Package ‘ComICS’

October 12, 2022

Title Computational Methods for Immune Cell-Type Subsets

Description Provided are Computational methods for Immune Cell-type Subsets, including: (1) DCQ (Digital Cell Quantifier) to infer global dynamic changes in immune cell quantities within a complex tissue; and (2) VoCAL (Variation of Cell-type Abundance Loci) a deconvolution-based method that utilizes transcriptome data to infer the quantities of immune-cell types, and then uses these quantitative traits to uncover the underlying DNA loci.

Version 1.0.4

Imports glmnet, stats

Depends R (>= 3.1.1)

License GPL-2

LazyData true

URL http://dcq.tau.ac.il/, http://csgi.tau.ac.il/VoCAL/

RoxygenNote 5.0.1

NeedsCompilation no

Author Yael Steuerman [aut, cre],
 Irit Gat-Viks [aut]

Maintainer Yael Steuerman <yaelstev@mail.tau.ac.il>

Repository CRAN

Date/Publication 2018-05-13 08:19:17 UTC

R topics documented:

ComICS .. 2
commons .. 2
dcq ... 2
dcqEx .. 4
vocal ... 4
vocalEx .. 6

Index 7
ComICS

Computational methods for Immune Cell-type Subsets

Description

Computational methods for Immune Cell-type Subsets.

Author(s)

Yael Steuerman and Irit Gat-Viks

commons

Shared Immunological datasets

Description

Example datasets (Reference data and marker set):

- **immgen_dat**: An immune cell compendium, consisting of transcriptional profiles of isolated immune cell subsets, taken from various tissues, stimulations and time points (adapted from Heng et al., 2008). The full immgen dataset is available for download at http://dcq.tau.ac.il/ or http://csgi.tau.ac.il/VoCAL/.

- **DCQ_mar**: Preselected group of genes that likely discriminate well between the immune-cell types given in the reference data (adapted from Altboum et al., 2014).

Usage

```r
data(commons)
```

dcq

DCQ - Digital Cell Quantifier

Description

DCQ combines genome-wide gene expression data with an immune cell-type reference data to infer changes in the quantities immune cell subpopulations.

Usage

```r
dcq(reference_data, mix_data, marker_set, alpha_used=0.05, lambda_min=0.2, number_of_repeats=3, precent_of_data=1.0)
```
dcq

Arguments

reference_data a data frame representing immune cell expression profiles. Each row represents an expression of a gene, and each column represents a different immune cell type. colnames contains the name of each immune cell type and the rownames includes the genes’ symbol. The names of each immune cell type and the symbol of each gene should be unique. Any gene with missing expression values must be excluded.

mix_data a data frame representing RNA-seq or microarray gene-expression profiles of a given complex tissue. Each row represents an expression of a gene, and each column represents a different experimental sample. colnames contain the name of each sample and rownames includes the genes’ symbol. The name of each individual sample and the symbol of each gene should be unique. Any gene with missing expression values should be excluded.

marker_set data frames of one column, that includes a preselected list of genes that likely discriminate well between the immune-cell types given in the reference data.

alpha_used, lambda_min parameters of the L1 and L2 regularization. It is generally recommended to leave the default value. For more information about this parameter, see the glmnet package.

number_of_repeats using one repeat will generate only one output model. Using many repeats, DCQ calculates a collection of models, and outputs the average and standard deviation for each predicted relative cell quantity.

precent_of_data in order to run the analysis over all the cell types use 1.0. For bootstrap purposes, you can use part of the data (e.g, 0.5).

Value

a list that contains two matrices

average a matrix that contains the average relative quantities for each cell type in every-test sample.

stdev a matrix that contains the standard deviations over all repeats for each cell types in each test sample.

References

Examples

data(commons)
data(dcqEx)
results <- dcq(reference_data=immgen_dat, mix_data=lung_time_series_dat, marker_set=DCQ_mar)
dcqEx

Example datasets for running dcq

Description

Example datasets for running dcq (mix data):

 uses `DCQ_mar` and `immgen_dat` from `commons.RData`.

Usage

```r
data(dcqEx)
```

vocal

Variation in Cell Abundance Loci

Description

Probing immune system genetics via gene expression. VoCAL is a deconvolution-based method that utilizes transcriptome data to infer the quantities of immune-cell types, and then uses these quantitative traits to uncover the underlying DNA loci (iQTLs) assuming homozygosity (such as in the case of recombinant inbred strains).

Usage

```r
vocal(..., reference_data, expression_data, genotyping_data, normalize_data, T.i=5, T.e=10, eqtl_association_scores=NULL)
```

Arguments

- `...`: one or more data frames of one column, each one represents a preselected marker set that likely discriminate well between the immune-cell types given in the reference data. The number of data frames defines the number of association scores that would be combined to generate the final iQTL association score.

- `reference_data`: a data frame representing immune cell expression profiles. Each row represents an expression of a gene, and each column represents a different immune cell type. `colnames` contains the name of each immune cell type and the `rownames` includes the genes’ symbol. The names of each immune cell type and the symbol of each gene should be unique. Any gene with missing expression values must be excluded.
vocal

expression_data

da data frame representing RNA-seq or microarray gene-expression profiles of
given complex tissue across a population of genetically distinct (genotyped)
individuals. Each row represents an expression of a gene, and each column repre-
sents a genetically distinct individual. colnames contain the name of each indi-
vidual, as written in the genotyping_data, and rownames includes the genes’
symbol. The name of each individual sample and the symbol of each gene
should be unique. Any gene with missing expression values should be excluded.

genotyping_data

da data frame where each row represents a different locus, and each column rep-
resents a genetically distinct individual. The genotype should be taken from
homozygous individuals only. Where the genotype is unknown NA should be
used. The first six columns contain the following information: (1) The sequen-
tial identifier of the locus; (2) The name of each locus Chr; (3) Chromosome
position; (4) Start genome position; (5) End genome position; (6) position in
cM.

normalize_data

normalization type. The data will be normalized by either: (1) "All" - subtrac-
tion of the mean expression of all strains; (2) "None" - data is already normal-
ized, do nothing; (3) name of individual included in colnames of expression_data;

T.i

numerical. significant iQTL association score (-log10(Pvalue)) cutoff for the
refinement step of the VoCAL algorithm.

T.e

numerical. significant eQTL association score (-log10(Pvalue)) cutoff for
the refinement step of the VoCAL algorithm.

eqtl_association_scores

(optional) a data frame where each entry represents an association score for a
gene given the genotype of all the individuals that appear in the expression_data
data frame, in a specific locus. This eQTL analysis should be performed over
the normalized expression_data. colnames contain the UID (as written in the
genotyping_data) and rownames includes the genes’ symbol (as written in the
expression_data). The symbol of each gene should be unique. These scores
should be in -log10(P value). Default is NULL, meaning that eQTL analysis
will be performed.

Value

a list of two martices

final_association_score

a matrix that contains the output iQTL association score after applying the it-
terative filtration procedure. Each row represents the genome wide-association
result for a specific immune trait over a range of DNA loci. rownames provides
the identifier of the locus and colnames contains the immune-cell type names.
Each entry provides the -log10(P value) of an iQTL association score.

marker_info

the names of all the markers removed from the different marker sets provided

References

Steuerman Y and Gat-Viks I. Exploiting Gene-Expression Deconvolution to Probe the Genetics of
the Immune System (2015), Submitted.
Not run:
results <- vocal(DCQ_mar, reference_data=immgen_dat, expression_data=lung_dat, genotyping_data=gBXD, normalize_data="B6", eqtl_association_scores=eQTL_res)

End(Not run)

data(vocalEx)

data(commons)

Example datasets for running vocal

Description

Example datasets for running vocal (Expression data, genotype data and eQTL results data):

- **lung_dat**: RNA-seq or microarray gene-expression profiles of a given complex tissue across a population of genetically distinct (genotyped) individuals (adapted from E-MTAB-848).
- **gBXD**: Genotyping of the different individuals under study (adapted from GeneNetworks).
- **eQTL_res**: eQTL analysis results of the different genes in the expression data (specifically the genes that appear in the marker set(s) selected).

uses DCQ_mar and immgen_dat from commons.RData.

Usage

```r
data(vocalEx)
```
Index

* datasets
 commons, 2
 dcqEx, 4
 vocalEx, 6

ComICS, 2
ComICS-package (ComICS), 2
commons, 2
dcq, 2
DCQ_mar (commons), 2
dcqEx, 4
eQTL_res (vocalEx), 6
gBXD (vocalEx), 6
immgcn_dat (commons), 2
lung_dat (vocalEx), 6
lung_time_series_dat (dcqEx), 4
vocal, 4
vocalEx, 6