Package ‘CollapsABEL’

December 11, 2016

Type Package

Title Generalized CDH (GCDH) Analysis

Version 0.10.11

Date 2016-12-11

Author Kaiyin Zhong, Fan Liu

Maintainer Kaiyin Zhong <kindlychung@gmail.com>

Depends R (>= 3.1.0), rJava (>= 0.9-6)

Imports R.utils, RSQLite, biganalytics, bigmemory, collUtils, dplyr, ggplot2, methods, stringr, stats, haplo.stats

Description Implements a generalized version of the CDH test (<DOI:10.1371/journal.pone.0028145> and <DOI:10.1186/s12859-016-1006-9>) for detecting compound heterozygosity on a genome-wide level, due to usage of generalized linear models it allows flexible analysis of binary and continuous traits with covariates.

License GPL-3

URL https://bitbucket.org/kindlychung/collapsabel2/overview

BugReports https://bitbucket.org/kindlychung/collapsabel2/issues

Suggests testthat

SystemRequirements PLINK2, Java (>= 8.0), mysql

RoxygenNote 5.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2016-12-11 20:35:07

R topics documented:

 alphaNumeric 5
 asBigMatrix 5
R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>assocFilter</td>
<td>6</td>
</tr>
<tr>
<td>baseName</td>
<td>7</td>
</tr>
<tr>
<td>bedcollr</td>
<td>8</td>
</tr>
<tr>
<td>bedSizeCorrect</td>
<td>8</td>
</tr>
<tr>
<td>binCorrectTypes</td>
<td>9</td>
</tr>
<tr>
<td>bin2DescFilename</td>
<td>9</td>
</tr>
<tr>
<td>binPhe</td>
<td>10</td>
</tr>
<tr>
<td>bmAddCol</td>
<td>10</td>
</tr>
<tr>
<td>bmAttachBin</td>
<td>11</td>
</tr>
<tr>
<td>bmConvertFun</td>
<td>11</td>
</tr>
<tr>
<td>bmFilename</td>
<td>12</td>
</tr>
<tr>
<td>bmFilepath</td>
<td>12</td>
</tr>
<tr>
<td>bytesSnip</td>
<td>13</td>
</tr>
<tr>
<td>changeByMap</td>
<td>13</td>
</tr>
<tr>
<td>charify</td>
<td>14</td>
</tr>
<tr>
<td>checkFileExist</td>
<td>15</td>
</tr>
<tr>
<td>chExt</td>
<td>15</td>
</tr>
<tr>
<td>cmh</td>
<td>16</td>
</tr>
<tr>
<td>colClasses</td>
<td>16</td>
</tr>
<tr>
<td>colCors</td>
<td>17</td>
</tr>
<tr>
<td>CollapsABEL</td>
<td>18</td>
</tr>
<tr>
<td>collapse</td>
<td>18</td>
</tr>
<tr>
<td>collapseMat</td>
<td>19</td>
</tr>
<tr>
<td>collClear</td>
<td>20</td>
</tr>
<tr>
<td>collenv</td>
<td>20</td>
</tr>
<tr>
<td>connectSnipPair</td>
<td>21</td>
</tr>
<tr>
<td>contrastData</td>
<td>21</td>
</tr>
<tr>
<td>contrastPlot</td>
<td>22</td>
</tr>
<tr>
<td>correctDesc</td>
<td>23</td>
</tr>
<tr>
<td>correctTypes_methods</td>
<td>23</td>
</tr>
<tr>
<td>covarNames</td>
<td>24</td>
</tr>
<tr>
<td>cytoband</td>
<td>25</td>
</tr>
<tr>
<td>datToVec</td>
<td>25</td>
</tr>
<tr>
<td>desc2BinFilename</td>
<td>26</td>
</tr>
<tr>
<td>dir.create2</td>
<td>26</td>
</tr>
<tr>
<td>dirName</td>
<td>27</td>
</tr>
<tr>
<td>eprint</td>
<td>27</td>
</tr>
<tr>
<td>evalFile</td>
<td>28</td>
</tr>
<tr>
<td>famCorrectTypes</td>
<td>28</td>
</tr>
<tr>
<td>fidIid</td>
<td>29</td>
</tr>
<tr>
<td>file.create2</td>
<td>29</td>
</tr>
<tr>
<td>filePath</td>
<td>30</td>
</tr>
<tr>
<td>FilePath-class</td>
<td>31</td>
</tr>
<tr>
<td>fileSize</td>
<td>31</td>
</tr>
<tr>
<td>gcdhBmCreate</td>
<td>32</td>
</tr>
<tr>
<td>gcdhDir</td>
<td>32</td>
</tr>
<tr>
<td>gcdhPower</td>
<td>33</td>
</tr>
<tr>
<td>gcdhRegion</td>
<td>34</td>
</tr>
</tbody>
</table>
R topics documented:

gcdhReport ... 35
getHaplo .. 35
getHaplos ... 36
getOrElse-operator ... 36
getQuery .. 37
getr2 ... 37
glm2 ... 38
glmIter .. 38
gwasDat ... 39
gwasDir .. 39
gwasLog .. 40
gwasOut ... 40
gwasOutStem .. 41
gwasR ... 41
gwasRDS ... 42
head2 ... 42
headPhe ... 43
isBinary .. 44
isS4Class .. 44
isSetup .. 45
isSetupRbed ... 46
isSQLite3 .. 46
lagDistance ... 47
lenCheck ... 47
listEqual ... 48
listGwasTags ... 49
loadGwas .. 49
makePhe .. 50
manhattanData ... 50
manhattanPlot .. 51
nIndivApprPl .. 51
nIndivPl ... 52
nonExistentFiles .. 52
nSnpPl ... 53
numVectorSQLRepr .. 53
permutePhe .. 54
plGwas ... 54
PIGwasC-class ... 56
plInfo .. 56
PInfoC-class ... 57
plinkr ... 58
plTrim ... 80
qq ... 81
qq2 ... 81
qqmulti .. 82
randNormDat ... 82
randomString ... 83
randomStrings ... 83
R topics documented:

rbedInfo 84
RbedInfoC-class 84
read.phe.table 85
readAssoc 85
readBed 86
readBim 87
readBmBin 88
readDesc 88
readFam 89
readFunFactory 89
readGwasOut 90
readInfo 91
ReadInfo-class 92
readLiteral 92
readLogistic 93
readPhe 94
readPlinkOut 94
readQassoc 95
realBedSize 96
removeTag 96
reprClasses 97
rmFilesByStem 97
runGcdh 98
runGwas 99
runTypeI 99
saveDesc 100
sendQuery 101
setOptModel 101
setup 102
setupRbed 102
shiftBed 103
shiftedStem 104
slurp 104
snpPos 105
snpRowId 106
spit 106
sqliteFilePl 107
stopFormat 107
strConcat 108
strVectorRepr 108
strVectorSQLRepr 109
systemFormat 110
theoBedSize 110
validPhe 111
write.phe.table 111

Index 112
alphaNumeric

alphaNumeric

Alpha-numeric characters

Description

Alpha-numeric characters

Usage

alphaNumeric

Format

An object of class character of length 62.

asBigMatrix

Coerce an R vector/matrix/data.frame into a big.matrix

Description

This is a patched version of as.big.matrix from the bigmemory package. The patch allows you to omit colnames/rownames even when they exist in the R object.

Usage

asBigMatrix(x, type = NULL, separated = FALSE, backingfile = NULL, backingpath = NULL, descriptorfile = NULL, binarydescriptor = FALSE, shared = TRUE, dimnames = FALSE)

S4 method for signature 'matrix,ANY,ANY,ANY,ANY,ANY,ANY,logical'

asBigMatrix(x,
 type = NULL, separated = FALSE, backingfile = NULL, backingpath = NULL, descriptorfile = NULL, binarydescriptor = FALSE,
 shared = TRUE, dimnames = FALSE)

S4 method for signature 'data.frame,ANY,ANY,ANY,ANY,ANY,ANY,logical'

asBigMatrix(x,
 type = NULL, separated = FALSE, backingfile = NULL, backingpath = NULL, descriptorfile = NULL, binarydescriptor = FALSE,
 shared = TRUE, dimnames = FALSE)

S4 method for signature 'vector,ANY,ANY,ANY,ANY,ANY,ANY,logical'

asBigMatrix(x,
 type = NULL, separated = FALSE, backingfile = NULL, backingpath = NULL, descriptorfile = NULL, binarydescriptor = FALSE,
 shared = TRUE, dimnames = FALSE)
Arguments

x vector, matrix, or data.frame

Arguments

type See bigmemory::as.big.matrix

Arguments

separated See bigmemory::as.big.matrix

Arguments

backingfile See bigmemory::as.big.matrix

Arguments

backingpath See bigmemory::as.big.matrix

Arguments

descriptorfile See bigmemory::as.big.matrix

Arguments

binarydescriptor See bigmemory::as.big.matrix

Arguments

shared See bigmemory::as.big.matrix

Arguments

dimnames logical. FALSE by default

Value

big.matrix object

Author(s)

Kaiyin Zhong, Fan Liu

Description

This is meant for reduction in computational burden. The plink --assoc does not accept covariates makes some assumptions accordingly, and thus runs faster than --linear and --logistic. SNPs that does not produce a p-value more significant than a user-set threshold will be filtered out. A new PLINK file is made and a corresponding new PlGwasC object is returned.

Usage

assocFilter(pl_gwas, plink_out_stem = NULL, p_threshold = 0.1,
 db_setup = FALSE, force = TRUE)

Arguments

pl_gwas PIgwasC object

plink_out_stem character. Output plink file stem (without .bed extension). The default is to add a "_filteredRANDOM_ID" suffix to the original.

p_threshold numeric. P-value threshold.

db_setup logical. Whether to setup the PIgwasC object.

force logical. Overwrite existing PLINK files.
Value

a new PlGwasC object.

Author(s)

Kaiyin Zhong, Fan Liu

Examples

```r
## Not run:
rbed_info = rbedInfo(bedstem = "mmp13", db_setup = FALSE)
pl_gwas = plGwas(rbed_info,
pheno = "mmp13.phe",
pheno_name = "Page",
gwas_tag = "mmp13_page_sex_age")
runGwas(pl_gwas)
x = readGwasOut(pl_gwas, c("SNP", "P"), rmGwasOut = FALSE)
pl_gwas1 = assocFilter(pl_gwas, p_threshold = 0.001)
runGwas(pl_gwas1)
x1 = readGwasOut(pl_gwas1, c("SNP", "P"), rmGwasOut = FALSE)
y = dplyr::inner_join(x, x1, by = "SNP")
all(y$P.x == y$P.y)
all(y$P.y < 0.001)
## End(Not run)
```

basename

Basename of a FilePath object

Description

Basename of a FilePath object

Usage

`basename(fp)`

```
## S4 method for signature 'FilePath'
basename(fp)
```

Arguments

- `fp` character, file paths.

Value

character vector of basenames
Author(s)

Kaiyin Zhong, Fan Liu

Examples

```r
## Not run:
fp = filePath(R.home())
baseName(fp)

## End(Not run)
```

bedcollr

Shift bed files

Description

This is a wrapper around the bedcoll commandline tool.

Usage

```r
bedcollr(bfile = NULL, nshift_min = 1, nshift_max = NULL)
```

Arguments

- `bfile` : bed filename, without the .bed extension.
- `nshift_min` : Minimal shift number
- `nshift_max` : Maximal shift number

bedSizeCorrect

Check whether bed file is of correct size

Description

It is correct if its real size is the equal to its theoretical size.

Usage

```r
bedSizeCorrect(rbed_info)
```

Arguments

- `rbed_info` : RbedInfoC object
bimCorrectTypes

Value

logical.

Author(s)

Kaiyin Zhong, Fan Liu

bimCorrectTypes Correct types of bim data.frame

Description

CHR, BP and GDIST columns should be integers.

Usage

bimCorrectTypes(bim_dat)

Arguments

bim_dat data.frame read from a .bim file

Value

data.frame

Author(s)

Kaiyin Zhong, Fan Liu

bin2DescFilename Convert a .bin filename to a .desc filename

Description

Convert a .bin filename to a .desc filename

Usage

bin2DescFilename(bin_file)

Arguments

bin_file character .bin filename
bmAddCol

Value
character

Author(s)
Kaiyin Zhong, Fan Liu

binPhe

Check whether phenotype of a GWAS is binary

Description
Check whether phenotype of a GWAS is binary

Usage

```r
binPhe(pl_gwas, na_value = c(-9, 0))
```

Arguments
- **pl_gwas**: PIgwasC object.
- **na_value**: A vector of codes that represent missing values.

Value
logical

Author(s)
Kaiyin Zhong, Fan Liu

bmAddCol

Add column(s) to an existing big.matrix

Description
This function provides an efficient way to append columns to a big.matrix (without copying columns that are already on disk).

Usage

```r
bmAddCol(bin_file, dat)
```
bmAttachBin

Arguments

- bin_file: character. Path to .bin file for file-backed big.matrix
dat: vector, matrix or data.frame. Coercion rules are the same as in big.matrix

Value

updated description object.

Author(s)

Kaiyin Zhong, Fan Liu

bmAttachBin: Attach a big.matrix by its bin filename

Description

Attach a big.matrix by its bin filename

Usage

bmAttachBin(bin_file)

Arguments

- bin_file: character. big.matrix bin filename

Author(s)

Kaiyin Zhong

bmConvertFun: Conversion function to use when appending values to a big.matrix

Description

Conversion function to use when appending values to a big.matrix

Usage

bmConvertFun(desc)

Arguments

desc: description object
Value
conversion function.

Author(s)
Kaiyin Zhong, Fan Liu

bmFilename
Generate a big.matrix filename (.bin or .desc)

Description
Generate a big.matrix filename (.bin or .desc)

Usage
bmFilename(mat_name, type)

Arguments
mat_name character. Stem of filename.
type character. Either "bin" or "desc"

Value
character. big.matrix filename

Author(s)
Kaiyin Zhong, Fan Liu

bmFilePath
Get the big.matrix file path according to GCDH task tag

Description
Get the big.matrix file path according to GCDH task tag

Usage
bmFilePath(tag, mat_name, type)
bytesSnp

Arguments
- **tag**: character. GCDH task tag.
- **mat_name**: character. nmiss, beta, stat, p, etc.
- **type**: character. Either "bin" or "desc"

Author(s)
Kaiyin Zhong, Fan Liu

Description
Get number of bytes used by each SNP.

Usage
bytesSnp(pl_info)

Arguments
- **pl_info**: PlInfoC object

changeByMap

Transform a vector by a mapping

Description
The mapping is represented by a data.frame: 1st column is the domain, 2st column is the range.

Usage
changeByMap(old_vector, mapping_dat, reverse = FALSE)

Arguments
- **old_vector**: vector of any type.
- **mapping_dat**: data.frame, first column must be the same type as the old_vector
- **reverse**: logical. Reverse domain and range if set to TRUE

Value
The new vector (mapped from the old one).
Author(s)

Kaiyin Zhong, Fan Liu

Examples

```r
## Not run:
names_dat = data.frame(c("a", "b", "c"), c("d", "e", "f"), stringsAsFactors=FALSE)
changeByMap(c("a", "a", "b"), names_dat) == c("d", "d", "e")
x = changeByMap(c(NA, "a", "b"), names_dat)

## End(Not run)
```

charify

Convert certain columns of a data.frame to character type

Description

Convert certain columns of a data.frame to character type.

Usage

`charify(dat, cols)`

Arguments

- `dat`: data.frame
- `cols`: character. Names of columns to be converted.

Value

data.frame

Author(s)

Kaiyin Zhong, Fan Liu

Examples

```r
## Not run:
x = data.frame(x = 1:3, y = 2:4)
all(colClasses(x) == c("integer", "integer"))
x = charify(x, "x")
all(colClasses(x) == c("character", "integer"))

## End(Not run)
```
checkFileExist

Description
Stop when any file does not exist

Usage
checkFileExist(files)

Arguments
files: character vector. File paths you want to check.

Author(s)
Kaiyin Zhong, Fan Liu

chExt

Description
Change extension names

Usage
chExt(filename, ext_name)

Arguments
filename: character. File path
ext_name: character. New extension name

Author(s)
Kaiyin Zhong
Contrast Manhattan plot the simple way

Usage

```r
cmh(gcdh_report, outfile = NULL)
```

Arguments

- `gcdh_report` data.frame, from a GCDH analysis
- `outfile` output image filepath. Any type (.png, .pdf, etc) supported by `ggplot2::ggsave`. Default to NULL. When it’s not NULL, this function will try to save the plot to the specified path.

Value

A `ggplot` object

Author(s)

kaiyin

Get classes of columns of a data.frame

Usage

```r
colClasses(dat)
```

Arguments

- `dat` data.frame

Value

character. Classes of `dat`
Author(s)

Kaiyin Zhong, Fan Liu

Examples

```r
## Not run:
dat = data.frame(x = 15L, y = 3.14, z = "abc",
                 u = TRUE, stringsAsFactors = FALSE)
all(colClasses(dat) ==
c("integer", "numeric",
  "character", "logical"))
```

End(Not run)

colCors

Correlation coefficient of column-pairs of two data frames

Description

Correlation coefficient of column-pairs of two data frames

Usage

colCors(dat1, dat2)

Arguments

dat1

first data.frame

dat2

second data.frame

Value

A vector of correlation coefficients.

Author(s)

Kaiyin Zhong
CollapsABEL: an R library for detecting compound heterozygote alleles in genome-wide association or sequencing studies

Description

Compound Heterozygosity (CH) in classical genetics is the presence of two different recessive mutations at a particular gene locus, one on each chromosome. The presence of CH has been found for nearly all autosomal recessive disorders as well as other phenotypes such as red hair color. A relaxed form of CH, i.e., in which the genetic variants are not necessarily coding, rare, and deleterious, is likely involved in a wide range of human polygenic traits and referred to as generalized CH (GCH). However, individually analyzing a large number of DNA sequence variants, as being the routine in genome-wide association studies (GWAS), has limited power to detect genetic associations caused by GCH, which may be partially responsible for the currently still "missing heritability". Existing tools specifically designed for detecting GCH alleles are scarce, in particular for the analysis of densely imputed Single Nucleotide Polymorphism (SNP) array data or whole genome sequencing data. Previously, we developed a collapsed double heterozygosity (CDH) test for detecting the association between CH genotypes and binary traits by applying a chi-squared statistic to pseudo-genotypes collapsed from a pair of SNPs, which was implemented as a function in the GenABEL R package. Here, we implement a generalized CDH (GCDH) method to overcome previous limitations and allow (1) fast analysis of densely imputed SNP data or whole genome sequencing data; (2) flexible analysis of binary and quantitative traits with covariates; (3) empirical power estimation and type-I error control; and (4) easy interface with graphical utilities.

Arguments

phe_file character. Phenotype file.

Value

FALSE when the file is invalid, or a data.frame when it is.

Author(s)

Kaiyin Zhong, Fan Liu

collapse Collpase genotypes

Description

Collapse genotypes

Usage

collapse(g1, g2, collapse_matrix = NULL)
collapsemat

Arguments
- g1 numeric, genotype vector 1.
- g2 numeric, genotype vector 2.
- collapse_matrix matrix of integers range from 0 to 3.

Value
numeric, collapsed genotype of g1 and g2.

Author(s)
Kaiyin Zhong

Description
Each column is assumed to be the genotype for a SNP. The two genotype matrices should have the same size.

Usage
collapsemat(m1, m2, collapse_matrix = matrix(c(0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 3L, 0L, 1L, 3L, 3L), 4, 4))

Arguments
- m1 first genotype matrix
- m2 second genotype matrix
- collapse_matrix collapsed genotype matrix

Value
collapsed genotyp matrix

Author(s)
kaiyin
collenv

Description
The workspace folder is defined in `collenv$.collapsabel_dir`.

Usage
collClear()

Author(s)
Kaiyin Zhong, Fan Liu

collenv
An environment for storing CollapsABEL package local variables

Description

..collapsabel_dir CollapsABEL home directory

Usage
collenv

Format
An object of class `environment` of length 12.

Details

..collapsabel_gwas CollapsABEL gwas directory
..collapsabel_gcdh CollapsABEL GCDH analysis directory
.assoc_header Plink .assoc file headers
.qassoc_header Plink .qassoc file headers
.logistic_header Plink .assoc.logistic file headers
.logistic_header_default Columns from plink .assoc.logistic file headers that are used by default
.linear_header Plink .assoc.linear file headers
.linear_header_default Columns from plink .assoc.linear file headers that are used by default
.plink_out_ext Plink output extensions
.plink_stdout Plink stdout
.plink_stderr Plink stderr
connectSnpPair

Annotate a pair of SNPs in the contrast Manhattan plot

Description
Annotate a pair of SNPs in the contrast Manhattan plot

Usage
connectSnpPair(cplot, snp1, snp2, linetype = "dotted", hjust = 0, text_size = 3)

Arguments
cplot: ggplot object. The contrast Manhattan plot to be annotated.
snp1: character. First SNP.
snp2: character. Second SNP.
linetype: See ggplot2::geom_segment. Default to "dotted".
hjust: See ggplot2::annotate. Default to 0.
text_size: See ggplot2::annotate. Default to 3.

Value
ggplot object.

Author(s)
Kaiyin Zhong

contrastData
Prepare data for contrastPlot

Description
Prepare data for contrastPlot

Usage
contrastData(chr, bp, p, gcdh_p, snp)
Arguments

- **chr**: integer. Chromosome vector.
- **bp**: integer. Position vector.
- **p**: numeric. P-value vector.
- **gcdh_p**: numeric. GCDH p-value vector.
- **snp**: character. SNP name vector.

Author(s)

Kaiyin Zhong

contrastPlot

Produce contrast Manhattan plot

Description

Overlays p-values from single-SNP method and GCDH.

Usage

```r
contrastPlot(chr, bp, p, gcdh_p, snp, ...)
```

Arguments

- **chr**: integer. Chromosome vector.
- **bp**: integer. Position vector.
- **p**: numeric. P-value vector.
- **gcdh_p**: numeric. GCDH p-value vector.
- **snp**: character. SNP name vector.
- **...**: passed to manhattanPlot

Value

- ggplot object.

Author(s)

Kaiyin Zhong
correctDesc
Correct description of big.matrix

Description
Correct description of big.matrix

Usage
correctDesc(desc_file)

Arguments
desc_file character. Path to description file

Value
list. Corrected description object.

Author(s)
Kaiyin Zhong, Fan Liu

correctTypes_methods
Convert columns of a data frame to certain types

Description
Convert columns of a data frame to certain types

Usage
correctTypes(dat, col_names = NULL, types)

Arguments
dat data.frame The data frame whose types you want to change.
col_names character. Names of columns, the types of which you want to change.
types character. Names of new types. Should be the same length as col_names

Value
data.frame. With specified classes.
Author(s)

Kaiyin Zhong, Fan Liu

Examples

```r
## Not run:
dat = randNormDat(3, 3)
dat[, 2] = as.character(dat$V2)
dat1 = correctTypes(dat, types = rep("numeric", 3))
all(colClasses(dat1) == rep("numeric", 3))
dat2 = correctTypes(dat, 2, "numeric")
all(colClasses(dat2) == rep("numeric", 3))

## End(Not run)
```

covarNames

Get covariate names of a GWAS

Description

Get covariate names of a GWAS

Usage

`covarNames(pl_gwas)`

Arguments

`pl_gwas`
PlGwasC object.

Value

character. Vector of covariate names.

Author(s)

Kaiyin Zhong, Fan Liu
cytoband

Find cytoband at a given position

Description

Find cytoband at a given position

Usage

```r
cytoband(chr, pos, ref = "hg19")
```

Arguments

- **chr**: integer or character. Chromosome number. If it’s an integer it should be in range [1, 22]. If it’s a string it’s should be in the format as "chr1, chr2, ..., chr22, chrX, chrY"
- **pos**: integer. Position on chromosome.
- **ref**: character. Reference data. Should be either "hg18" or "hg19"

Value

Vector of cytobands.

Author(s)

kaiyin

datToVec

Extract one row or column of a data frame as a vector

Description

Extract one row or column of a data frame as a vector

Usage

```r
datToVec(dat, i, row = TRUE)
```

Arguments

- **dat**: data.frame
- **i**: row or column number
- **row**: Logical. If TRUE, then i is the row number, otherwise i is the column number
desc2BinFilename

Convert a .desc filename to a .bin filename

Description

Convert a .desc filename to a .bin filename

Usage

desc2BinFilename(desc_file)

Arguments

desc_file character. .desc filename

Value

character

Author(s)

Kaiyin Zhong, Fan Liu

dir.create2

Create directory if it does not already exist

Description

Create directory if it does not already exist

Usage

dir.create2(dir)

Arguments

dir character. Path of directory to be created.

Author(s)

Kaiyin Zhong, Fan Liu
dirName

Directory name of a file path

Description

Directory name of a file path

Usage

```r
dirName(fp)
```

S4 method for signature 'FilePath'
dirName(fp)

Arguments

- `fp` File Path object

Value

character vector of directories

Author(s)

Kaiyin Zhong, Fan Liu

Examples

```r
## Not run:
fp = filePath(R.home())
dirName(fp)

## End(Not run)
```

eprint

Print quoted expression then its value

Description

Print quoted expression then its value

Usage

```r
eprint(expr)
```
famCorrectTypes

Arguments
expr expression to be evaluated.

evalFile Eval R expressions from a file.

Description
Eval R expressions from a file.

Usage
evalFile(filename)

Arguments
filename character

Author(s)
Kaiyin Zhong, Fan Liu

famCorrectTypes Correct types of fam data.frame

Description
SEX and PHE columns should be integers.

Usage
famCorrectTypes(fam_dat)

Arguments
fam_dat data.frame read from a .fam file

Value
data.frame

Author(s)
Kaiyin Zhong, Fan Liu
fid IID

FID and IID columns from fam file

Description

FID and IID columns from fam file

Usage

`fid IID(pl_info)`

Arguments

`pl_info`
PlInfoC object

Value

data.frame of two columns "FID" and "IID"

Author(s)

Kaiyin Zhong, Fan Liu

Examples

```r
## Not run:
pl_info = pl Info(bedstem = "mmp13", db_setup = TRUE)
fid IID = fid IID(pl_info)
fam = readFam("mmp13.fam", c("FID", "IID"))
all(fam == fid IID)

## End(Not run)
```

file create2

Create file if it does not already exist

Description

Create file if it does not already exist

Usage

`file create2(filename)`
Arguments

filename character. Path of file to be created.

Author(s)

Kaiyin Zhong, Fan Liu

filePath Constructor for FilePath class

Description

Constructor for FilePath class

Usage

filePath(s)

Arguments

s character, path to file or dir

Value

FilePath object

Author(s)

Kaiyin Zhong, Fan Liu

Examples

```r
## Not run:
fpl = filePath(R.home())
dirName(fpl) == dirname(fpl@path)
baseName(fpl) == basename(fpl@path)

## End(Not run)
```
FilePath-class

An S4 class to represent a file path

Description

This class comes with a validation function, making sure that the file exists.

Slots

- *path* character, file or dir path

Author(s)

Kaiyin Zhong, Fan Liu

fileSize

Get file size

Description

Get file size

Usage

`fileSize(filename)`

Arguments

- `filename` character. Path to file.

Value

integer. Size of file.

Author(s)

Kaiyin Zhong, Fan Liu

gcdhBmCreate

Create a big.matrix under specified GCDH tag

Description

Create a big.matrix under specified GCDH tag.

Usage

```
gcdhBmCreate(tag, bm_name, nrow, ncol = 1)
```

Arguments

- `tag`: character. GCDH tag.
- `bm_name`: character. Name of the big.matrix to be created.
- `nrow`: integer. Number of rows of the big.matrix.

Author(s)

Kaiyin Zhong, Fan Liu

gcdhDir

Create GCDH task directories by tag

Description

The task folder is a subfolder of the value of `collenv$.collapsabel_gcdh`. It will be created if it does not yet exist.

Usage

```
gcdhDir(gcdh_tag)
```

Arguments

- `gcdh_tag`: character. Tag for GCDH task.

Value

character. Directory of the task.

Author(s)

Kaiyin Zhong, Fan Liu
gcdhPower

Description

This function makes use of runTypeI. Random phenotypes are used to survey p-values under the null hypothesis (SNPs are not associated phenotype), and genome-wide significance thresholds for single-SNP approach and GCDH are calculated by a user given alpha-level. A custom phe_fun is supplied for simulating a phenotype associated with a certain pair of SNPs. Total number of such simulations is set by the n_simu parameter. In each simulation 4 p-values are generated:

Usage

```r
gcdhPower(rbed_info, n_shift, n_simu, maf_min, maf_max, r_limit, beta,
          collapse_matrix = NULL, dist_threshold = 5e-05, alpha_level = 0.05)
```

Arguments

- `rbed_info` : RbedInfoC object
- `n_shift` : integer. n_shift for each GCDH run.
- `n_simu` : integer. Number of simulations to run.
- `maf_min` : numeric. Lower limit of MAF interval.
- `maf_max` : numeric. Upper limit of MAF interval.
- `r_limit` : numeric. Upper limit of correlation coefficient between the two causal SNPs.
- `beta` : numeric. Effect size of the simulated phenotype.
- `collapse_matrix` : See runGcdh.
- `dist_threshold` : See runGcdh.
- `alpha_level` : numeric. Control type-I error rate at this level.

Details

- `P_single` : p-values from single-SNP approach.
- `P_GCDH` : p-values from GCDH.
- `P_(single,no causal)` : p-values from single-SNP approach when causal SNPs are untyped.
- `P_(GCDH,no causal)` : p-values from GCDH when causal SNPs are untyped.

When all simulations are finished, 4 vectors of p-values are obtained: `P_single_vec`, `P_GCDH_vec`, `P_(single,no causal)_vec`, `P_(GCDH,no causal)_vec`. The power for each of the category (single-SNP, single-SNP without causal genotypes, GCDH, GCDH without causal genotypes) are proportions of these vectors that are more significant than the genome-wide significance thresholds we have obtained.

Author(s)

Kaiyin Zhong
gcdhRegion

Run GCDH over a region

Description

A region around some SNP is extracted and GCDH analysis is conducted over that region.

Usage

```
gcdhRegion(pl_gwas, n_shift = NULL, snp, window = 500, out = NULL, gwas_col_select = collev$linear_header_default, collapse_matrix = NULL, rm_shifted_files = TRUE, dist_threshold = 5e+05)
```

Arguments

- `pl_gwas`: PlGwasC object
- `n_shift`: integer. Maximum shift number.
- `snp`: character. SNP name
- `window`: numeric. All variants with physical position no more than half the specified kb distance (decimal permitted) from the named variant are loaded.
- `out`: character. Path to the regional bed file (without .bed extension).
- `gwas_col_select`: character. See runGcdh
- `collapse_matrix`: See runGcdh
- `rm_shifted_files`: See runGcdh
- `dist_threshold`: See runGcdh

Value

See runGcdh

Author(s)

Kaiyin Zhong, Fan Liu
gcdhReport

Generate a report from a GCDH run

Description

For each p-value from a GCDH run, search for indices of the corresponding SNP pair. Combine statistics from single-SNP approach with GCDH statistics.

Usage

`gcdhReport(run_res)`

Arguments

- `run_res` Result from `rungcdh`

Value

Path to SQLite database

Author(s)

Kaiyin Zhong, Fan Liu

getHaplo

Infer haplotypes for a pair of SNPs

Description

Infer haplotypes for a pair of SNPs

Usage

`getHaplo(geno, format_idx = NULL)`

Arguments

- `geno` Genotype data frame. Must have 4 columns, the first two being "FID" and "IID", the last two being the genotypes.
- `format_idx` Column indices used for formatting haplotype string.

Value

A data frame of haplotypes

Author(s)

kaiyin
getHaplos

Inferring haplotypes from two genotype data frames, and join with phenotypes

Description

Inferring haplotypes from two genotype data frames, and join with phenotypes

Usage

```
getHaplos(g1, g2, phe, pool = NULL)
```

Arguments

- **g1**: First genotype data frame
- **g2**: Second genotype data frame, must be of the same dimension as the first. The first two columns must be FID and IID.
- **phe**: Phenotype data frame, the first two columns must be FID and IID
- **pool**: A genotype data frame, assumed to be different from g1 and g2, used for pooling.

Value

A data frame containing phenotype and haplotype for each individual.

Author(s)

kaiyin

getOrElse-operator

Default value for expression.

Description

When an expression evals to NULL, take the default value instead. Copied from dplyr source.

Usage

```
x %||% y
```

Arguments

- **x**: Expression to be evaled.
- **y**: Default value.
getQuery

Description
Get query results from a SQLite database

Usage
```r
getch(db_name, query_string)
```

Arguments
- `db_name` character. Path to database.
- `query_string` character. Query string.

Author(s)
Hadley Wickham

getr2

Description
Estimate percentage of variation explained

Usage
```r
getr2(df, yn)
```

Arguments
- `df` Dataframe
- `yn` Name of the independent variable, must be one of the columns of df

Author(s)
Fan Liu
glmIter

Perform glm iteratively through a number of independent variables with fixed dependent variables and covariates.

Description

Perform glm iteratively through a number of independent variables with fixed dependent variables and covariates.

Usage

glmIter(dat, y, xs = NULL, covars = character(), ...)

Arguments

dat data.frame

y character. Name of dependent variable columns.

xs character. Names of independent variable columns.

covars character. Names of covariate columns.

... passed to glm.

glm2

GLM with arbitrary column names

Description

Substitute column names that are unsuitable for formulas and substitute back when returning results.

Usage

glm2(dat, y, xs, ...)

Arguments

dat data.frame. Source data to build GLM upon.

y character. Column name of dependent variable.

xs character. Column names of independent variable.

... passed to glm.

Value

data.frame of coefficients.

Author(s)

Kaiyin Zhong, Fan Liu
gwasDat

Value

matrix of coefficients

Author(s)

Kaiyin Zhong, Fan Liu

gwasDat

Read genotype and phenotype data into R

Description

Read genotype and phenotype data into R

Usage

`gwasDat(pl_gwas, snp_vec)`

Arguments

- `pl_gwas` : PlGwasC object.
- `snp_vec` : numeric or character. Vector of SNPs.

Value

data.frame

Author(s)

Kaiyin Zhong, Fan Liu

gwasDir

GWAS results directory of a certain GWAS scan

Description

GWAS results directory of a certain GWAS scan

Usage

`gwasDir(pl_gwas)`

Arguments

- `pl_gwas` : PlGwasC object
Value
character.

Author(s)
Kaiyin Zhong, Fan Liu

Description
Redirect stdout to this file when plink is running.

Usage
gwasLog(pl_gwas)

Arguments
pl_gwas PlGwasC object.

Value
character. Path to log file.

Author(s)
Kaiyin Zhong, Fan Liu

Description
GWAS output file name

Usage
gwasOut(pl_gwas)

Arguments
pl_gwas PlGwasC object.
gwasOutStem

Value
character

Author(s)
Kaiyin Zhong, Fan Liu

gwasOutStem
Plink output filename

Description
To be passed as the --out option to plink.

Usage
gwasOutStem(pl_gwas)

Arguments
pl_gwas
PlGwasC object.

Value
character. Plink output filename, without extension

Author(s)
Kaiyin Zhong, Fan Liu

gwasR
Invoke a GWAS in R

Description
Invoke a GWAS in R

Usage
gwasR(pl_gwas, snp_vec)

Arguments
pl_gwas
PlGwasC object.

snp_vec
numeric or character. Vector of SNPs.
Value

Matrix. Coefficient matrix. One row for each SNP.

Author(s)

Kaiyin Zhong, Fan Liu

gwasRDS

Get RDS file path of a PlGwasC object

Description

Get RDS file path of a PlGwasC object

Usage

```r
gwasRDS(pl_gwas)
```

Arguments

- `pl_gwas` PlGwasC object.

Value

character. path of a PlGwasC object

Author(s)

Kaiyin Zhong, Fan Liu

head2

Head and tail in two dimensions

Description

Restrict not only the number of rows, but also the number of columns.

Usage

```r
head2(x, m = 6, n = NULL)
tail2(x, m = 6, n = NULL)
```
headPhe

Arguments

- **x**: data.frame or matrix
- **m**: integer. Number of rows to keep.
- **n**: integer. Number of columns to keep.

Author(s)

kaiyin

Read first n lines of a phenotype file

Description

Read first n lines of a phenotype file

Usage

```r
headPhe(pl_gwas, nrows = 5L)
```

Arguments

- **pl_gwas**: PlGwasC object
- **nrows**: number of lines to read

Value

data.frame

Author(s)

Kaiyin Zhong, Fan Liu
isBinary

Check whether a trait is binary

Description
Check whether a trait is binary

Usage
isBinary(v, na_value = NULL)

Arguments
v numeric vector.

na_value a vector of numeric values which should be seen as NA.

Value
logical

Author(s)
Kaiyin Zhong, Fan Liu

Examples
Not run:
isBinary(c(1, 1.1, 1, 1.1, NA))
isBinary(c(1, 2, 1, 2, NA))
isBinary(c(-9, 2.3, 4.1, -9, -9), -9)
isBinary(c(-9, 2, 4, -9, -9), -9)
isBinary(c(1, 2, 2, 1, -9, -9.9), c(-9, -9.9))

End(Not run)

isS4Class

Check whether an S4 object is of a certain class

Description
Check whether an S4 object is of a certain class

Usage
isS4Class(obj, c)
isSetup

Arguments

- **obj**
 S4 object
- **c**
 Class name

Value

- logical

Author(s)

Kaiyin Zhong, Fan Liu

isSetup
Check if a directory containing .bed .fam and .bim files is properly setup

Description

Check if a directory containing .bed .fam and .bim files is properly setup

Usage

`isSetup(pl_info)`

Arguments

- **pl_info**
 PlInfoC object

Value

TRUE or FALSE

Author(s)

Kaiyin Zhong, Fan Liu
isSetupRbed
Check if an RbedInfoC object is properly set up

Description
Check if an RbedInfoC object is properly set up

Usage
`isSetupRbed(rbed_info)`

Arguments
- `rbed_info`
 RbedInfoC object

Value
logical.

Author(s)
Kaiyin Zhong, Fan Liu

isSQLite3
Check whether a file is a SQLite3 database.

Description
Check whether a file is a SQLite3 database.

Usage
`isSQLite3(filename)`

Arguments
- `filename`
 character. Path to file to be checked.

Author(s)
Kaiyin Zhong, Fan Liu
Description

Calculate the distance between each element in a numeric vector and the element that is lag positions after it. For the last lag elements, this distance does not exist, so NA is used as a placeholder. The returned vector is of the same length as the input vector.

Usage

\[
\text{lagDistance(vec, lag = 1, reverse = FALSE)}
\]

Arguments

- **vec** numeric.
- **lag** integer.
- **reverse** logical. Default to FALSE, i.e. calculate \(\text{vec}[i] - \text{vec}[i+\text{lag}] \). When set to TRUE, calculate \(\text{vec}[i] - \text{vec}[i+\text{lag}] \).

Value

numeric.

Author(s)

Kaiyin Zhong, Fan Liu

lenCheck

Check each element of a list has expected length

Give a list \((a, b, \ldots)\) and vector \((l1, l2, \ldots)\), check that length of a is equal to \(l1\), length of b is equal to \(l2\), etc.

Description

Check each element of a list has expected length

Give a list \((a, b, \ldots)\) and vector \((l1, l2, \ldots)\), check that length of a is equal to \(l1\), length of b is equal to \(l2\), etc.

Usage

\[
\text{lenCheck(list, lengths)}
\]
Arguments

- ilist: list of items you want to check.
- ilengths: vector of lengths for these items.

Value

TRUE or a string

Author(s)

Kaiyin Zhong, Fan Liu

Examples

```r
## Not run:
lenCheck(list(1, 2, 3), c(1, 1, 0))
grep("\nGiven: \n.*", lenCheck(list(1, 2, 3), c(1, 1, 0)))
grep("\nGiven: \n.*", lenCheck(list(1, c(1, 2, 3), list(4, 5, 6)), c(1, 1, 0)))
lenCheck(list(1, c(1, 2, 3), list(4, 5, 6)), c(1, 3, 3))
## End(Not run)
```

listEqual: Check equality of two lists

Description

Check equality of two lists

Usage

`listEqual(list1, list2)`

Arguments

- list1: list
- list2: list

Author(s)

Kaiyin Zhong, Fan Liu
listGwasTags

List GWAS or GCDH tags

Description

List GWAS or GCDH tags

Usage

```r
listGwasTags(type = "gwas")

listTags(type = "gwas")
```

Arguments

- **type** character. Either "gwas" or "gcdh".

Author(s)

Kaiyin Zhong, Fan Liu

loadGwas

Load PlGwasC object by tag, from the RDS file

Description

Load PlGwasC object by tag, from the RDS file

Usage

```r
loadGwas(gwas_tag)
```

Arguments

- **gwas_tag** character. Tag of a GWAS run.

Value

PlGwasC object.

Author(s)

Kaiyin Zhong, Fan Liu
makePhe
Generate phenotype file from a fam file

Description
Generate phenotype file from a fam file

Usage
makePhe(famfile, n_components)

Arguments
- famfile: Character. Path of fam file.
- n_components: Integer. Number of principle components to generate.

Value
Phenotype data.frame. The data frame contains the FID, IID, SEX, AFFECTEDNESS columns of the fam file, plus principle components of genetic information.

Author(s)
kaiyin

manhattanData
Prepare data for Manhattan plot.

Description
Prepare data for Manhattan plot.

Usage
manhattanData(chr, bp, p, snp, color_vec = NULL, sort_chr_bp = TRUE)

Arguments
- p: numeric. P-value vector.
- snp: character. SNP name vector.
- color_vec: character/factor. Color vector. Doesn’t have to be color names, any categorical variable will be fine.
- sort_chr_bp: logical. Whether to sort the whole data frame by CHR and BP before return.
Value

A list with the following members (1) A data frame with columns including CHR, SNP, BP, P, etc. (2) Total number of SNPs. (3) A vector of unique chromosomes.

Author(s)

Kaiyin Zhong

Description

Produce Manhattan plot

Usage

```r
manhattanPlot(mh_dat_res, hlines = NULL)
```

Arguments

- `mh_dat_res`: list. Result from `manhattanData`
- `hlines`: numeric. Horizontal lines to draw.

Value

ggplot object.

Author(s)

Kaiyin Zhong

nIndivApprPl

Get apparent number of individuals

Description

Get apparent number of individuals

Usage

```r
nIndivApprPl(pl_info)
```

Arguments

- `pl_info`: PlInfoC object
nIndivPl \hspace{1cm} \textit{Get number of individuals}

\textbf{Description}
Get number of individuals

\textbf{Usage}
\begin{verbatim}
nIndivPl(pl_info)
\end{verbatim}

\textbf{Arguments}
\begin{itemize}
 \item \texttt{pl_info} \hspace{0.5cm} \texttt{PlInfoC} object
\end{itemize}

nonExistentFiles \hspace{1cm} \textit{Non-existent files from a vector of filenames}

\textbf{Description}
This function receives a vector of filenames as parameter, and returns a vector of non-existent files among them.

\textbf{Usage}
\begin{verbatim}
nonExistentFiles(filenames)
\end{verbatim}

\textbf{Arguments}
\begin{itemize}
 \item \texttt{filenames} \hspace{0.5cm} \texttt{character} A vector of filenames
\end{itemize}

\textbf{Value}
A character vector of file paths that do not exist.

\textbf{Author(s)}
Kaiyin Zhong, Fan Liu

\textbf{Examples}
\begin{verbatim}
Not run:
nonExistentFiles(R.home())
nonExistentFiles(sapply(1:5, function(i) tempfile()))
nonExistentFiles(sapply(1:5, function(i) tempdir()))
nonExistentFiles(c("/tmp/f34121ds43289ajkfdlsa", R.home())) == "/tmp/f34121ds43289ajkfdlsa"

End(Not run)
\end{verbatim}
nSnpPl

Get number of SNPs.

Usage

`nSnpPl(pl_info)`

Arguments

- `pl_info` : PlInfoC object

numVectorSQLRepr

String representation of a numeric vector for SQLite consumption

Description

Transform a numeric vector (e.g. `c(1, 2)`) into a string representation that can be used in a SQLite query (e.g. `"(1, 2)"`).

Usage

`numVectorSQLRepr(vec, print_out = FALSE)`

Arguments

- `vec` : numeric.
- `print_out` : logical. Whether to print out the string representation.

Author(s)

Kaiyin Zhong
permutePhe

Permute a phenotype file

Description

All columns except FID and IID are permuted.

Usage

```r
permutePhe(phe_file, out_file, force = FALSE, valid = TRUE, ...)
```

Arguments

- `out_file`: character. Path to permuted phenotype file.
- `force`: logical. When set to TRUE, existing file is overwritten.
- `valid`: logical. Whether to validate the phenotype file first.
- `...`: Passed to `read.table`.

Author(s)

Kaiyin Zhong, Fan Liu

plGwas

Constructor for PlGwasC class

Description

Constructor for PlGwasC class

Usage

```r
plGwas(pl_gwas, pheno, pheno_name, covar_name, gwas_tag, assoc, opts)
```

S4 method for signature

```r
# S4 method for signature
# 'PlGwasC,character,character,character,character,logical,list'
plGwas(pl_gwas,
    pheno, pheno_name, covar_name, gwas_tag, assoc, opts)
```

S4 method for signature

```r
# S4 method for signature
# 'RbedInfoC,character,character,character,character,logical,list'
plGwas(pl_gwas,
```
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pl_gwas</td>
<td>PlGwasC or PlInfoC object</td>
</tr>
<tr>
<td>pheno</td>
<td>character. Phenotype file</td>
</tr>
<tr>
<td>pheno_name</td>
<td>character. Phenotype names.</td>
</tr>
<tr>
<td>covar_name</td>
<td>character. Covariate names.</td>
</tr>
<tr>
<td>gwas_tag</td>
<td>character. Tag for this GWAS.</td>
</tr>
<tr>
<td>assoc</td>
<td>logical. Whether use the "--assoc" option for PLINK.</td>
</tr>
<tr>
<td>opts</td>
<td>list. Options to be passed to PLINK.</td>
</tr>
</tbody>
</table>

Value

PlGwasC object

Author(s)

Kaiyin Zhong, Fan Liu

Examples

```r
## Not run:
gwas_tag = "mmp13_page_sex_age"
```
An S4 class representing info about GWAS on plink files

Slots

gwas_tag character. Tag for this GWAS.

opts list. Plink options.

Constructor for PlInfoC class

Populates an PlInfoC object from a given plink bed filename stem (i.e. exclude extension name)

Usage

plInfo(pl_info, bedstem, db_setup)

S4 method for signature 'PlInfoC,character,logical'
plInfo(pl_info, bedstem, db_setup)

S4 method for signature 'PlInfoC,character,missing'
plInfo(pl_info, bedstem, db_setup)

S4 method for signature 'missing,character,logical'
PlInfoC-class

plInfo(pl_info, bedstem, db_setup)

S4 method for signature 'missing,character,missing'
plInfo(pl_info, bedstem, db_setup)

Arguments

- **pl_info**: a PlInfoC object, possibly empty.
- **bedstem**: path of bed file excluding extension name
- **db_setup**: logical. Whether to setup SQLite database for .bim, .fam and .frq files.

Value

- a PlInfoC object

Author(s)

Kaiyin Zhong, Fan Liu

Examples

```r
## Not run:
pl_info = plInfo(.PlInfoC(), "mmpl3", db_setup = TRUE)
isSetup(pl_info)
bim_ff = getQuery(sqliteFilePl(pl_info), "select * from bim")
fam_ff = getQuery(sqliteFilePl(pl_info), "select * from fam")
frq_ff = getQuery(sqliteFilePl(pl_info), "select * from frq")
## End(Not run)
```

PlInfoC-class

An S4 class representing info about plink files

Description

Info about plink files, including the root directory, paths of plink .bed, .bim, .fam and .frq files, ff backing directories for .bim, .fam and .frq files, etc.

Slots

- **main_dir**: Root directory where .bed, .bim and .fam files sit.
- **plink_stem**: character. Path to the .bed file sans the extension name
- **plink_trio**: character of length 3. Paths to .bed, .bim and .fam files (in that order).
- **plink_trio_base**: character. Basenames of plink_trio.
- **plink_frq**: character. Path to .frq file.
plinkr

A wrapper for plink

Description

A wrapper for plink

Usage

plinkr(D = NULL, K = NULL, a1_allele = NULL, a2_allele = NULL,
adjust = NULL, all = NULL, all_pheno = NULL, allele1234 = NULL,
alleleACGT = NULL, allele_count = NULL, allow_extra_chr = NULL,
allow_no_sex = NULL, alt_group = NULL, alt_snp = NULL,
annotate = NULL, annotate_snp_field = NULL, aperm = NULL,
assoc = NULL, attrib = NULL, attrib_indiv = NULL, autosome = NULL,
autosome_num = NULL, autosome_xy = NULL, bcf = NULL, bd = NULL,
bed = NULL, beta = NULL, bfile = NULL, bgen = NULL,
biallelic_only = NULL, bim = NULL, blocks = NULL,
bio_blocks = NULL, blocks_inform_frac = NULL, blocks_max_kb = NULL, blocks_min_maf = NULL,
blocks_recomb_highci = NULL, blocks_strong_highci = NULL,
blocks_strong_lowci = NULL, bmerge = NULL, border = NULL,
bp_space = NULL, case_only = NULL, cc = NULL, cell = NULL,
cfile = NULL, chap = NULL, check_sex = NULL, chr = NULL,
chr_set = NULL, ci = NULL, clump = NULL, clump_allow_overlap = NULL,
clump_annotate = NULL, clump_best = NULL, clump_field = NULL,
clump_index_first = NULL, clump_kb = NULL, clump_p1 = NULL,
clump_p2 = NULL, clump_r2 = NULL, clump_range = NULL,
clump_range_border = NULL, clump_replicate = NULL,
clump_snp_field = NULL, clumpVerbose = NULL, cluster = NULL,
cluster_missing = NULL, cm_map = NULL, cnv_blue = NULL,
cnv_border = NULL, cnv_brown = NULL, cnv_check_no_overlap = NULL,
cnv_count = NULL, cnv_del = NULL, cnv_disrupt = NULL,
cnv_drop_no_segment = NULL, cnv_dup = NULL, cnv_enrichment_test = NULL,
cnv_exclude = NULL, cnv_exclude_off_by_1 = NULL,
cnv_freq_excldev_over_exact = NULL, cnv_freq_excldev_over_exact = NULL,
cnv_freq_excldev_over_exact = NULL, cnv_freq_excldev_over_exact = NULL,
cnv_freq_method2 = NULL, cnv_freq_overlap = NULL, cnv_green = NULL,
cnv_indiv_perm = NULL, cnv_intersect = NULL, cnv_kb = NULL,
cnv_list = NULL, cnv_make_map = NULL, cnv_max_kb = NULL,
cnv_max_score = NULL, cnv_max_sites = NULL, cnv_overlap = NULL,
cnv_red = NULL, cnv_region_overlap = NULL, cnv_report_regions = NULL,
cnv_score = NULL, cnv_seglist = NULL, cnv_sites = NULL,
cnv_subset = NULL, cnv_test = NULL, cnv_test_1sided = NULL,
cnv_test_2sided = NULL, cnv_test_region = NULL, cnv_test_window = NULL,
cnv_track = NULL, cnv_union_overlap = NULL, cnv_unique = NULL,
cvn_verbose_report_regions = NULL, cvn_write = NULL, complement_sets = NULL, compound_genotypes = NULL, compress = NULL, condition = NULL, condition_list = NULL, consensus_match = NULL, const_fid = NULL, control = NULL, counts = NULL, covar = NULL, covar_name = NULL, covar_number = NULL, cow = NULL, d = NULL, data = NULL, debug = NULL, decompress = NULL, dfam = NULL, distance = NULL, distance_exp = NULL, distance_matrix = NULL, dog = NULL, dominant = NULL, dosage = NULL, double_id = NULL, dprime = NULL, dummy = NULL, dummy_coding = NULL, each_vs_others = NULL, epistasis = NULL, epistasis_summary_merge = NULL, exclude = NULL, exclude_before_extract = NULL, exclude_snps = NULL, exclude_snp = NULL, extract = NULL, fam = NULL, family = NULL, fast_epistasis = NULL, fid = NULL, file = NULL, fill_missing_a2 = NULL, filter = NULL, filter_cases = NULL, filter_contROLS = NULL, filter_females = NULL, filter_founders = NULL, filter_males = NULL, filter_nonfounders = NULL, fisher = NULL, flip = NULL, flip_scan = NULL, flip_scan_threshold = NULL, flip_scan_verbose = NULL, flip_scan_window = NULL, flip_scan_window_kb = NULL, flip_subset = NULL, freq = NULL, freqx = NULL, from = NULL, from_bp = NULL, from_kb = NULL, from_mb = NULL, frqx = NULL, fst = NULL, gap = NULL, gates = NULL, gc = NULL, gen = NULL, gene = NULL, gene_all = NULL, gene_list = NULL, gene_list_border = NULL, gene_report = NULL, gene_report_empty = NULL, gene_report_snp_field = NULL, gene_subset = NULL, genedrop = NULL, geneip = NULL, geno = NULL, genome = NULL, genome_full = NULL, genome_lists = NULL, genome_minimal = NULL, genotypic = NULL, gfile = NULL, gplink = NULL, grm = NULL, grm_bin = NULL, grm_gz = NULL, group_avg = NULL, groupdist = NULL, gxe = NULL, hap... = NULL, hap = NULL, hap_assoc = NULL, hap_freq = NULL, hap_impute = NULL, hap_max_phase = NULL, hap_min_phase_prob = NULL, hap_miss = NULL, hap_phase = NULL, hap_phase_wide = NULL, hap_pp = NULL, hap_snps = NULL, hap_tdt = NULL, hap_window = NULL, hard_call_threshold = NULL, hardy2 = NULL, hardy = NULL, help = NULL, het = NULL, hethom = NULL, hide_covar = NULL, homog = NULL, homozyg = NULL, homozyg_density = NULL, homozyg_gap = NULL, homozyg_group = NULL, homozyg_het = NULL, homozyg_include_missing = NULL, homozyg_kb = NULL, homozyg_match = NULL, homozyg_snp = NULL, homozyg_verbose = NULL, homozyg_window_het = NULL, homozyg_window_kb = NULL, homozyg_window_missing = NULL, homozyg_window.snp = NULL, homozyg_window_threshold = NULL, horse = NULL, hwe = NULL, hwe.all = NULL, ibc = NULL, ibm = NULL, ibs_matrix = NULL, ibs_test = NULL, id_delim = NULL, id_dict = NULL, id_match = NULL, iid = NULL, impossible = NULL, impute_sex = NULL, ind_major = NULL, indep = NULL, indep_pairphase = NULL, indep_pairwise = NULL, independent_effect = NULL, indiv_sort = NULL, inter_chr = NULL, interaction = NULL, je_cellmin = NULL, keep = NULL,
keep_allele_order = NULL, keep_autoconv = NULL, keep_cluster_names = NULL, keep_clusters = NULL, keep_fam = NULL, lambda = NULL, lasso = NULL, lasso_select_covars = NULL, ld = NULL, ld_snps = NULL, ld_snp_list = NULL, ld_snp = NULL, ld_window = NULL, ld_window_kb = NULL, ld_window_r2 = NULL, ld_xchr = NULL, lfile = NULL, liability = NULL, linear = NULL, list = NULL, list_23_indels = NULL, list_all = NULL, logistic = NULL, lookup... = NULL, lookup = NULL, lookup_gene = NULL, lookup_list = NULL, loop_assoc = NULL, maf = NULL, maf_succ = NULL, make_bed = NULL, make_founders = NULL, make_grm = NULL, make_grm_bin = NULL, make_grm_gz = NULL, make_just_bim = NULL, make_just_fam = NULL, make_perm_pheno = NULL, make_pheno = NULL, make_rel = NULL, make_set = NULL, make_set_border = NULL, make_setCollapse_group = NULL, make_set_complement_all = NULL, model = NULL, max = NULL, max_maf = NULL, mc = NULL, mcc = NULL, mcover = NULL, mds_cluster = NULL, mds_plot = NULL, me = NULL, me_exclude_one = NULL, mendel = NULL, mendel_duos = NULL, mendel_multigen = NULL, merge = NULL, merge_equal_pos = NULL, merge_list = NULL, merge_mode = NULL, merge_x = NULL, meta_analysis = NULL, meta_analysis_field = NULL, mfilter = NULL, mh = NULL, mhf = NULL, min = NULL, max = NULL, mismatch_window = NULL, missing = NULL, missing_code = NULL, missing_genotype = NULL, mismatch = NULL, mismatch_phenotype = NULL, mismatch_var_code = NULL, mlma = NULL, mlma_loco = NULL, mlma_no_adj_covar = NULL, model = NULL, model_dom = NULL, model_gen = NULL, model_rec = NULL, model_trend = NULL, mouse = NULL, mperm = NULL, mperm_save = NULL, mperm_save_all = NULL, mphenon et = NULL, mwithin = NULL, neighbour = NULL, no_fid = NULL, no_genes = NULL, no_pheno = NULL, no_sex = NULL, no_snp = NULL, no_x_sex = NULL, nonfounders = NULL, nop = NULL, not_chr = NULL, nudge = NULL, null_group = NULL, null_snp = NULL, oblig_cluster = NULL, oblig_clusters = NULL, oblig_missing = NULL, out = NULL, output_chr = NULL, output_missing_genotype = NULL, output_missing_phenotype = NULL, oxford_pheno_name = NULL, parallel = NULL, parameters = NULL, parentdt1 = NULL, parentdt2 = NULL, pat = NULL, pca = NULL, pca_cluster_names = NULL, pca_clusters = NULL, ped = NULL, pedigree = NULL, perm = NULL, perm_batch_size = NULL, perm_count = NULL, pfILTER = NULL, pheno = NULL, pheno_merge = NULL, pheno_name = NULL, pick1 = NULL, plist = NULL, poo = NULL, pool_size = NULL, ppc = NULL, ppc_gap = NULL, proxy... = NULL, proxy_assoc = NULL, proxy_b_kb = NULL, proxy_b_maxsn = NULL, proxy_b_r2 = NULL, proxy_b_threshold = NULL, proxy_b_window = NULL, proxy_dosage = NULL, proxy_drop = NULL, proxy_flanking = NULL, proxy_gen = NULL, proxy_genotypic_concordance = NULL, proxy_glm = NULL,
proxy_impute = NULL, proxy_impute_threshold = NULL, proxy_kb = NULL, proxy_list = NULL, proxy_maf = NULL, proxy_maxsnp = NULL, proxy_mhf = NULL, proxy_r2 = NULL, proxy_r2_no_filter = NULL, proxy_replace = NULL, proxy_show_proxies = NULL, proxy_sub_maxsnp = NULL, proxy_sub_r2 = NULL, proxy_tdt = NULL, proxy_verbose = NULL, proxy_window = NULL, prune = NULL, q_score_file = NULL, q_score_range = NULL, qfam... = NULL, qmatch = NULL, qq_plot = NULL, qt = NULL, qt_means = NULL, qual_gen... = NULL, qual_gen...max_threshold = NULL, qual_gen...scores = NULL, qual_gen...threshold = NULL, qual_max... = NULL, qual_scores = NULL, qual_threshold = NULL, r2 = NULL, r = NULL, range = NULL, rank = NULL, read_dist... = NULL, read_freq = NULL, read_gen... = NULL, read_gen...list = NULL, read_gen...minimal = NULL, recessive = NULL, recode12 = NULL, recode = NULL, recodeA = NULL, recodeAD = NULL, recodeHV = NULL, recode_allele = NULL, recode_beagle = NULL, recode_bimbam = NULL, recode_fast... = NULL, recode_lgen = NULL, recode_rlist = NULL, recode...structure = NULL, recode_vcf = NULL, recode_whap = NULL, reference = NULL, reference_allele = NULL, regress_distance = NULL, regress_pcs = NULL, regress_rel = NULL, rel_check = NULL, rel_cutoff = NULL, remove = NULL, remove_cluster_names = NULL, remove_clusters = NULL, remove_fam = NULL, rerun = NULL, rice = NULL, sample = NULL, score = NULL, score_no_mean_imputation = NULL, script = NULL, seed = NULL, set = NULL, set_by_all = NULL, set_collapse_all = NULL, set... = NULL, set_missing...ids = NULL, set_missing_snp... = NULL, set_missing_var... = NULL, set_names = NULL, set_p = NULL, set_r2 = NULL, set_r2_phase = NULL, set_table = NULL, set_test = NULL, sex = NULL, sheep = NULL, show_tags = NULL, silent = NULL, simulate = NULL, simulate_haps = NULL, simulate_label = NULL, simulate_missing = NULL, simulate_n = NULL, simulate_ncases = NULL, simulate_ncontrols = NULL, simulate_prevalence = NULL, simulate_qt = NULL, simulate_tags = NULL, snp = NULL, snps = NULL, snps_only = NULL, specific_haplotype = NULL, split_x = NULL, standard_beta = NULL, subset = NULL, swap_parents = NULL, swap_sibs = NULL, swap_unrel = NULL, tab = NULL, tag_kb = NULL, tag_mode2 = NULL, tag_r2 = NULL, tail_pheno = NULL, tdt = NULL, test_all = NULL, test_mishap = NULL, test_missing = NULL, test_sn... = NULL, tests = NULL, tfam = NULL, tfile = NULL, thin = NULL, thin_count = NULL, threads = NULL, to = NULL, to_bp = NULL, to_kb = NULL, to_mb = NULL, tped = NULL, transpose = NULL, trend = NULL, tucc = NULL, twolocus = NULL, unbounded = NULL, unrelated_heritability = NULL, update_alleles = NULL, update_chr = NULL, update_cm = NULL, update_ids = NULL, update_map = NULL, update_name = NULL, update_parents = NULL, update_sex = NULL, vcf = NULL, vcf_filter = NULL, vcf_half_call = NULL, vcf_idspace_to = NULL, vcf_min_qual = NULL, vegas = NULL, version = NULL, vif = NULL, whap = NULL,
window = NULL, with_freqs = NULL, with_phenotype = NULL, with_reference = NULL, within = NULL, write_cluster = NULL, write_c covar = NULL, write_dosage = NULL, write_set = NULL, write_set_r2 = NULL, write_snplist = NULL, xchr_model = NULL, zero_cluster = NULL, zero_cms = NULL, one = NULL, twothreefile = NULL, stdout = collenv$.plink_stdout, stderr = collenv$.plink_stderr, wait = TRUE)

Arguments

D Same as plink –D
K Same as plink –K
a1_allele Same as plink –a1-allele
a2_allele Same as plink –a2-allele
adjust Same as plink –adjust
all Same as plink –all
all_pheno Same as plink –all-pheno
allele1234 Same as plink –allele1234
alleleACGT Same as plink –alleleACGT
allele_count Same as plink –allele-count
allow_extra_chr Same as plink –allow-extra-chr
allow_no_sex Same as plink –allow-no-sex
alt_group Same as plink –alt-group
alt_snp Same as plink –alt-snp
annotate Same as plink –annotate
annotate_snp_field Same as plink –annotate-snp-field
aperm Same as plink –aperm
assoc Same as plink –assoc
attrib Same as plink –attrib
attrib_indiv Same as plink –attrib-indiv
autosome Same as plink –autosome
autosome_num Same as plink –autosome-num
autosome_xy Same as plink –autosome-xy
bcf Same as plink –bcf
bd Same as plink –bd
bed Same as plink –bed
beta Same as plink –beta
bfile Same as plink –bfile
bgen Same as plink –bgen
biallelic_only Same as plink –biallelic-only
bim Same as plink –bim
blocks Same as plink –blocks
blocks_inform_frac
 Same as plink –blocks-inform-frac
blocks_max_kb Same as plink –blocks-max-kb
blocks_min_maf Same as plink –blocks-min-maf
blocks_recomb_highci
 Same as plink –blocks-recomb-highci
blocks_strong_highci
 Same as plink –blocks-strong-highci
blocks_strong_lowci
 Same as plink –blocks-strong-lowci
bmerge Same as plink –bmerge
border Same as plink –border
bp_space Same as plink –bp-space
case_only Same as plink –case-only
cc Same as plink –cc
cell Same as plink –cell
cfile Same as plink –cfile
chap Same as plink –chap
check_sex Same as plink –check-sex
chr Same as plink –chr
chr_set Same as plink –chr-set
ci Same as plink –ci
clump Same as plink –clump
clump_allow_overlap
 Same as plink –clump-allow-overlap
clump_annotate Same as plink –clump-annotate
clump_best Same as plink –clump-best
clump_field Same as plink –clump-field
clump_index_first
 Same as plink –clump-index-first
clump_kb Same as plink –clump-kb
clump_p1 Same as plink –clump-p1
clump_p2 Same as plink –clump-p2
clump_r2 Same as plink –clump-r2
clump_range Same as plink –clump-range
plinkr

- **clump_range_border**
 Same as plink --clump-range-border

- **clump_replicate**
 Same as plink --clump-replicate

- **clump.snp_field**
 Same as plink --clump-snp-field

- **clump.verbose**
 Same as plink --clump-verbose

- **cluster**
 Same as plink --cluster

- **cluster_missing**
 Same as plink --cluster-missing

- **cm_map**
 Same as plink --cm-map

- **cnv.blue**
 Same as plink --cnv-blue

- **cnv.border**
 Same as plink --cnv-border

- **cnv.brown**
 Same as plink --cnv-brown

- **cnv.check_no_overlap**
 Same as plink --cnv-check-no-overlap

- **cnv.count**
 Same as plink --cnv-count

- **cnv.del**
 Same as plink --cnv-del

- **cnv.disrupt**
 Same as plink --cnv-disrupt

- **cnv.drop_no_segment**
 Same as plink --cnv-drop-no-segment

- **cnv.dup**
 Same as plink --cnv-dup

- **cnv.enrichment_test**
 Same as plink --cnv-enrichment-test

- **cnv.exclude**
 Same as plink --cnv-exclude

- **cnv.exclude_off_by_1**
 Same as plink --cnv-exclude-off-by-1

- **cnv.freq_excldue_above**
 Same as plink --cnv-freq-exclude-above

- **cnv.freq_excldue_below**
 Same as plink --cnv-freq-exclude-below

- **cnv.freq_excldue_exact**
 Same as plink --cnv-freq-exclude-exact

- **cnv.freq_exclude_above**
 Same as plink --cnv-freq-exclude-exact

- **cnv.freq_exclude_above**
 Same as plink --cnv-freq-exclude-above

- **cnv.freq_exclude_below**
 Same as plink --cnv-freq-exclude-below

- **cnv.freq_exclude_exact**
 Same as plink --cnv-freq-exclude-exact

- **cnv.freq_incldue_exact**
 Same as plink --cnv-freq-incldue-exact
cnv_freq_include_exact
 Same as plink –cnv-freq-include-exact

cnv_freq_method2
 Same as plink –cnv-freq-method2

cnv_freq_overlap
 Same as plink –cnv-freq-overlap

cnv_green
 Same as plink –cnv-green

cnv_indiv_perm
 Same as plink –cnv-indiv-perm

cnv_intersect
 Same as plink –cnv-intersect

cnv_kb
 Same as plink –cnv-kb

cnv_list
 Same as plink –cnv-list

cnv_make_map
 Same as plink –cnv-make-map

cnv_max_kb
 Same as plink –cnv-max-kb

cnv_max_score
 Same as plink –cnv-max-score

cnv_max_sites
 Same as plink –cnv-max-sites

cnv_overlap
 Same as plink –cnv-overlap

cnv_red
 Same as plink –cnv-red

cnv_region_overlap
 Same as plink –cnv-region-overlap

cnv_report_regions
 Same as plink –cnv-report-regions

cnv_score
 Same as plink –cnv-score

cnv_seglist
 Same as plink –cnv-seglist

cnv_sites
 Same as plink –cnv-sites

cnv_subset
 Same as plink –cnv-subset

cnv_test
 Same as plink –cnv-test

cnv_test_1sided
 Same as plink –cnv-test-1sided

cnv_test_2sided
 Same as plink –cnv-test-2sided

cnv_test_region
 Same as plink –cnv-test-region

cnv_test_window
 Same as plink –cnv-test-window

cnv_track
 Same as plink –cnv-track

cnv_union_overlap
 Same as plink –cnv-union-overlap

cnv_unique
 Same as plink –cnv-unique

cnvVerbose_report_regions
 Same as plink –cnv-verbose-report-regions

cnv_write
 Same as plink –cnv-write
<table>
<thead>
<tr>
<th>plinkr Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cvn_write_freq</td>
<td>Same as plink –cvn-write-freq</td>
</tr>
<tr>
<td>complement_sets</td>
<td>Same as plink –complement-sets</td>
</tr>
<tr>
<td>compound_genotypes</td>
<td>Same as plink –compound-genotypes</td>
</tr>
<tr>
<td>compress</td>
<td>Same as plink –compress</td>
</tr>
<tr>
<td>condition</td>
<td>Same as plink –condition</td>
</tr>
<tr>
<td>condition_list</td>
<td>Same as plink –condition-list</td>
</tr>
<tr>
<td>consensus_match</td>
<td>Same as plink –consensus-match</td>
</tr>
<tr>
<td>const_fid</td>
<td>Same as plink –const-fid</td>
</tr>
<tr>
<td>control</td>
<td>Same as plink –control</td>
</tr>
<tr>
<td>counts</td>
<td>Same as plink –counts</td>
</tr>
<tr>
<td>covar</td>
<td>Same as plink –covar</td>
</tr>
<tr>
<td>covar_name</td>
<td>Same as plink –covar-name</td>
</tr>
<tr>
<td>covar_number</td>
<td>Same as plink –covar-number</td>
</tr>
<tr>
<td>cow</td>
<td>Same as plink –cow</td>
</tr>
<tr>
<td>d</td>
<td>Same as plink –d</td>
</tr>
<tr>
<td>data</td>
<td>Same as plink –data</td>
</tr>
<tr>
<td>debug</td>
<td>Same as plink –debug</td>
</tr>
<tr>
<td>decompress</td>
<td>Same as plink –decompress</td>
</tr>
<tr>
<td>dfam</td>
<td>Same as plink –dfam</td>
</tr>
<tr>
<td>distance</td>
<td>Same as plink –distance</td>
</tr>
<tr>
<td>distance_exp</td>
<td>Same as plink –distance-exp</td>
</tr>
<tr>
<td>distance_matrix</td>
<td>Same as plink –distance-matrix</td>
</tr>
<tr>
<td>dog</td>
<td>Same as plink –dog</td>
</tr>
<tr>
<td>dominant</td>
<td>Same as plink –dominant</td>
</tr>
<tr>
<td>dosage</td>
<td>Same as plink –dosage</td>
</tr>
<tr>
<td>double_id</td>
<td>Same as plink –double-id</td>
</tr>
<tr>
<td>dprime</td>
<td>Same as plink –dprime</td>
</tr>
<tr>
<td>dummy</td>
<td>Same as plink –dummy</td>
</tr>
<tr>
<td>dummy_coding</td>
<td>Same as plink –dummy-coding</td>
</tr>
<tr>
<td>each_versus_others</td>
<td>Same as plink –each-versus-others</td>
</tr>
<tr>
<td>each_vs_others</td>
<td>Same as plink –each-vs-others</td>
</tr>
<tr>
<td>epistasis</td>
<td>Same as plink –epistasis</td>
</tr>
<tr>
<td>epistasis_summary_merge</td>
<td>Same as plink –epistasis-summary-merge</td>
</tr>
</tbody>
</table>
plinkr

exclude Same as plink –exclude
exclude_before_extract Same as plink –exclude-before-extract
exclude_snp Same as plink –exclude-snp
exclude_snps Same as plink –exclude-snps
extract Same as plink –extract
fam Same as plink –fam
family Same as plink –family
fast_epistasis Same as plink –fast-epistasis
fid Same as plink –fid
file Same as plink –file
fill_missing_a2 Same as plink –fill-missing-a2
filter Same as plink –filter
filter_cases Same as plink –filter-cases
filter_controls Same as plink –filter-controls
filter_females Same as plink –filter-females
filter_founders Same as plink –filter-founders
filter_males Same as plink –filter-males
filter_nonfounders Same as plink –filter-nonfounders
fisher Same as plink –fisher
flip Same as plink –flip
flip_scan Same as plink –flip-scan
flip_scan_threshold Same as plink –flip-scan-threshold
flip_scan_verbose Same as plink –flip-scan-verbose
flip_scan_window Same as plink –flip-scan-window
flip_scan_window_kb Same as plink –flip-scan-window-kb
flip_subset Same as plink –flip-subset
freq Same as plink –freq
freqx Same as plink –freqx
from Same as plink –from
from_bp Same as plink –from-bp
from_kb Same as plink –from-kb
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>from_mb</td>
<td>Same as plink –from-mb</td>
</tr>
<tr>
<td>frqx</td>
<td>Same as plink –frqx</td>
</tr>
<tr>
<td>fst</td>
<td>Same as plink –fst</td>
</tr>
<tr>
<td>gap</td>
<td>Same as plink –gap</td>
</tr>
<tr>
<td>gates</td>
<td>Same as plink –gates</td>
</tr>
<tr>
<td>gc</td>
<td>Same as plink –gc</td>
</tr>
<tr>
<td>gen</td>
<td>Same as plink –gen</td>
</tr>
<tr>
<td>gene</td>
<td>Same as plink –gene</td>
</tr>
<tr>
<td>gene_all</td>
<td>Same as plink –gene-all</td>
</tr>
<tr>
<td>gene_list</td>
<td>Same as plink –gene-list</td>
</tr>
<tr>
<td>gene_list_border</td>
<td>Same as plink –gene-list-border</td>
</tr>
<tr>
<td>gene_report</td>
<td>Same as plink –gene-report</td>
</tr>
<tr>
<td>gene_report_empty</td>
<td>Same as plink –gene-report-empty</td>
</tr>
<tr>
<td>gene_report_snp_field</td>
<td>Same as plink –gene-report-snp-field</td>
</tr>
<tr>
<td>gene_subset</td>
<td>Same as plink –gene-subset</td>
</tr>
<tr>
<td>genedrop</td>
<td>Same as plink –genedrop</td>
</tr>
<tr>
<td>genepi</td>
<td>Same as plink –genepi</td>
</tr>
<tr>
<td>geno</td>
<td>Same as plink –geno</td>
</tr>
<tr>
<td>genome</td>
<td>Same as plink –genome</td>
</tr>
<tr>
<td>genome_full</td>
<td>Same as plink –genome-full</td>
</tr>
<tr>
<td>genome_lists</td>
<td>Same as plink –genome-lists</td>
</tr>
<tr>
<td>genome_minimal</td>
<td>Same as plink –genome-minimal</td>
</tr>
<tr>
<td>genotypic</td>
<td>Same as plink –genotypic</td>
</tr>
<tr>
<td>gfile</td>
<td>Same as plink –gfile</td>
</tr>
<tr>
<td>gplink</td>
<td>Same as plink –gplink</td>
</tr>
<tr>
<td>grm</td>
<td>Same as plink –grm</td>
</tr>
<tr>
<td>grm_bin</td>
<td>Same as plink –grm-bin</td>
</tr>
<tr>
<td>grm_gz</td>
<td>Same as plink –grm-gz</td>
</tr>
<tr>
<td>group_avg</td>
<td>Same as plink –group-avg</td>
</tr>
<tr>
<td>groupdist</td>
<td>Same as plink –groupdist</td>
</tr>
<tr>
<td>gxe</td>
<td>Same as plink –gxe</td>
</tr>
<tr>
<td>hap...</td>
<td>Same as plink –hap...</td>
</tr>
<tr>
<td>hap</td>
<td>Same as plink –hap</td>
</tr>
<tr>
<td>hap_assoc</td>
<td>Same as plink –hap-assoc</td>
</tr>
<tr>
<td>hap_freq</td>
<td>Same as plink –hap-freq</td>
</tr>
</tbody>
</table>
hap_impute	Same as plink –hap-impute
hap_max_phase	Same as plink –hap-max-phase
hap_min_phase_prob	Same as plink –hap-min-phase-prob
hap_miss	Same as plink –hap-miss
hap_phase	Same as plink –hap-phase
hap_phase_wide	Same as plink –hap-phase-wide
hap_pp	Same as plink –hap-pp
hap_snps	Same as plink –hap-snps
hap_tdt	Same as plink –hap-tdt
hap_window	Same as plink –hap-window
hard_call_threshold	Same as plink –hard-call-threshold
hardy2	Same as plink –hardy2
hardy	Same as plink –hardy
help	Same as plink –help
het	Same as plink –het
hethom	Same as plink –hethom
hide_covar	Same as plink –hide-covar
homog	Same as plink –homog
homozyg	Same as plink –homozyg
homozyg_density	Same as plink –homozyg-density
homozyg_gap	Same as plink –homozyg-gap
homozyg_group	Same as plink –homozyg-group
homozyg_het	Same as plink –homozyg-het
homozyg_include_missing	Same as plink –homozyg-include-missing
homozyg_kb	Same as plink –homozyg-kb
homozyg_match	Same as plink –homozyg-match
homozyg_snp	Same as plink –homozyg-snp
homozyg_verbose	Same as plink –homozyg-verbose
homozyg_window_het	Same as plink –homozyg-window-het
homozyg_window_kb	Same as plink –homozyg-window-kb
homozyg_window_missing	Same as plink –homozyg-window-missing
<table>
<thead>
<tr>
<th>Command</th>
<th>Same as plink argument</th>
</tr>
</thead>
<tbody>
<tr>
<td>homozyg_window_snp</td>
<td>\text{--homozyg-window-snp}</td>
</tr>
<tr>
<td>homozyg_window_threshold</td>
<td>\text{--homozyg-window-threshold}</td>
</tr>
<tr>
<td>horse</td>
<td>\text{--horse}</td>
</tr>
<tr>
<td>hwe</td>
<td>\text{--hwe}</td>
</tr>
<tr>
<td>hwe_all</td>
<td>\text{--hwe-all}</td>
</tr>
<tr>
<td>ibc</td>
<td>\text{--ibc}</td>
</tr>
<tr>
<td>ibm</td>
<td>\text{--ibm}</td>
</tr>
<tr>
<td>ibs_matrix</td>
<td>\text{--ibs-matrix}</td>
</tr>
<tr>
<td>ibs_test</td>
<td>\text{--ibs-test}</td>
</tr>
<tr>
<td>id_delim</td>
<td>\text{--id-delim}</td>
</tr>
<tr>
<td>id_dict</td>
<td>\text{--id-dict}</td>
</tr>
<tr>
<td>id_match</td>
<td>\text{--id-match}</td>
</tr>
<tr>
<td>iid</td>
<td>\text{--iid}</td>
</tr>
<tr>
<td>impossible</td>
<td>\text{--impossible}</td>
</tr>
<tr>
<td>impute_sex</td>
<td>\text{--impute-sex}</td>
</tr>
<tr>
<td>ind_major</td>
<td>\text{--ind-major}</td>
</tr>
<tr>
<td>indep</td>
<td>\text{--indep}</td>
</tr>
<tr>
<td>indep_pairphase</td>
<td>\text{--indep-pairphase}</td>
</tr>
<tr>
<td>indep_pairwise</td>
<td>\text{--indep-pairwise}</td>
</tr>
<tr>
<td>independent_effect</td>
<td>\text{--independent-effect}</td>
</tr>
<tr>
<td>indiv_sort</td>
<td>\text{--indiv-sort}</td>
</tr>
<tr>
<td>inter_chr</td>
<td>\text{--inter-chr}</td>
</tr>
<tr>
<td>interaction</td>
<td>\text{--interaction}</td>
</tr>
<tr>
<td>je_cellmin</td>
<td>\text{--je-cellmin}</td>
</tr>
<tr>
<td>keep</td>
<td>\text{--keep}</td>
</tr>
<tr>
<td>keep_allele_order</td>
<td>\text{--keep-allele-order}</td>
</tr>
<tr>
<td>keep_autoconv</td>
<td>\text{--keep-autoconv}</td>
</tr>
<tr>
<td>keep_before_remove</td>
<td>\text{--keep-before-remove}</td>
</tr>
<tr>
<td>keep_cluster_names</td>
<td>\text{--keep-cluster-names}</td>
</tr>
<tr>
<td>keep_clusters</td>
<td>\text{--keep-clusters}</td>
</tr>
<tr>
<td>keep_fam</td>
<td>\text{--keep-fam}</td>
</tr>
<tr>
<td>lambda</td>
<td>\text{--lambda}</td>
</tr>
</tbody>
</table>
lasso
 Same as plink –lasso
lasso_select_covars
 Same as plink –lasso-select-covars
ld
 Same as plink –ld
ld_snp
 Same as plink –ld-snp
ld_snp_list
 Same as plink –ld-snp-list
ld_snps
 Same as plink –ld-snps
ld_window
 Same as plink –ld-window
ld_window_kb
 Same as plink –ld-window-kb
ld_window_r2
 Same as plink –ld-window-r2
ld_xchr
 Same as plink –ld-xchr
lfile
 Same as plink –lfile
liability
 Same as plink –liability
linear
 Same as plink –linear
list
 Same as plink –list
list_23_indels
 Same as plink –list-23-indels
list_all
 Same as plink –list-all
logistic
 Same as plink –logistic
lookup...
 Same as plink –lookup...
lookup
 Same as plink –lookup
lookup_gene
 Same as plink –lookup-gene
lookup_list
 Same as plink –lookup-list
loop_assoc
 Same as plink –loop-assoc
maf
 Same as plink –maf
maf_succ
 Same as plink –maf-succ
make_bed
 Same as plink –make-bed
make_founders
 Same as plink –make-founders
make_grm
 Same as plink –make-grm
make_grm_bin
 Same as plink –make-grm-bin
make_grm_gz
 Same as plink –make-grm-gz
make_just_bim
 Same as plink –make-just-bim
make_just_fam
 Same as plink –make-just-fam
make_perm_pheno
 Same as plink –make-perm-pheno
make_pheno
 Same as plink –make-pheno
make_rel
 Same as plink –make-rel
make_set
 Same as plink –make-set
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>make_set_border</td>
<td>Same as plink --make-set-border</td>
</tr>
<tr>
<td>make_setCollapse_group</td>
<td>Same as plink --make-set-collapse-group</td>
</tr>
<tr>
<td>make_set_complement_all</td>
<td>Same as plink --make-set-complement-all</td>
</tr>
<tr>
<td>make_set_complement_group</td>
<td>Same as plink --make-set-complement-group</td>
</tr>
<tr>
<td>map</td>
<td>Same as plink --map</td>
</tr>
<tr>
<td>mat</td>
<td>Same as plink --mat</td>
</tr>
<tr>
<td>match</td>
<td>Same as plink --match</td>
</tr>
<tr>
<td>match_type</td>
<td>Same as plink --match-type</td>
</tr>
<tr>
<td>matrix</td>
<td>Same as plink --matrix</td>
</tr>
<tr>
<td>max</td>
<td>Same as plink --max</td>
</tr>
<tr>
<td>max_maf</td>
<td>Same as plink --max-maf</td>
</tr>
<tr>
<td>mc</td>
<td>Same as plink --mc</td>
</tr>
<tr>
<td>mcc</td>
<td>Same as plink --mcc</td>
</tr>
<tr>
<td>mcovar</td>
<td>Same as plink --mcovar</td>
</tr>
<tr>
<td>mds_cluster</td>
<td>Same as plink --mds-cluster</td>
</tr>
<tr>
<td>mds_plot</td>
<td>Same as plink --mds-plot</td>
</tr>
<tr>
<td>me</td>
<td>Same as plink --me</td>
</tr>
<tr>
<td>me_exclude_one</td>
<td>Same as plink --me-exclude-one</td>
</tr>
<tr>
<td>memory</td>
<td>Same as plink --memory</td>
</tr>
<tr>
<td>mendel</td>
<td>Same as plink --mendel</td>
</tr>
<tr>
<td>mendel_duos</td>
<td>Same as plink --mendel-duos</td>
</tr>
<tr>
<td>mendel_multigen</td>
<td>Same as plink --mendel-multigen</td>
</tr>
<tr>
<td>merge</td>
<td>Same as plink --merge</td>
</tr>
<tr>
<td>merge_equal_pos</td>
<td>Same as plink --merge-equal-pos</td>
</tr>
<tr>
<td>merge_list</td>
<td>Same as plink --merge-list</td>
</tr>
<tr>
<td>merge_mode</td>
<td>Same as plink --merge-mode</td>
</tr>
<tr>
<td>merge_x</td>
<td>Same as plink --merge-x</td>
</tr>
<tr>
<td>meta_analysis</td>
<td>Same as plink --meta-analysis</td>
</tr>
<tr>
<td>meta_analysis_NNN_field</td>
<td>Same as plink --meta-analysis-NNN-field</td>
</tr>
<tr>
<td>mfilter</td>
<td>Same as plink --mfilter</td>
</tr>
<tr>
<td>mh</td>
<td>Same as plink --mh</td>
</tr>
<tr>
<td>mhf</td>
<td>Same as plink --mhf</td>
</tr>
</tbody>
</table>
plinkr

min Same as plink --min
mind Same as plink --mind
mishap_window Same as plink --mishap-window
missing Same as plink --missing
missing_code Same as plink --missing-code
missing_genotype Same as plink --missing-genotype
missing_phenotype Same as plink --missing-phenotype
missing_var_code Same as plink --missing-var-code
mlma Same as plink --mlma
mlma_loco Same as plink --mlma-loco
mlma_no_adj_covar Same as plink --mlma-no-adj-covar
model Same as plink --model
model_dom Same as plink --model-dom
model_gen Same as plink --model-gen
model_rec Same as plink --model-rec
model_trend Same as plink --model-trend
mouse Same as plink --mouse
mperm Same as plink --mperm
mperm_save Same as plink --mperm-save
mperm_save_all Same as plink --mperm-save-all
mpheno Same as plink --mpheno
must_have_sex Same as plink --must-have-sex
mwithin Same as plink --mwithin
neighbour Same as plink --neighbour
no_fid Same as plink --no-fid
no_parents Same as plink --no-parents
no_pheno Same as plink --no-pheno
no_sex Same as plink --no-sex
no_snp Same as plink --no-snp
no_x_sex Same as plink --no-x-sex
nonfounders Same as plink --nonfounders
nop Same as plink --nop
not_chr Same as plink --not-chr
nudge Same as plink --nudge
null_group Same as plink –null-group
null.snp Same as plink –null-snp
oblig_cluster Same as plink –oblig-cluster
oblig_clusters Same as plink –oblig-clusters
oblig_missing Same as plink –oblig-missing
out Same as plink –out
output_chr Same as plink –output-chr
output_missing_genotype Same as plink –output-missing-genotype
output_missing_phenotype Same as plink –output-missing-phenotype
oxford_pheno_name Same as plink –oxford-pheno-name
parallel Same as plink –parallel
parameters Same as plink –parameters
parentdt1 Same as plink –parentdt1
parentdt2 Same as plink –parentdt2
pat Same as plink –pat
pca Same as plink –pca
pca_cluster_names Same as plink –pca-cluster-names
pca_clusters Same as plink –pca-clusters
ped Same as plink –ped
pedigree Same as plink –pedigree
perm Same as plink –perm
perm_batch_size Same as plink –perm-batch-size
perm_count Same as plink –perm-count
pfilter Same as plink –pfilter
pheno Same as plink –pheno
pheno_merge Same as plink –pheno-merge
pheno_name Same as plink –pheno-name
pick1 Same as plink –pick1
plist Same as plink –plist
poo Same as plink –poo
pool_size Same as plink –pool-size
ppc Same as plink –ppc
ppc_gap Same as plink –ppc-gap
proxy... Same as plink –proxy-...
proxy_assoc Same as plink –proxy-assoc
proxy_b_kb Same as plink –proxy-b-kb
proxy_b_maxsnp Same as plink –proxy-b-maxsnp
proxy_b_r2 Same as plink –proxy-b-r2
proxy_b_threshold Same as plink –proxy-b-threshold
proxy_b_window Same as plink –proxy-b-window
proxy_dosage Same as plink –proxy-dosage
proxy_drop Same as plink –proxy-drop
proxy_flanking Same as plink –proxy-flanking
proxy_geno Same as plink –proxy-geno
proxy_genotypic_concordance Same as plink –proxy-genotypic-concordance
proxy_glm Same as plink –proxy-glm
proxy_impute Same as plink –proxy-impute
proxy_impute_threshold Same as plink –proxy-impute-threshold
proxy_kb Same as plink –proxy-kb
proxy_list Same as plink –proxy-list
proxy_maf Same as plink –proxy-maf
proxy_maxsnp Same as plink –proxy-maxsnp
proxy_mhf Same as plink –proxy-mhf
proxy_r2 Same as plink –proxy-r2
proxy_r2_no_filter Same as plink –proxy-r2-no-filter
proxy_replace Same as plink –proxy-replace
proxy_show_proxies Same as plink –proxy-show-proxies
proxy_sub_maxsnp Same as plink –proxy-sub-maxsnp
proxy_sub_r2 Same as plink –proxy-sub-r2
proxy_tdt Same as plink –proxy-tdt
proxy_verbose Same as plink –proxy-verbose
proxy_window Same as plink –proxy-window
prune Same as plink –prune
q_score_file Same as plink –q-score-file
q_score_range Same as plink –q-score-range
qfam... Same as plink –qfam...
qmatch Same as plink –qmatch
qq_plot Same as plink --qq-plot
qt Same as plink --qt
qt_means Same as plink --qt-means
qual_geno... Same as plink --qual-geno-...
qual_geno_max_threshold
 Same as plink --qual-geno-max-threshold
qual_geno_scores
 Same as plink --qual-geno-scores
qual_geno_threshold
 Same as plink --qual-geno-threshold
qual_max_threshold
 Same as plink --qual-max-threshold
qual_scores Same as plink --qual-scores
qual_threshold
 Same as plink --qual-threshold
r2 Same as plink --r2
r Same as plink --r
range Same as plink --range
rank Same as plink --rank
read_dists Same as plink --read-dists
read_freq Same as plink --read-freq
read_genome Same as plink --read-genome
read_genome_list
 Same as plink --read-genome-list
read_genome_minimal
 Same as plink --read-genome-minimal
recessive Same as plink --recessive
recode12 Same as plink --recode12
recode Same as plink --recode
recodeA Same as plink --recodeA
recodeAD Same as plink --recodeAD
recodeHV Same as plink --recodeHV
recode_allele Same as plink --recode-allele
recode_beagle Same as plink --recode-beagle
recode_bimbam Same as plink --recode-bimbam
recode_fastphase
 Same as plink --recode-fastphase
recode_lgen Same as plink --recode-lgen
recode_rlist Same as plink --recode-rlist
recode_structure
 Same as plink --recode-structure
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>recode_vcf</code></td>
<td>Same as plink –recode-vcf</td>
</tr>
<tr>
<td><code>recode_whap</code></td>
<td>Same as plink –recode-whap</td>
</tr>
<tr>
<td><code>reference</code></td>
<td>Same as plink –reference</td>
</tr>
<tr>
<td><code>reference_allele</code></td>
<td>Same as plink –reference-allele</td>
</tr>
<tr>
<td><code>regress_distance</code></td>
<td>Same as plink –regress-distance</td>
</tr>
<tr>
<td><code>regress_pcs</code></td>
<td>Same as plink –regress-pcs</td>
</tr>
<tr>
<td><code>regress_rel</code></td>
<td>Same as plink –regress-rel</td>
</tr>
<tr>
<td><code>rel_check</code></td>
<td>Same as plink –rel-check</td>
</tr>
<tr>
<td><code>rel_cutoff</code></td>
<td>Same as plink –rel-cutoff</td>
</tr>
<tr>
<td><code>remove</code></td>
<td>Same as plink –remove</td>
</tr>
<tr>
<td><code>remove_cluster_names</code></td>
<td>Same as plink –remove-cluster-names</td>
</tr>
<tr>
<td><code>remove_clusters</code></td>
<td>Same as plink –remove-clusters</td>
</tr>
<tr>
<td><code>remove_fam</code></td>
<td>Same as plink –remove-fam</td>
</tr>
<tr>
<td><code>rerun</code></td>
<td>Same as plink –rerun</td>
</tr>
<tr>
<td><code>rice</code></td>
<td>Same as plink –rice</td>
</tr>
<tr>
<td><code>sample</code></td>
<td>Same as plink –sample</td>
</tr>
<tr>
<td><code>score</code></td>
<td>Same as plink –score</td>
</tr>
<tr>
<td><code>score_no_mean_imputation</code></td>
<td>Same as plink –score-no-mean-imputation</td>
</tr>
<tr>
<td><code>script</code></td>
<td>Same as plink –script</td>
</tr>
<tr>
<td><code>seed</code></td>
<td>Same as plink –seed</td>
</tr>
<tr>
<td><code>set</code></td>
<td>Same as plink –set</td>
</tr>
<tr>
<td><code>set_by_all</code></td>
<td>Same as plink –set-by-all</td>
</tr>
<tr>
<td><code>setCollapse_all</code></td>
<td>Same as plink –set-collapse-all</td>
</tr>
<tr>
<td><code>set_hh_missing</code></td>
<td>Same as plink –set-hh-missing</td>
</tr>
<tr>
<td><code>set_max</code></td>
<td>Same as plink –set-max</td>
</tr>
<tr>
<td><code>set_me_missing</code></td>
<td>Same as plink –set-me-missing</td>
</tr>
<tr>
<td><code>set_missing_nonsnp_ids</code></td>
<td>Same as plink –set-missing-nonsnp-ids</td>
</tr>
<tr>
<td><code>set_missing.snp_ids</code></td>
<td>Same as plink –set-missing-snp-ids</td>
</tr>
<tr>
<td><code>set_missing_var_ids</code></td>
<td>Same as plink –set-missing-var-ids</td>
</tr>
<tr>
<td><code>set_names</code></td>
<td>Same as plink –set-names</td>
</tr>
<tr>
<td><code>set_p</code></td>
<td>Same as plink –set-p</td>
</tr>
<tr>
<td>Argument</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>set_r2</td>
<td>Same as plink --set-r2</td>
</tr>
<tr>
<td>set_r2_phase</td>
<td>Same as plink --set-r2-phase</td>
</tr>
<tr>
<td>set_table</td>
<td>Same as plink --set-table</td>
</tr>
<tr>
<td>set_test</td>
<td>Same as plink --set-test</td>
</tr>
<tr>
<td>sex</td>
<td>Same as plink --sex</td>
</tr>
<tr>
<td>sheep</td>
<td>Same as plink --sheep</td>
</tr>
<tr>
<td>show_tags</td>
<td>Same as plink --show-tags</td>
</tr>
<tr>
<td>silent</td>
<td>Same as plink --silent</td>
</tr>
<tr>
<td>simulate</td>
<td>Same as plink --simulate</td>
</tr>
<tr>
<td>simulate_haps</td>
<td>Same as plink --simulate-haps</td>
</tr>
<tr>
<td>simulate_label</td>
<td>Same as plink --simulate-label</td>
</tr>
<tr>
<td>simulate_missing</td>
<td>Same as plink --simulate-missing</td>
</tr>
<tr>
<td>simulate_n</td>
<td>Same as plink --simulate-n</td>
</tr>
<tr>
<td>simulate_ncases</td>
<td>Same as plink --simulate-ncases</td>
</tr>
<tr>
<td>simulate_ncontrols</td>
<td>Same as plink --simulate-ncontrols</td>
</tr>
<tr>
<td>simulate_prevalence</td>
<td>Same as plink --simulate-prevalence</td>
</tr>
<tr>
<td>simulate_qt</td>
<td>Same as plink --simulate-qt</td>
</tr>
<tr>
<td>simulate_tags</td>
<td>Same as plink --simulate-tags</td>
</tr>
<tr>
<td>snp</td>
<td>Same as plink --snp</td>
</tr>
<tr>
<td>snps</td>
<td>Same as plink --snps</td>
</tr>
<tr>
<td>snps_only</td>
<td>Same as plink --snps-only</td>
</tr>
<tr>
<td>specific_haplotype</td>
<td>Same as plink --specific-haplotype</td>
</tr>
<tr>
<td>split_x</td>
<td>Same as plink --split-x</td>
</tr>
<tr>
<td>standard_beta</td>
<td>Same as plink --standard-beta</td>
</tr>
<tr>
<td>subset</td>
<td>Same as plink --subset</td>
</tr>
<tr>
<td>swap_parents</td>
<td>Same as plink --swap-parents</td>
</tr>
<tr>
<td>swap_sibs</td>
<td>Same as plink --swap-sibs</td>
</tr>
<tr>
<td>swap_unrel</td>
<td>Same as plink --swap-unrel</td>
</tr>
<tr>
<td>tab</td>
<td>Same as plink --tab</td>
</tr>
<tr>
<td>tag_kb</td>
<td>Same as plink --tag-kb</td>
</tr>
<tr>
<td>tag_mode2</td>
<td>Same as plink --tag-mode2</td>
</tr>
<tr>
<td>tag_r2</td>
<td>Same as plink --tag-r2</td>
</tr>
<tr>
<td>tail_pheno</td>
<td>Same as plink --tail-phen</td>
</tr>
<tr>
<td>tdt</td>
<td>Same as plink --tdt</td>
</tr>
</tbody>
</table>
plinkr

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>test_all</td>
<td>Same as plink –test-all</td>
</tr>
<tr>
<td>test_mishap</td>
<td>Same as plink –test-mishap</td>
</tr>
<tr>
<td>test_missing</td>
<td>Same as plink –test-missing</td>
</tr>
<tr>
<td>test_snp</td>
<td>Same as plink –test-snp</td>
</tr>
<tr>
<td>tests</td>
<td>Same as plink –tests</td>
</tr>
<tr>
<td>tfam</td>
<td>Same as plink –tfam</td>
</tr>
<tr>
<td>tfile</td>
<td>Same as plink –tfile</td>
</tr>
<tr>
<td>thin</td>
<td>Same as plink –thin</td>
</tr>
<tr>
<td>thin_count</td>
<td>Same as plink –thin-count</td>
</tr>
<tr>
<td>threads</td>
<td>Same as plink –threads</td>
</tr>
<tr>
<td>to</td>
<td>Same as plink –to</td>
</tr>
<tr>
<td>to_bp</td>
<td>Same as plink –to-bp</td>
</tr>
<tr>
<td>to_kb</td>
<td>Same as plink –to-kb</td>
</tr>
<tr>
<td>to_mb</td>
<td>Same as plink –to_mb</td>
</tr>
<tr>
<td>tped</td>
<td>Same as plink –tped</td>
</tr>
<tr>
<td>transpose</td>
<td>Same as plink –transpose</td>
</tr>
<tr>
<td>trend</td>
<td>Same as plink –trend</td>
</tr>
<tr>
<td>tucc</td>
<td>Same as plink –tucc</td>
</tr>
<tr>
<td>twolocus</td>
<td>Same as plink –twolocus</td>
</tr>
<tr>
<td>unbounded</td>
<td>Same as plink –unbounded</td>
</tr>
<tr>
<td>unrelated_heritability</td>
<td>Same as plink –unrelated-heritability</td>
</tr>
<tr>
<td>update_alleles</td>
<td>Same as plink –update-alleles</td>
</tr>
<tr>
<td>update_chr</td>
<td>Same as plink –update-chr</td>
</tr>
<tr>
<td>update_cm</td>
<td>Same as plink –update-cm</td>
</tr>
<tr>
<td>update_ids</td>
<td>Same as plink –update-ids</td>
</tr>
<tr>
<td>update_map</td>
<td>Same as plink –update-map</td>
</tr>
<tr>
<td>update_name</td>
<td>Same as plink –update-name</td>
</tr>
<tr>
<td>update_parents</td>
<td>Same as plink –update-parents</td>
</tr>
<tr>
<td>update_sex</td>
<td>Same as plink –update-sex</td>
</tr>
<tr>
<td>vcf</td>
<td>Same as plink –vcf</td>
</tr>
<tr>
<td>vcf_filter</td>
<td>Same as plink –vcf-filter</td>
</tr>
<tr>
<td>vcf_half_call</td>
<td>Same as plink –vcf-half-call</td>
</tr>
<tr>
<td>vcf_idspace_to</td>
<td>Same as plink –vcf-idspace-to</td>
</tr>
<tr>
<td>vcf_min_qual</td>
<td>Same as plink –vcf-min-qual</td>
</tr>
<tr>
<td>vegas</td>
<td>Same as plink –vegas</td>
</tr>
<tr>
<td>version</td>
<td>Same as plink –version</td>
</tr>
</tbody>
</table>
pltrim

Trim plink files

Description

This function calculates number of individuals in .fam file (n1) and number of individuals in phenotype file (n2). If n1 > n2, then all the individuals not included in the phenotype file will be removed from plink files.

Usage

plTrim(pl_gwas, suffix = "trimmed")

Arguments

pl_gwas PlGwasC object.
suffix character. Suffix to the new plink file names.
Value

PlGwasC object

Author(s)

Kaiyin Zhong, Fan Liu

Description

QQ plot of one p-value vector

Usage

```r
qq(pvector)
```

Arguments

- `pvector` p-value vector

Value

A ggplot object

Author(s)

kaiyin

Description

QQ plot of two p-value vector

Usage

```r
qq2(p1, p2)
```

Arguments

- `p1` First p-value vector
- `p2` Second p-value vector
qqmulti

QQ plot of multiple p-value vectors

Description

QQ plot of multiple p-value vectors

Usage

```r
qqmulti(...)"```

**Arguments**

... p-value vectors. These vectors don’t have to have the same length.

**Value**

A ggplot object. One QQ plot for each p-value vector and they superposed one after another.

**Author(s)**

kaiyin

---

**randNormDat**

*Generate a m by n data.frame from normal distribution*

**Description**

Generate a m by n data.frame from normal distribution

**Usage**

```r
randNormDat(m, n)"```

Arguments

m integer. Number of rows.
n integer. Number of columns.
randomString

Author(s)
Kaiyin Zhong

Description
Generate a single alpha-numeric random string

Usage
randomString(string_length = 6)

Arguments

string_length integer.

Value
character.

Author(s)
Kaiyin Zhong, Fan Liu

randomStrings

Description
Generate random strings

Usage
randomStrings(n, string_length = 6)

Arguments

n integer. Number of string to generate.
string_length integer. Length of each string.

Value
character.
Author(s)

Kaiyin Zhong, Fan Liu

rbedInfo

Constructor of RbedInfoC class

Description

Constructor of RbedInfoC class

Usage

```
rbedinfo(bedstem, db_setup = FALSE)
```

Arguments

- `bedstem` character. Path to bed file without extension.
- `db_setup` logical. Whether to setup SQLite database for .bim, .fam and .frq files.

Value

An RbedInfoC object.

Author(s)

Kaiyin Zhong, Fan Liu

RbedInfoC-class

S4 class for necessary info to read a bed file into R

Description

S4 class for necessary info to read a bed file into R

Slots

- `pl_info` PlInfoC object
- `jbed` jobRef object, of Bed class in java
- `nsnp` numeric. Number of SNPs.
- `nindiv` numeric. Number of individuals.
- `nindiv_appr` numeric. Apparent number of individuals.
- `bytes_snp` numeric. Number of bytes used for each SNP.
read.phe.table

Read phenotype file

Description

Read phenotype file

Usage

```r
read.phe.table(file)
```

Arguments

- `file` character. Path to phenotype file.

Value

data.frame

Author(s)

kaiyin

readAssoc

Read PLINK .assoc files

Description

Read PLINK .assoc files

Usage

```r
readAssoc(filename, cn_select = collenv$.assoc_header)
```

Arguments

- `filename` character. Filename
- `cn_select` character. Columns to read.

Value

data.frame

Author(s)

Kaiyin Zhong
Description

Read genotypes from PLINK bed file into R

Usage

readBed(rbed_info, snp_vec, fid_iid = TRUE, snp_names_as_colnames = TRUE)

S4 method for signature 'RbedInfoC,ANY,logical,logical'
readBed(rbed_info, snp_vec,
 fid_iid = TRUE, snp_names_as_colnames = TRUE)

S4 method for signature 'RbedInfoC,missing,missing,missing'
readBed(rbed_info, snp_vec,
 fid_iid = TRUE, snp_names_as_colnames = TRUE)

S4 method for signature 'RbedInfoC,ANY,missing,missing'
readBed(rbed_info, snp_vec,
 fid_iid = TRUE, snp_names_as_colnames = TRUE)

S4 method for signature 'RbedInfoC,missing,logical,missing'
readBed(rbed_info, snp_vec,
 fid_iid = TRUE, snp_names_as_colnames = TRUE)

S4 method for signature 'RbedInfoC,missing,missing,logical'
readBed(rbed_info, snp_vec,
 fid_iid = TRUE, snp_names_as_colnames = TRUE)

S4 method for signature 'RbedInfoC,ANY,missing,logical'
readBed(rbed_info, snp_vec,
 fid_iid = TRUE, snp_names_as_colnames = TRUE)

S4 method for signature 'RbedInfoC,missing,logical,logical'
readBed(rbed_info, snp_vec,
 fid_iid = TRUE, snp_names_as_colnames = TRUE)

Arguments

rbed_info RbedInfoC object
Value

data.frame Genotype data from bed file.

Author(s)

Kaiyin Zhong, Fan Liu
readBmBin

Read columns into an R matrix from a big.matrix .bin file

Description

Read columns into an R matrix from a big.matrix .bin file

Usage

```
readBmBin(bin_file, ncols_to_read)
```

Arguments

- `bin_file` character. Path to .bin file
- `ncols_to_read` integer.

Value

matrix

Author(s)

Kaiyin Zhong, Fan Liu

readDesc

Read big.matrix .desc file

Description

Read big.matrix .desc file

Usage

```
readDesc(desc_filename)
```

Arguments

- `desc_filename` character. Path to .desc file

Value

description object

Author(s)

Kaiyin Zhong, Fan Liu
readFam

Read plink .fam files

Description

Read plink .fam files

Usage

```r
readFam(filename, cn_select = "..all")
```

Arguments

- `filename` .fam file path
- `cn_select` a character vector for selected colnames

Value

a data.frame

Author(s)

Kaiyin Zhong, Fan Liu

Examples

```r
## Not run:
bim = readBim("mmp13.bim")
bim1 = readBim("mmp13.bim", ",..all")
fam = readFam("mmp13.fam", ",..all")

## End(Not run)
```

readFunFactory

Generate read_fun for ReadInfo class

Description

Generate read_fun for ReadInfo class

Usage

```r
readFunFactory(header)
```
Arguments

header logical. Whether the input file has a header line.

Value

function.

Author(s)

Kaiyin Zhong, Fan Liu

readGwasOut read GWAS output from plink If the GWAS is finished, returns a
data.frame, otherwise returns NULL.

Description

Read GWAS output from plink If the GWAS is finished, returns a data.frame, otherwise returns NULL.

Usage

readGwasOut(pl_gwas, cn_select = "..all", rmGwasOut = TRUE)

Arguments

pl_gwas PIGwasC object.

rmGwasOut Logical. Whether to remove GWAS output files after finished reading them. Default to TRUE.

Value

data.frame

Author(s)

Kaiyin Zhong, Fan Liu
Description

This function takes a file path as parameter, assuming the file is whitespace delimited, not quoted, and has a header line. It returns a ReadInfo object.

Usage

```r
readInfo(filename, cnames)
```

```r
## S4 method for signature 'character,missing'
readInfo(filename)
```

```r
## S4 method for signature 'character,character'
readInfo(filename, cnames)
```

Arguments

- `filename` Path of the file to read
- `cnames` character. Expected column names (header).

Value

ReadInfo object

Author(s)

Kaiyin Zhong, Fan Liu

Examples

```r
## Not run:
ri = readInfo("mmp13.frq")
ri@cnames
ri@filename
ri@header
```

```r
## End(Not run)
Description

An S4 class to represent information about a whitespace-delimited text file to be read into R

Slots

filename Path of the file
cnames character vector of column names
header logical. Whether the first line is header
read_fun function. The function to be used when reading this file

readLiteral

Read a file literally (all columns as character)

Description

Read a file literally (all columns as character)

Usage

readLiteral(filename, ...)

Arguments

filename Path of file to be read
... Passed to read.table

Value

data.frame

Author(s)

Kaiyin Zhong, Fan Liu
Examples

```r
Not run:
df = data.frame(x = c("T", "%T", "10341"),
y = c("F", "f%t", "431"),
z = c("T", "TRUE", "FALSE"))
tmpf = tempfile()
write.table(df, file = tmpf, quote = FALSE,
 row.names = FALSE, col.names = FALSE)
df1 = readLiteral(file = tmpf)
all(df1 == df)
```

## End(Not run)

---

**readLogistic**

*Read PLINK logistic regression output files.*

**Description**

Read PLINK logistic regression output files.

**Usage**

```r
readLogistic(filename, cn_select = collenv$.linear_header)
```

**Arguments**

- `filename` character. Filename.
- `cn_select` character. Columns to read.

**Value**

`data.frame`

**Author(s)**

Kaiyin Zhong
**readPhe**

*Read phenotype file*

**Description**

Read phenotype file

**Usage**

```
readPhe(pl_gwas, cn_select = "..all")
```

**Arguments**

- `pl_gwas`: PlGwasC object
- `cn_select`: Colnames to select. Default to ".all", which means all columns are read in.

**Value**

data.frame

**Author(s)**

Kaiyin Zhong, Fan Liu

---

**readPlinkOut**

*Read plink output files*

**Description**

Read plink output files

**Usage**

```
readPlinkOut(filename, ...)
```

**Arguments**

- `filename`: Filenames of plink output files, see `collenv$.plink_out_ext`
- `...`: passed to one of `readAssoc`, `readQassoc`, `readLinear`, `readLogistic`

**Value**

data.frame
Author(s)
Kaiyin Zhong, Fan Liu

Examples

```r
Not run:
dat1 = readPlinkOut("assoc/mmp13.assoc")
dat2 = readAssoc("assoc/mmp13.assoc")
all(na.omit(dat1 == dat2))
dat1 = readPlinkOut("assoc/mmp13.assoc", c("CHR", "SNP", "P", "OR"))
dat2 = readAssoc("assoc/mmp13.assoc", c("CHR", "SNP", "P", "OR"))
all(na.omit(dat1 == dat2))
dat1 = readPlinkOut("assoc/mmp13.qassoc")
dat2 = readQassoc("assoc/mmp13.qassoc")
all(na.omit(dat1 == dat2))
dat1 = readPlinkOut("assoc/mmp13.qassoc", c("CHR", "SNP", "P", "R2"))
dat2 = readQassoc("assoc/mmp13.qassoc", c("CHR", "SNP", "P", "R2"))
all(na.omit(dat1 == dat2))

End(Not run)
```

readQassoc  
---

**Description**

Read .qassoc files

**Usage**

`readQassoc(filename, cn_select = collenv$.qassoc_header)`

**Arguments**

- `filename`: Path of the file to read
- `cn_select`: a character vector for selected colnames

**Value**

`data.frame`

**Author(s)**

Kaiyin Zhong
removeTag

---

realBedSize

File size of bed file

**Description**

File size of bed file

**Usage**

```r
realBedSize(rbed_info)
```

**Arguments**

- `rbed_info`: RbedInfoC object

**Value**

numeric. Size of bed file.

**Author(s)**

Kaiyin Zhong, Fan Liu

---

removeTag

Remove GWAS results by tag

**Description**

Remove GWAS results by tag

**Usage**

```r
removeTag(x, type = "gwas")
```

**Arguments**

- `x`: character. Tag name.
- `type`: character. Type of tag.

**Author(s)**

Kaiyin Zhong, Fan Liu
reprClasses

Represent classes of a data.frame in a character vector

Description
Represent classes of a data.frame in a character vector

Usage
reprClasses(dat)

Arguments
dat data.frame

Value
character vector

Author(s)
Kaiyin Zhong, Fan Liu

Examples
## Not run:
dat = randNormDat(4, 2)
x = capture.output(reprClasses(dat), file = NULL)
x = eval(parse(text = x))
all(x == colClasses(dat))

## End(Not run)

rmFilesByStem
Remove files by matching the starting part

Description
If x is a string, then this function matches x* by globbing. If x is a "PlInfoC" object, it matches x@plink_stem*. If x is a "RbedInfoC" object, it matches x@pl_info@plink_stem*. Otherwise nothing is removed.

Usage
rmFilesByStem(x)
runGcdh

**Arguments**

- `x` character, PlInfoC, or RbedInfoC object.

**Author(s)**

Kaiyin Zhong, Fan Liu

---

**runGcdh**  
*Run GCDH analysis*

**Description**

Runs GCDH over the given PlGwasC object. The PlGwasC object is first filtered by p-values from a plink --assoc run if a p-value threshold is given. New PlGwasC objects are generated by shifting the PLINK bed file (e.g. shift1.bed, shift2.bed, ...) one by one. A GWAS is run for each of these PlGwasC objects and results are collected into big.matrix files.

**Usage**

```r
runGcdh(pl_gwas, n_shift, gwas_col_select = NULL, collapse_matrix = NULL,
 rm_shifted_files = TRUE, dist_threshold = 5e+05)
```

**Arguments**

- `pl_gwas` PlGwasC object
- `n_shift` integer. Maximum shift number.
- `gwas_col_select` character. Columns to read from a GWAS output file. Default to `collenv$linear_header_default`.
- `collapse_matrix` matrix. 4 by 4 matrix used for generating collapsed genotypes.
- `rm_shifted_files` logical. Whether to remove shifted bed files after analysis is done.
- `dist_threshold` integer. SNPs beyond this distance will be ignored. Default to 500kb.

**Value**

A list with the following members: (1) the input PlGwasC object. (2) an info data frame with CHR, BP and SNP columns. (3) One big.matrix object for each of the names in `gwas_col_select`.

**Author(s)**

Kaiyin Zhong, Fan Liu
runGwas

Run a GWAS

Description
Run a GWAS

Usage
runGwas(pl_gwas, wait = TRUE, save_pl_gwas = FALSE)

Arguments
pl_gwas          PlGwasC object
wait             logical. Wait until GWAS is finished if this is set to TRUE. Default to FALSE.
save_pl_gwas     logical. Whether to save the plGwas object. Default to FALSE.

Author(s)
Kaiyin Zhong, Fan Liu

runTypeI

Run simulations to control type-I error

Description
Simulate a new phenotype N times and run GCDH with each. The phe_fun function is used to generate new phenotype file. When this function is not given, the phenotype file from the PlGwasC object will be permuted and used as the new phenotype file (permutation analysis). Thus when no phe_fun is supplied, this function can be used to survey p-values under the null distribution. A threshold for Genome-wide significance can be calculated from these p-values by any other (alpha-level) quantile.

Usage
runTypeI(pl_gwas, n_shift, n_simu, phe_fun = NULL, dist_threshold = 5e+05,
         p_threshold = NULL, collapse_matrix = NULL, rm_shifted_files = TRUE)
Arguments

- `pl_gwas` : PlGwasC object
- `n_shift` : integer. `n_shift` for each GCDH run.
- `n_simu` : integer. Number of simulations to run.
- `phe_fun` : function. Used to generate new phenotype file.
- `dist_threshold` : See `runGcdh`.
- `p_threshold` : numeric or NULL. When it’s not NULL, the PlGwasC object is filtered by `assocFilter` first.
- `collapse_matrix` : See `runGcdh`.
- `rm_shifted_files` : See `runGcdh`.

Value

A list with the following members: (1) tag of this simulation, can be used to remove related files. (2) a list of SNP pairs. If "snp_pair" is a member of the result from `phe_fun`, then this list will be non-empty, otherwise it will be empty. (3) a list of reports from all the GCDH analysis. (4) global minimal p-values of the single-SNP approach. (4) global minimal p-values of GCDH.

Author(s)

Kaiyin Zhong, Fan Liu

---

saveDesc

Save big.matrix description object to disk

Description

Binary format is used exclusively.

Usage

`saveDesc(desc_obj, desc_filename)`

Arguments

- `desc_obj` : big.matrix description object

Author(s)

Kaiyin Zhong, Fan Liu
**sendQuery**  
*Send query to SQLite database*

**Description**  
Send query to SQLite database

**Usage**  
`sendQuery(db_name, query_string)`

**Arguments**
- `db_name` character. Path to database.
- `query_string` character. Query string.

**Author(s)**  
Kaiyin Zhong, Fan Liu

---

**setOptModel**  
*Set analysis model*

**Description**  
Set analysis model

**Usage**  
`setOptModel(pl_gwas, mod = "linear")`

**Arguments**
- `pl_gwas` PlGwasC object.
- `mod` character. One of "linear", "logistic" or "assoc", default to "linear".

**Value**  
PlGwasC object

**Author(s)**  
Kaiyin Zhong, Fan Liu
setup

Setup up a directory containing plink files

Description
Setup up a directory containing plink files

Usage
setup(pl_info)

Arguments
pl_info PlInfoC object

Author(s)
Kaiyin Zhong, Fan Liu

setupRbed

Setup an RbedInfoC object

Description
The setup job includes the following tasks: 1. Set up the PlInfoC object. 2. Calculate number of bytes used by each SNP. 3. Calculate the Number of individuals. 4. Calculate total number of SNPs. 5. Validate the RbedInfoC object.

Usage
setupRbed(rbed_info)

Arguments
rbed_info RbedInfoC object

Value
RbedInfoC object

Author(s)
Kaiyin Zhong, Fan Liu
**Description**

Generates collapsed genotypes by shifting the bed file (i.e. SNP1 collapsed with SNP2, SNP2 collapsed with SNP3, etc; when \( n\_shift = 1 \)).

**Usage**

\[ \text{shiftBed}(rbed\_info, n\_shift, db\_setup = \text{FALSE}, collapse\_matrix = \text{NULL}) \]

**Arguments**

- \( rbed\_info \): RbedInfoC object
- \( n\_shift \): integer.
- \( db\_setup \): logical. Whether to setup SQLite database for .bim, .fam and .frq files.
- \( collapse\_matrix \): matrix of integers. See details.

**Details**

Collapsing matrix. The collapse_matrix parameter allows collapsing of two genotypes in an arbitrary way. Each genotype is represented by either 0, 1, 2, or 3:

- 0 Homozygote of the minor allele.
- 1 NA
- 2 Heterozygote.
- 3 Homozygote of the major allele.

The collapsing function is implemented as a matrix lookup function, i.e. \( \text{Collapse}(S_1, S_2) = \text{CollapseMatrix}[S_1][S_2] \).

The default collapsing matrix is:

\[
\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 0 & 3 \\
0 & 1 & 3 & 3 \\
\end{array}
\]

**Value**

RbedInfoC object, with the shifted bed file path in it.

**Author(s)**

Kaiyin Zhong, Fan Liu
**shiftedStem**  
*Add a "shift" suffix to a stem*

**Description**
Add a "shift" suffix to a stem

**Usage**
```
shiftedStem(stem, n_shift)
```

**Arguments**
- `stem` character.
- `n_shift` numeric.

**Value**
character.

**Author(s)**
Kaiyin Zhong, Fan Liu

**Examples**
```
Not run:
add suffix to stem
shiftedStem("a", 100) == "a_shift_0100"
shiftedStem("home/a", 100) == "home/a_shift_0100"
shiftedStem("/home/a", 100) == "/home/a_shift_0100"
shiftedStem(c("/home/a", "/home/b"), 100) == c("/home/a_shift_0100", "/home/b_shift_0100")
```

---

**slurp**  
*Read a text file into a single string*

**Description**
Read a text file into a single string

**Usage**
```
slurp(filename)
```
snpPos

Arguments

filename character. Input filename.

Value

character

Author(s)

Kaiyin Zhong, Fan Liu

Description

Retrieve SNP positions from UCSU database

Usage

snpPos(snps, rm_underscore = TRUE, ref = c("hg18", "hg19"),
    snpdb = c("snp138", "snp137"))

Arguments

snps A vector of SNP names
rm_underscore Remove irregular chromosome names
ref Either "hg18" or "hg19"
.snpdb Either "snp138" or "snp137"

Value

A data frame containing positions of given SNPs

Author(s)

kaiyin
snpRowId

Get row number of SNPs from their names

Description

Get row number of SNPs from their names

Usage

snpRowId(pl_info, snp_names)

Arguments

pl_info       PlInfoC object.
snp_names     character. Vector of SNP names.

Value

integer. Vector of row numbers.

Author(s)

Kaiyin Zhong, Fan Liu

---

spit

Write strings to a file

Description

Write strings to a file

Usage

spit(s, filename)

Arguments

s       character. Strings to write.
filename          character. Path to output file.

Author(s)

Kaiyin Zhong, Fan Liu
sqliteFilePl

SQLite file of a PlInfoC object

Description
SQLite file of a PlInfoC object

Usage
sqliteFilePl(x)

Arguments
x
PlInfoC or PlGwasC object

Value
character. Path to SQLite database file.

Author(s)
Kaiyin Zhong, Fan Liu

stopFormat
Stop with format string

Description
Stop with format string

Usage
stopFormat(...)

Arguments
... passed to sprintf

Author(s)
Kaiyin Zhong, Fan Liu
**strConcat**  
*Concatenate a vector of strings*

**Description**  
Concatenate a vector of strings

**Usage**  
```r
strConcat(ss, sep = "")
```

**Arguments**  
- `ss` vector of strings
- `sep` a length-1 string used as separator, default to ""

**Value**  
a string

**Author(s)**  
Kaiyin Zhong, Fan Liu

**Examples**  
```r
Not run:
strConcat(letters)
strConcat(letters, " ")

End(Not run)
```

---

**strVectorRepr**  
*String Representation of a character vector*

**Description**  
String Representation of a character vector

**Usage**  
```r
strVectorRepr(ss, print_out = FALSE, single_quote = TRUE, start_with_c = TRUE)
```
Arguments

- `ss` character.
- `print_out` logical. Whether to print out the string representation.
- `single_quote` Logical, whether to use single quote for wrap strings. Default to TRUE, when set to FALSE, double quote is used.
- `start_with_c` Logical, whether the representation should start with "c(" when set to FALSE, "(" is used. Default to TRUE.

Value

character.

Author(s)

Kaiyin Zhong, Fan Liu

Examples

```r
strVectorRepr(letters[1:3]) == c("a", "b", "c")
strVectorRepr(
 as.character(1:3)) == c("1", "2", "3")
all(eval(parse(text = strVectorRepr(as.character(1:3)))) ==
 c("1", "2", "3"))

Not run:
strVectorRepr(letters[1:3]) == c("a", "b", "c")
strVectorRepr(
 as.character(1:3)) == c("1", "2", "3")
all(eval(parse(text = strVectorRepr(as.character(1:3)))) ==
 c("1", "2", "3"))

End(Not run)
```

---

**strVectorSQLRepr**

String representation of a character vector for SQLite consumption

Description

Transform a character vector (e.g. c("a", "b") into a string representation that can be used in a SQLite query (e.g. "('a', 'b')").

Usage

`strVectorSQLRepr(vec, print_out = FALSE, single_quote = TRUE)`

Arguments

- `vec` character.
- `print_out` logical. Print out the string representation when set to TRUE.
- `single_quote` logical. Whether to use single quote for each element. Use double quote if set to FALSE. Default to TRUE.
Author(s)
Kaiyin Zhong

**systemFormat**  
*Call system command with format string*

**Description**  
Call system command with format string

**Usage**  
```
systemFormat(...)
```

**Arguments**  
```
...
```
 passed to sprintf

Author(s)
Kaiyin Zhong, Fan Liu

**theoBedSize**  
*Theoretical size of bed file*

**Description**  
Computed from dimensions of bim an fam files.

**Usage**  
```
theoBedSize(rbed_info)
```

**Arguments**  
```
rbed_info
```
 RbedInfoC object

**Value**  
numeric. Theoretical size of bed file.

Author(s)
Kaiyin Zhong, Fan Liu
validPhe  

Validate a phenotype file

Description

Validate a phenotype file

Usage

validPhe(phe_file, ...)

Arguments

  phe_file      character. Phenotype file.
  ...          Passed to read.table

Value

FALSE when the file is invalid, or a data.frame when it is.

Author(s)

  Kaiyin Zhong, Fan Liu

write.phe.table  

Write a phenotype data.frame to file

Description

Write a phenotype data.frame to file

Usage

write.phe.table(phe, file)

Arguments

  phe      data.frame
  file     character, path to phenotype file.

Author(s)

  Kaiyin Zhong
Index

*Topic datasets
  alphaNumeric, 5
  callenr, 20
  .FilePath (FilePath-class), 31
  .PLGwasC (PLGwasC-class), 56
  .PLInfoC (PLInfoC-class), 57
  .RbedInfoC (RbedInfoC-class), 84
  .ReadInfo (ReadInfo-class), 92

  alphaNumeric, 5
  asBigMatrix, 5
  asBigMatrix, data.frame, ANY, ANY, ANY, ANY, ANY, ANY, ANY, ANY, ANY, ANY
  (asBigMatrix), 5
  asBigMatrix, matrix, ANY, ANY, ANY, ANY, ANY, ANY, ANY, ANY, ANY, ANY
  (asBigMatrix), 5
  asBigMatrix, vector, ANY, ANY, ANY, ANY, ANY, ANY, ANY, ANY, ANY
  (asBigMatrix), 5
  assocFilter, 6

  basename, 7
  basename, FilePath-method (basename), 7
  bedcollr, 8
  bedsizeCorrect, 8
  bimCorrectTypes, 9
  bin2DescFilename, 9
  binPhe, 10
  bmAddCol, 10
  bmAttachBin, 11
  bmConvertFun, 11
  bmFilename, 12
  bmFilepath, 12
  bytesSnps, 13

  changeByMap, 13
  charify, 14
  checkFileExist, 15
  chExt, 15
  cmh, 16
  colClasses, 16
  colCors, 17

  CollapsABEL, 18
  collapsable (CollapsABEL), 18
  CollapsABEL-package (CollapsABEL), 18
  collapsable-package (CollapsABEL), 18
  collapse, 18
  collapseMat, 19
  colIClear, 20
  callenr, 20
  connectSnpPair, 21
  contrastData, 21
  contrastPlot, 22
  contrastData, 21
  contrastPlot, 22
  correctDesc, 23
  correctTypes (correctTypes_methods), 23
  correctTypes_methods, 23
  covarNames, 24
  datToVec, 25
  desc2BinFilename, 26
  dir.create2, 26
  dirName, 27
  dirName, FilePath-method (dirName), 27
  eprint, 27
evalFile, 28

  famCorrectTypes, 28
  fidLid, 29
  file.create2, 29
  filePath, 30
  FilePath-class, 31
  fileSize, 31

  gcdhBmCreate, 32
  gcdhDir, 32
  gcdhPower, 33
  gcdhRegion, 34
  gcdhReport, 35
  getHaplo, 35
  getHaplos, 36
INDEX

getOrElse-operator, 36
getQuery, 37
getr2, 37
glm2, 38
glmIter, 38
gwasDat, 39
gwasDir, 39
gwasLog, 40
gwasOut, 40
gwasOutStem, 41
gwasR, 41
gwasRDS, 42
head2, 42
headPhe, 43
isBinary, 44
iss4Class, 44
isSetup, 45
isSetupRBed, 46
isSQLite3, 46
lagDistance, 47
lenCheck, 47
listEqual, 48
listGwasTags, 49
listTags (listGwasTags), 49
loadGwas, 49
makePhe, 50
manhattanData, 50
manhattanPlot, 51
nIndivApprPl, 51
nIndivPl, 52
nonExistentialFiles, 52
nSnP1, 53
numVectorSQLRepr, 53
permutePhe, 54
plGwas, 54
plGwas, PlGwasC, character, logical
  (plGwas), 54
plGwas, RbedInfoC, character, character, character, character, missing, character, missing, character, missing, character, missing, character, character, character, character, character, character, logical
  (plGwas), 54
PlGwasC-class, 56
plInfo, 56
plInfo, missing, character, logical-method
  (plInfo), 56
plInfo, missing, character, missing-method
  (plInfo), 56
plInfo, PlInfoC, character, logical-method
  (plInfo), 56
plInfo, PlInfoC, character, missing-method
  (plInfo), 56
PlInfoC-class, 57
pllinkr, 58
plTrim, 80
qq, 81
qq2, 81
qmulti, 82
randNormDat, 82
randomString, 83
randomStrings, 83
rbedInfo, 84
RbedinfoC-class, 84
read.phe.table, 85
readAssoc, 85
readBed, 86
readBed, RbedInfoC, ANY, logical, logical-method
  (readBed), 86
readBed, RbedInfoC, ANY, logical, missing-method
  (readBed), 86
readBed, RbedInfoC, ANY, missing, logical-method
  (readBed), 86
readBed, RbedInfoC, ANY, missing, missing-method
  (readBed), 86
readBed, RbedInfoC, logical, logical-method
  (readBed), 86
readBed, RbedInfoC, logical, missing-method
  (readBed), 86
readBed, RbedInfoC, missing, logical-method
  (readBed), 86
readBed, RbedInfoC, missing, missing-method
  (readBed), 86
readBim, 87
readBim, missing, list-method
readDesc, 88
readDesc, 88
readFam, 89
readFunFactory, 89
readGwasOut, 90
readInfo, 91
readInfo, character, character-method
  (readInfo), 91
readInfo, character, missing-method
  (readInfo), 91
ReadInfo-class, 92
readLiteral, 92
readLogistic, 93
readPhe, 94
readPlinkOut, 94
readQassoc, 95
realBedSize, 96
removeTag, 96
reprClasses, 97
rmFilesByStem, 97
runGcdh, 98
runGwas, 99
runTypeI, 99
saveDesc, 100
sendQuery, 101
setOptModel, 101
setup, 102
setupRBed, 102
shiftBed, 103
shiftedStem, 104
slurp, 104
snpPos, 105
snpRowId, 106
spit, 106
sqliteFilePl, 107
stopFormat, 107
strConcat, 108
strVectorRepr, 108
strVectorSQLRepr, 109
systemFormat, 110

tail2(head2), 42
theoBedSize, 110

validPhe, 111

write.phe.table, 111