.igraph(x)

Arguments

x
the output from the function plot.

Value

the CoDiNA plot as an igraph object.

Author(s)

Deisy Morselli Gysi <deisy at bioinf.uni-leipzig.de>

Examples

suppressWarnings(RNGversion("3.5.0"))
Nodes = LETTERS[1:10]
Net1 = data.frame(Node.1 = sample(Nodes), Node.2 = sample(Nodes), wTO = runif(10,-1,1))
Net2 = data.frame(Node.1 = sample(Nodes), Node.2 = sample(Nodes), wTO = runif(10,-1,1))
Net3 = data.frame(Node.1 = sample(Nodes), Node.2 = sample(Nodes), wTO = runif(10,-1,1))
DiffNet = MakeDiffNet (Data = list(Net1,Net2,Net3), Code = c("Net1", "Net2", "Net3"))
Graph = plot(x = DiffNet,
layout = NULL, smooth.edges = TRUE,
path = NULL, MakeGroups = FALSE, Cluster = FALSE,
legend = TRUE, manipulation = FALSE, sort.by.Phi = FALSE)
AST

\begin{verbatim}
x = as.igraph(Graph)
plot(x)
\end{verbatim}

Description

This data table contains node and the weighted topological overlap (wTO) of Transcription Factors (TFs), from GSE4290 (Sun, 2006) for 50 brain samples with ASTgodendrogliomas. The wTO was calculated using the package wTO.

Usage

```r
data("AST")
```

Format

A data frame with 3488761 observations on the following 3 variables.

- **Node.1**: a factor with levels. TF names
- **Node.2**: a factor with levels. TF names
- **cor**: a numeric vector. wTO values calculated using only the TFs

Source

References

Examples

```r
data(AST)
str(AST)
```
ClusterNodes

Description

Categorize the Nodes into Phi and Phi tilde.

Usage

```r
ClusterNodes(DiffNet, cutoff.external = 0.8, cutoff.internal = 0.5)
```

Arguments

- `DiffNet` The Differential network from MakeDiffNet
- `cutoff.external` The cut-off between the clusters (delta from the center to the edge coordinates), the closer to 1, the better.
- `cutoff.internal` The cut-off inside the clusters (delta from the theoretical cluster to the edge coordinates), the closer to zero, the better.

Examples

```r
DiffNet = MakeDiffNet (Data = list(CTR, AST), Code = c("Var", "Var", "Var", "Var")
Genes_Phi = ClusterNodes(DiffNet, cutoff.external = 0.5, cutoff.internal = 0.25)
table(Genes_Phi$Phi_tilde)
```

CTR

Description

This data.table contains node and the weighted topological overlap (wTO) of Transcription Factors (TFs), from GSE4290 (Sun, 2006) for 23 brain samples with Controls. The wTO was calculated using the package wTO.

Usage

```r
data("CTR")
```

Format

A data frame with 3488761 observations on the following 3 variables.

- `Node.1` a factor with levels. TF names
- `Node.2` a factor with levels. TF names
- `cor` a numeric vector. wTO values calculated using only the TFs
GLI

Source

References

Examples
data(GLI)
str(GLI)

Description
This data.table contains node and the weighted topological overlap (wTO) of Transcription Factors (TFs), from GSE4290 (Sun, 2006) for 81 brain samples with glioblastomas. The wTO was calculated using the package wTO.

Usage
data("GLI")

Format
A data frame with 3488761 observations on the following 3 variables.
Node.1 a factor with levels. TF names
Node.2 a factor with levels. TF names
cor a numeric vector. wTO values calculated using only the TFs

Source

References

Examples
data(GLI)
str(GLI)
Description

Categorize links into Phi categories, calculate the distance to the center and also normalize the distance into some categories: Phi and Phi tilda, group and all.

Usage

\[
\text{MakeDiffNet(Data, Code, cutoff = 0.33, stretch = TRUE)}
\]

Arguments

- **Data**: List of data.frames containing Node.1, Node.2 and the correlation value
- **Code**: Name of each one of the networks.
- **cutoff**: By default, the cutoff is 0.33. If the user wants to use another value, it has to be cited on the description of the used methodology that the cutoff was changed.
- **stretch**: Should the input data be normalized? Default to TRUE.

Value

Returns a data.table containing: Nodes names, correlation value for each network (the input values), the k means cluster that link belongs, the Phi groups (Phi and Phi tilda), the signed group that link belongs to, the unsigned group. The distance to the center, and the distance normalized by: Phi tilda, Phi, signed group or all data.

Author(s)

Deisy Morselli Gysi <deisy at bioinf.uni-leipzig.de>

Examples

```r
suppressWarnings(RNGversion("3.5.0"))
Nodes = LETTERS[1:20]
Net1 = data.frame(Node.1 = sample(Nodes), Node.2 = sample(Nodes), wTO = runif(10,-1,1))
Net2 = data.frame(Node.1 = sample(Nodes), Node.2 = sample(Nodes), wTO = runif(10,-1,1))
Net3 = data.frame(Node.1 = sample(Nodes), Node.2 = sample(Nodes), wTO = runif(10,-1,1))
DiffNet = MakeDiffNet (Data = list(Net1,Net2,Net3), Code = c('Net1', 'Net2', 'Net3'))
print(DiffNet)
```
normalize

Description

Normalize a given variable.

Usage

normalize(m)

Arguments

m variable to be normalized in the interval [0,1]

Author(s)

Deisy Morselli Gysi <deisy at bioinf.uni-leipzig.de>

Examples

Z = runif(10,-10,10)
normalize(Z)

OLI

Description

This data.table contains node and the weighted topological overlap (wTO) of Transcription Factors (TFs), from GSE4290 (Sun, 2006) for 50 brain samples with oligodendrogliomas. The wTO was calculated using the package wTO.

Usage

data("OLI")

Format

A data frame with 3488761 observations on the following 3 variables.

Node.1 a factor with levels. TF names
Node.2 a factor with levels. TF names
cor a numeric vector. wTO values calculated using only the TFs
OrderNames

Source

References

Examples

data(OLI)
str(OLI)

<table>
<thead>
<tr>
<th>OrderNames</th>
<th>OrderNames</th>
</tr>
</thead>
</table>

Description

Sorts each link’s Nodes by the smallest value. Removes links that both nodes are the same.

Usage

OrderNames(M)

Arguments

M data.frame to have the names ordered. Node.1, Node.2 and correlation value.

Value

a data.table whith Node.1 and Node.2, sorted by the smallest value between both.

Author(s)

Deisy Morselli Gysi <deisy at bioinf.uni-leipzig.de>

Examples

Nodes = LETTERS[1:10]
Z = data.frame(Node.1 = sample(Nodes), Node.2 = sample(Nodes), cor = runif(10,-1,1))
OrderNames(Z)
Description

Categorize the Nodes into Phi and groups categories. Also, creates an interactive view of the CoDiNA network.

Usage

```r
## S3 method for class 'CoDiNA'
plot(
  x,
  cutoff.external = 0,
  cutoff.internal = 1,
  cutoff.ratio = 1,
  layout = NULL,
  smooth.edges = TRUE,
  path = NULL,
  MakeGroups = FALSE,
  Cluster = FALSE,
  legend = TRUE,
  manipulation = FALSE,
  sort.by.Phi = FALSE,
  ...)
```

Arguments

- `x` Output from MakeDiffNet
- `cutoff.external` The cut-off between the clusters (delta from the center to the edge coordinates), the closer to 1, the better.
- `cutoff.internal` The cut-off inside the clusters (delta from the theoretical cluster to the edge coordinates), the closer to zero, the better.
- `cutoff.ratio` The cut-off for the ratio of both scores. Default is set to 1. The greater, the better.
- `layout` a layout from the igraph package.
- `smooth.edges` If the edges should be smoothed or not.
- `path` If the graph should be saved specify the name of the file.
- `MakeGroups` algorithm to find clusters. One of the followings: walktrap, optimal, spinglass, edge.betweenness, fast greedy, infomap, louvain, label prop, leading eigen. Default to FALSE.
- `Cluster` TRUE or FALSE if the nodes should be clustered (double click to uncluster).
legend TRUE or FALSE if the legend should appear.
manipulation TRUE or FALSE if the graph should be editable.
sort.by.Phi if the graph should be plotted in the Phi order
... Additional plotting parameters.

Value

Returns a list containing: The nodes description, the Edges description and the network graph.

Author(s)

Deisy Morselli Gysi <deisy at bioinf.uni-leipzig.de>

Examples

suppressWarnings(RNGversion("3.5.0"))

Nodes = LETTERS[1:10]
Net1 = data.frame(Node.1 = sample(Nodes), Node.2 = sample(Nodes), wTO = runif(10,-1,1))
Net2 = data.frame(Node.1 = sample(Nodes), Node.2 = sample(Nodes), wTO = runif(10,-1,1))
Net3 = data.frame(Node.1 = sample(Nodes), Node.2 = sample(Nodes), wTO = runif(10,-1,1))
DiffNet = MakeDiffNet (Data = list(Net1,Net2,Net3), Code = c('Net1', 'Net2', 'Net3'))
Graph = plot(x = DiffNet,
layout = NULL, smooth.edges = TRUE,
path = NULL, MakeGroups = FALSE, Cluster = FALSE,
legend = TRUE, manipulation = FALSE, sort.by.Phi = FALSE)
Graph

print.CoDiNA

Description

Print on the screen the number of nodes and edges. To see the data.frame, call: data.frame().

Usage

S3 method for class 'CoDiNA'
print(x, ...)

Arguments

x Output from MakeDiffNet
... Additional plotting parameters.

Value

Print on the screen the number of nodes and edges.
summary.CoDiNA

Author(s)

Deisy Morselli Gysi <deisy at bioinf.uni-leipzig.de>

Examples

Nodes = LETTERS[1:10]
Net1 = data.frame(Node.1 = sample(Nodes), Node.2 = sample(Nodes), wTO = runif(10,-1,1))
Net2 = data.frame(Node.1 = sample(Nodes), Node.2 = sample(Nodes), wTO = runif(10,-1,1))
Net3 = data.frame(Node.1 = sample(Nodes), Node.2 = sample(Nodes), wTO = runif(10,-1,1))
DiffNet = MakeDiffNet (Data = list(Net1,Net2,Net3), Code = c('Net1', 'Net2', 'Net3'))
print(DiffNet)

summary(DiffNet)

Description

summary of the CoDiNA network.

Usage

S3 method for class 'CoDiNA'
summary(object, ...)

Arguments

object Output from MakeDiffNet
... Additional plotting parameters.

Value

Returns a summary describing the network.

Author(s)

Deisy Morselli Gysi <deisy at bioinf.uni-leipzig.de>

Examples

Nodes = LETTERS[1:10]
Net1 = data.frame(Node.1 = sample(Nodes), Node.2 = sample(Nodes), wTO = runif(10,-1,1))
Net2 = data.frame(Node.1 = sample(Nodes), Node.2 = sample(Nodes), wTO = runif(10,-1,1))
Net3 = data.frame(Node.1 = sample(Nodes), Node.2 = sample(Nodes), wTO = runif(10,-1,1))
DiffNet = MakeDiffNet (Data = list(Net1,Net2,Net3), Code = c('Net1', 'Net2', 'Net3'))
summary(DiffNet)
Index

datasets
- `.Random.seed`, 2
- AST, 3
- CTR, 4
- GLI, 5
- OLI, 7
- `.Random.seed`, 2

- `as.igraph`, 2
- AST, 3

- `ClusterNodes`, 4
- CTR, 4

- GLI, 5

- `MakeDiffNet`, 6

- `normalize`, 7

- OLI, 7
- `OrderNames`, 8

- `plot.CoDiNA`, 9
- `print.CoDiNA`, 10

- `summary.CoDiNA`, 11