Package ‘CodataGS’

May 17, 2019

Type Package

Title Genomic Prediction Using SNP Codata

Version 1.43

Date 2019-05-17

Author Lars Ronnegard

Maintainer Lars Ronnegard <lrrn@du.se>

Description Computes genomic breeding values using external information on the markers. The package fits a linear mixed model with heteroscedastic random effects, where the random effect variance is fitted using a linear predictor and a log link. The method is described in Moure-san, Selle and Ronnegard (2019) <doi:10.1101/636746>.

License GPL

Depends Matrix

NeedsCompilation no

Repository CRAN

Date/Publication 2019-05-17 15:40:07 UTC

R topics documented:

CodataGS-package .. 2
compute_GL .. 3
compute_phitau ... 4
genomicEBV.w.codata ... 5
hat.transf .. 6
MME ... 7
scaleZ ... 8
summary.CodataGS .. 9
Transform ... 10

Index 11
Description

Computes genomic breeding values using external information on the markers. The package fits a linear mixed model with heteroscedastic random effects, where the random effect variance is fitted using a linear predictor and a log link. The method is described in Mouresan, Selle and Ronnegard (2019) <doi:10.1101/636746>.

Details

The DESCRIPTION file:

Package: CodataGS
Type: Package
Title: Genomic Prediction Using SNP Codata
Version: 1.43
Date: 2019-05-17
Author: Lars Ronnegard
Maintainer: Lars Ronnegard <lrn@du.se>
Description: Computes genomic breeding values using external information on the markers. The package fits a linear mixed model with heteroscedastic random effects, where the random effect variance is fitted using a linear predictor and a log link. The method is described in Mouresan, Selle and Ronnegard (2019) <doi:10.1101/636746>.
License: GPL
Depends: Matrix
NeedsCompilation: no

Index of help topics:

- CodataGS-package
- Genomic Prediction Using SNP Codata
- MME
- Mixed model equations
- Transform
- Transforms hat values
- compute_GL
- Computes genomic relationship matrix
- compute_phitau
- Computes models for the variance components
- genomicEBV.w.codata
- Performs genomic prediction based on SNP codata.
- hat.transf
- Transforms hat values
- scaleZ
- Scales the genotype matrix.
- summary.CodataGS
- Summary method for CodataGS objects

This package performs genomic prediction based on SNP codata. The main function is genomicEBV.w.codata.

Author(s)

Lars Ronnegard
Maintainer: Lars Ronnegard <lrn@du.se>
compute_GL

Computes genomic relationship matrix

Description

This function computes the genomic relationship matrix, G, together with its matrix square root, L.

Usage

```r
compute_GL(Z, w)
```

Arguments

- Z: Scaled matrix with genotype information
- w: weights

Value

- L: Square root matrix of G
- `svdVec`: Vectors in the Single Value Decomposition of G
- `svdD`: Diagonal elements in the Single Value Decomposition of G
- `wZt`: weights times the transpose of Z

Author(s)

Lars Ronnegard

Examples

```r
set.seed(1234)
N <- 20  # Number of individuals
k <- 30  # Number of SNPs with all marker positions including a QTL
Z1 <- matrix(0, N, k)
Z2 <- matrix(0, N, k)
Z1[1:N, 1] <- rbinom(N, 1, 0.5) # Simulated phased SNP matrices
Z2[1:N, 1] <- rbinom(N, 1, 0.5)
LD.par <- 0.2  # A parameter to simulate LD. 0 gives full LD, and 0.5 no LD
for (j in 2:k) {
}
Z <- Z1 + Z2  # Genotypic SNP matrix
sim.res <- compute_GL(Z, w = rep(1,k))
```
Description

This function computes the residual variance, the SNP variances and the linear predictor for the SNP variance model.

Usage

compute_phitau(dev, hv, devu, hvu, X.rand.disp)

Arguments

- **dev**: Deviance values
- **hv**: Hat values for the observed response values
- **devu**: Deviance values computed for the random effects
- **hvu**: Hat values for the random effects
- **X.rand.disp**: Design matrix used in the linear predictor for the SNP variance model.

Value

- **var.e**: Residual variance
- **phi**: Vector of SNP variances
- **coef**: Fitted coefficients for the linear predictor in the SNP variance model

Author(s)

Lars Ronnegard

Examples

```r
set.seed(1234)
N <- 20  # Number of individuals
k <- 30  # Number of SNPs with all marker positions including a QTL
# Simulated deviances and hat values
dev <- rnorm(N)^2
hv <- runif(N, 0.1, 0.5)
devu <- rnorm(k)^2
hvu <- runif(k, 0.1, 0.85)
X.rand.disp <- matrix(1, k, 1)
sim.res <- compute_phitau(dev, hv, devu, hvu, X.rand.disp)
```
genomicEBV.w.codata
Performs genomic prediction based on SNP codata.

Description

The main function of the package. The input includes response values, a design matrix for the fixed effects, a matrix with SNP genotype data and a design matrix for the SNP codata.

Usage

```r
genomicEBV.w.codata(y, X, Z, X.SNPcodata, Z.test = NULL, max.iter = 100, conv.crit = 1e-5)
```

Arguments

- **y**: Response values
- **X**: Design matrix for the fixed effects
- **Z**: Genotype matrix with element values of 0, 1 or 2
- **X.SNPcodata**: Design matrix for the linear predictor of the SNP variances.
- **Z.test**: An optional genotype matrix for a test data set.
- **max.iter**: The maximum number of iterations
- **conv.crit**: The value of the convergence criterion.

Details

By specifying the matrix `Z.test` in the input, the function computes predicted genomic breeding values for an out-of-sample data set.

Value

- **gEBV**: Genomic breeding values
- **predicted.gEBV**: Genomic breeding values based on the genotypes in `Z.test`
- **w**: Computed SNP weights
- **u**: Fitted SNP effects
- **beta**: Fitted fixed effects
- **disp.beta**: Fitted coefficients in the linear predictor for the SNP variance model
- **Converge**: Shows whether the algorithm has converged or not
- **iter**: The number of iterations used

Author(s)

Lars Ronnegard
Examples

```
#Simulation part
set.seed(1234)
N <- 200 #Number of individuals
k <- 300 #Number of SNPs with all marker positions including a QTL
Z1 <- matrix(0, N, k )
Z2 <- matrix(0, N, k )
Z1[1:N, 1] <- rbinom(N, 1, 0.5) #Simulated phased SNP matrices
Z2[1:N, 1] <- rbinom(N, 1, 0.5)
LD.par <- 0.2 #A parameter to simulate LD. 0 gives full LD, and 0.5 no LD
for (j in 2:k) {
}
Z <- Z1 + Z2 #Genotypic SNP matrix
x1 <- c(rep(1,k/2), rep(0,k/2)) #An indicator for the SNPs.
#The first k/2 SNPs and the last k/2 have different variances
#Simulate linear predictor for the random effect variance
lin.pred <- 0 + 2*x1
X.snp <- model.matrix(~ x1 ) #Corresponding design matrix
u <- rnorm(k, 0, sqrt( exp(lin.pred) ))
#Took the square root here because it is the SD that is specified.
#And exp() because we are modeling a log link.
u.scaled <- u/as.numeric( sqrt( var( crossprod(t(Z), u) ) ) )
#Scaled by the variance of the breeding values
e <- rnorm(N) #A residual variance
mu <- 0
y <- mu + crossprod(t(Z),u.scaled) + e
```

```
#Estimation part
mod1 <- genomicEBV.w.codata(y = as.numeric(y),
    X = matrix(1, N, 1), Z = Z, X.SNPCodata = X.snp)
#To fit gBLUP just specify X.SNPCodata = matrix(1, k, 1)
cat("Correlation between true and estimated BV for the codata model:")
cat(cor(crossprod(t(Z),u.scaled), mod1$gEBV), "\n")
```

hat.transf

<table>
<thead>
<tr>
<th>Transforms hat values</th>
</tr>
</thead>
<tbody>
<tr>
<td>hat.transf(C22, transf, vc, k, N, w)</td>
</tr>
</tbody>
</table>

Description

Transforms hat values between the SNP-BLUP model and the gBLUP model.

Usage

hat.transf(C22, transf, vc, k, N, w)
MME

Arguments

- **c22**: Submatrix of the inverse of the LHS in the MME
- **transf**: A transformation matrix.
- **vc**: Genetic variance
- **k**: Number of SNPs
- **N**: Number of individuals
- **w**: SNP weights

Value

Transformed hat values

Author(s)

Lars Ronnegard

Description

A fast version of the Henderson’s mixed model equations (MME)

Usage

\[
\text{MME}(y, X, Z, \text{var.e}, \text{var.u})
\]

Arguments

- **y**: Response
- **X**: Design matrix for fixed effects
- **Z**: Design matrix for the random effects
- **var.e**: Residual variance
- **var.u**: Genetic variance

Value

- **beta**: Estimates of fixed effects
- **v**: Fitted random effects
- **hv**: Hat values
- **dev**: Deviances

Author(s)

Lars Ronnegard
scaleZ Scales the genotype matrix.

Description

Scales the genotype matrix so that ZZ' gives the genomic relationship matrix.

Usage

scaleZ(Z, freqQ)

Arguments

Z Genotype matrix with element values 0, 1 and 2
freqQ Optional input parameter with allele frequencies. A vector of length equal to the number of columns in Z.

Value

Z Scaled genotype matrix

Author(s)

Lars Ronnegard

Examples

#Simulation part
set.seed(1234)
N <- 200 #Number of individuals
k <- 300 #Number of SNPs with all marker positions including a QTL
Z1 <- matrix(0, N, k)
Z2 <- matrix(0, N, k)
Z1[1:N, 1] <- rbinom(N, 1, 0.5) #Simulated phased SNP matrices
Z2[1:N, 1] <- rbinom(N, 1, 0.5)
LD.par <- 0.2 #A parameter to simulate LD. 0 gives full LD, and 0.5 no LD
for (j in 2:k) {
}
Z <- Z1 + Z2 #Genotypic SNP matrix
sim.res <- scaleZ(Z)
Description

A summary method for the object class CodataGS

Usage

```r
## S3 method for class 'CodataGS'
summary(object, ...)
```

Arguments

- `object`: A CodataGS object
- `...`: arguments not used

Details

Provides a concise summary of CodataGS objects.

Examples

```r
# Simulation part
set.seed(1234)
N <- 200  # Number of individuals
k <- 300  # Number of SNPs with all marker positions including a QTL
Z1 <- matrix(0, N, k)
Z2 <- matrix(0, N, k)
Z1[1:N, 1] <- rbinom(N, 1, 0.5)  # Simulated phased SNP matrices
Z2[1:N, 1] <- rbinom(N, 1, 0.5)
LD.par <- 0.2  # A parameter to simulate LD. 0 gives full LD, and 0.5 no LD
for (j in 2:k) {
}
Z <- Z1 + Z2  # Genotypic SNP matrix
x1 <- c(rep(1,k/2), rep(0,k/2))  # An indicator for the SNPs.
# The first k/2 SNPs and the last k/2 have different variances
# Simulate linear predictor for the random effect variance
lin.pred <- 0 + 2*x1
X.snp <- model.matrix(~ x1)  # Corresponding design matrix
u <- rnorm(k, 0, sqrt(exp(lin.pred)))
# Took the square root here because it is the SD that is specified.
# and exp() because we are modelling a log link.
u.scaled <- u/as.numeric(sqrt(var(crossprod(t(Z), u))))
# Scaled by the variance of the breeding values
e <- rnorm(N)  # A residual variance
```
mu <- 0
y <- mu + crossprod(t(Z), u.scaled) + e

Estimation part
mod1 <- genomicEBV.w.cdata(y = as.numeric(y),
 X = matrix(1, N, 1), Z = Z, X.SNPcodata = X.snp)
summary(mod1)

Transforms hat values

Transform

Description
The function calls the hat.transf function.

Usage
Transform(X, L, var.e, var.u, v, svdVec, svdD, wZt, w)

Arguments
X Design matrix for the fixed effects
L Square root matrix of the genomic relationship matrix, G
var.e Residual variance
var.u Genetic variance
v Random effects
svdVec Vector from the Single Value Decomposition of G
svdD Diagonal elements of the Single Value Decomposition of G
wZt Weights times the transpose of the scaled genotype matrix
w Fitted SNP weights

Value
u SNP effects
qu Hat values for the SNP effects

Author(s)
Lars Ronnegard
Index

*Topic package
 CodataGS-package, 2

CodataGS (CodataGS-package), 2
CodataGS-package, 2
compute_GL, 3
compute_phitau, 4

genomicEBV.w.codata, 5
hat.transf, 6

MME, 7

scaleZ, 8
summary (summary.CodataGS), 9
summary.CodataGS, 9

Transform, 10