Package ‘CommonMean.Copula’

December 15, 2019

Type Package
Title Common Mean Vector under Copula Models
Version 1.0.0
Date 2019-12-08
Author Jia-Han Shih
Maintainer Jia-Han Shih <tommy355097@gmail.com>
Description Estimate bivariate common mean vector under copula models with known correlation. In the current version, available copulas include the Clayton, Farlie-Gumbel-Morgenstern (FGM), and Gaussian copulas. See Shih et al. (2019) <doi:10.1080/02331888.2019.1581782> for details under the FGM copula.
Depends pracma, mvtnorm
License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 7.0.0
Repository CRAN
NeedsCompilation no
Date/Publication 2019-12-15 15:00:02 UTC

R topics documented:

CommonMean.Copula-package ... 2
CommonMean.Copula ... 2
Index ... 4
Description

Estimate bivariate common mean vector under copula models with known correlation. A maximum likelihood estimation procedure is employed. In the current version, available copulas include the Clayton, Farlie-Gumbel-Morgenstern (FGM), and Gaussian copulas. See Shih et al. (2019) for details under the FGM copula.

Details

The method implemented in this package can be used for bivariate meta-analysis. See Shih et al. (2019) for an example of bivariate entrance exam data analysis under the FGM copula.

Author(s)

Jia-Han Shih
Maintainer: Jia-Han Shih <tommy355097@gmail.com>

References

Usage

```
CommonMean.Copula(Y1, Y2, Sigma1, Sigma2, rho, copula = "Clayton")
```

Arguments

- `Y1`: Outcome 1
- `Y2`: Outcome 2
- `Sigma1`: Standard deviation of outcome 1.
- `Sigma2`: Standard deviation of outcome 2.
- `rho`: Correlation coefficient between outcomes.
- `copula`: The copula to be used with possible options "Clayton", "FGM", and "normal".
Details

We apply "optim" routine to maximize the log-likelihood function. In addition, boundary corrected correlations will be used (Shih et al., 2019).

Value

Outcome 1	Outcome 1.
Outcome 2	Outcome 2.
Correlation	Correlation coefficient between outcomes.
Sample size	Sample size.
Copula	Selected copula.
Copula parameter	Copula parameter.
Corrected correlation	Boundary corrected correlations.
CommonMean 1	Estimation results of outcome 1.
CommonMean 2	Estimation results of outcome 2.
V	Covariance matrix of the common mean vector estimate.
Log-likelihood values	Fitted log-likelihood values.

References

Examples

library(CommonMean.Copula)
Y1 = c(35,25,30,50,60) # outcome 1
Y2 = c(30,30,50,65,40) # outcome 2
Sigma1 = c(1.3,1.4,1.5,2.0,1.8) # SE of outcome 1
Sigma2 = c(1.7,1.9,2.5,2.2,1.8) # SE of outcome 2
rho = c(0.4,0.7,0.6,0.7,0.6) # correlation between two outcomes
CommonMean.Copula(Y1,Y2,Sigma1,Sigma2,rho) # input
Index

CommonMean.Copula, 2
CommonMean.Copula-package, 2