Package ‘CompR’

October 12, 2022

Version 1.0
Date 2015-07-01
Title Paired Comparison Data Analysis
Author Michel Semenou
Maintainer Michel Semenou <michel.semenou@oniris-nantes.fr>
Depends R (>= 3.1), methods, utils, MASS, graphics, stats
Description
Different tools for describing and analysing paired comparison data are presented. Main methods are estimation of products scores according Bradley Terry Luce model. A segmentation of the individual could be conducted on the basis of a mixture distribution approach. The number of classes can be tested by the use of Monte Carlo simulations. This package deals also with multi-criteria paired comparison data.
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2015-07-01 16:06:23

R topics documented:

CompR-package ... 2
BradleyEstim-class .. 4
ClassDataPairComp .. 6
ClassifPaired ... 6
Cocktail .. 7
Cocktail_Cum .. 8
C_piBTL .. 8
DataPairComp-class .. 10
DataSimulH0 ... 11
EstimBradley ... 11
getCons ... 13
getCons-methods .. 14
getCrit .. 14
CompR-package

Description

Different tools for describing and analysing paired comparison data are presented. Main methods are estimation of products scores according Bradley Terry Luce model. A segmentation of the individual could be conducted on the basis of a mixture distribution approach. The number of classes can be tested by the use of Monte Carlo simulations. This package deals also with multi-criteria paired comparison data.
Function to estimate products configurations (Bradley’s scores) and weights of the classes is `EstimBradley()`.

Function to perform a test concerning the number of classes is `ResSimulLvrRatio()`.

Function to obtain a graphical representation of Bradley’s scores is `Piplot()`.

Author(s)

Michel Semenou

Maintainer: <michel.semenou@oniris-nantes.fr>

See Also

`EstimBradley`, `ResSimulLvrRatio`, `Piplot`

Examples

```r
data(Cocktail)
show(Cocktail)
ResCock1<-EstimBradley(Cocktail,Constraint=0,Tcla=1,eps=0.001,eps1=0.001,TestPi=TRUE)
show(ResCock1)
Res_LvrRatio1<-ResSimulLvrRatio(Cocktail,ResCock1,0,3,level=0.05,eps=0.001,eps1=0.001)
getSimu(Res_LvrRatio1)
getTest(Res_LvrRatio1)
```
Slots

Lvr: Object of class "matrix" corresponding to the number of iterations of the EM algorithm, LogLikelihoods at the previous step and the current step, and the differences between these 2 LogLikelihoods.

Lvr: Object of class "numeric" final value of the LogLikelihood.

Lambda: Object of class "matrix" weights of the different classes.

Pi: Object of class "list" Bradley’s scores for each class and each criteria.

Zh: Object of class "matrix" with the posterior probabilities for each individual to belong to the different classes and the class with the higher probability.

Ic: Object of class "matrix" value of the different Information criterion (AIC, BIC, CAIC).

Restestglob: Object of class "list" result of testing the whole Bradley’s scores equality for each class and each criteria.

Restestprod: Object of class "list" result of multiple comparison tests for Bradley’s scores in each class and for each criteria.

Varcov: Object of class "list" of covariance matrices of Bradley’s scores in each class and for each criteria.

Methods

getIc signature(object = "BradleyEstim")

getLambda signature(object = "BradleyEstim")

getLvr signature(object = "BradleyEstim")

getLvr signature(object = "BradleyEstim")

getPi signature(object = "BradleyEstim")

getRestestglob signature(object = "BradleyEstim")

getRestestprod signature(object = "BradleyEstim")

getVarcov signature(object = "BradleyEstim")

getZh signature(object = "BradleyEstim")

show signature(object = "BradleyEstim")

Examples

data(ResCocktail1)

show(ResCocktail1)
ClassDataPairComp Create an object of class DataPairComp

Description

return an object of DataPairComp class

Usage

ClassDataPairComp(Mat, labelprod = NULL, labelcons = NULL, labelcrit = NULL)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mat</td>
<td>Paired comparison matrix with a number of rows equal to nsubject*nitems and nitems columns.</td>
</tr>
<tr>
<td>labelprod</td>
<td>names of the different items (default labelprod=NULL)</td>
</tr>
<tr>
<td>labelcons</td>
<td>names of the different subjects (default labelcons=NULL)</td>
</tr>
<tr>
<td>labelcrit</td>
<td>name of the criterium (default labelcrit=NULL)</td>
</tr>
</tbody>
</table>

Value

Object of class DataPairComp with the following elements:
Cons: corresponding to the label of consummers (default : Number of consumers)
Crit: name of the different criteria contained
Prod : names of the different products (default : number of the product)
Paircomp : list of number of criteria elements each corresponding to the results of paired comparisons performed by the consummers.

ClassifPaired Classification of paired comparison data

Description

Returns the result of consumers classification

Usage

ClassifPaired(Data,Tcla)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>Object of class DataPairComp</td>
</tr>
<tr>
<td>Tcla</td>
<td>Number of classes to use for classification</td>
</tr>
</tbody>
</table>
Details

The function performs a hierarchical cluster analysis on a set of dissimilarities based on pairwise comparison matrices, using the functions `hclust` and `cutree` of stats package.

Value

vector with group memberships resulting from the classification with Tcla clusters.

See Also

`hclust`, `cutree` of stats package

Cocktail Beverages paired comparison

Description

Paired comparison of 7 beverages by 112 subjects according their preferences

Usage

data(Cocktail)

Format

A `DataPairComp` class object with the following elements:

- **Cons**: corresponding to the label of consumers (default: Number of consumers)
- **Crit**: name of the different criteria contained
- **Prod**: names of the different products (default: number of the product)
- **Paircomp**: list of number of criteria elements each corresponding to the results of paired comparisons performed by the consumers.

Examples

data(Cocktail)
show(Cocktail)
Cocktail_Cum Beverages paired comparison

Description
Paired comparison of 7 beverages by 112 subjects according their preferences

Usage
data(Cocktail)

Format
A matrix resulting of the cumulative paired comparison results of 7 products by 112 consumers. The (i,j) element corresponds to the number of time product i was preferred to product j among all comparisons between these two products.

Examples
data(Cocktail_Cum)
Cocktail_Cum

C_piBTL Estimation of Bradley’s scores

Description
Returns the Bradley’s scores of the different items and the value of the LogLikelihood

Usage
C_piBTL(Matpair, Constraint=0, eps1=1e-04, Pi=NULL, TestPi=FALSE, Zht=NULL)

Arguments
<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matpair</td>
<td>Matrix of the cumulative sum of the results of paired comparisons or object of class DataPairComp</td>
</tr>
<tr>
<td>Constraint</td>
<td>Kind of constraint on Bradley’s scores. If Constraint=0, the sum of Bradley’s scores should be equal to 1. For other values for Constraint, the product of Bradley’s scores should be equal to 1. (default is Constraint=0)</td>
</tr>
<tr>
<td>eps1</td>
<td>value to take into account for the convergence criteria of the algorithm of Bradley’s scores estimation. (default is eps1=1e-04)</td>
</tr>
</tbody>
</table>
Initial values for Bradley’s scores. If \(\Pi = \text{NULL} \) the initialisation is based on a mean score for each item obtained from the data Matpair. Else, initial values for Bradley’s scores are given by the user. (default is \(\Pi = \text{NULL} \))

Indicate if the user wants to perform a multiple comparison tests on the Bradley’s scores. (default Test\(\pi \) = FALSE)

Indicate the individuals probabilities to belong to the different classes. \(Z_{ht} \) has not to be provided for external use of this function. It is used in the main function EstimBradley (default \(Z_{ht} = \text{NULL} \))

The algorithm is based on a maximum likelihood approach using Dykstra method.

List of following components:

- \(\Pi \): Bradley’s scores
- \(\ln L \): value of the log-likelihood
- \(lvr_{HO} \): value of the log-likelihood under the hypothesis of equal values for the Bradley’s scores
- \(lvr_{H1} \): value of the log-likelihood at the end of the Bradley’s scores estimation algorithm
- \(lRatio \): value of the likelihood ration statistic
- \(Pvalue \): Pvalue of the test
- \(H1 \): logical value, FALSE if Bradley’s scores should be considered as equal, TRUE otherwise
- \(\text{VarcovPi} \): Matrix of covariances of Bradley’s scores
- \(\text{restestij} \): Matrix of the following elements
 - products i and j compared
 - value of the test statistic
 - Pvalue of the test
 - decision at a 0.05 level

Examples

```r
data(Cocktail_Cum)
res<-C_piBTL(Cocktail_Cum,Constraint=0,eps1=1e-04,Pi=NULL,TestPi=TRUE)
res
```
DataPairComp-class

Description

A class for Paired comparison data

Objects from the Class

Objects can be created by calls of the form `new("DataPairComp", ...),` or by the function `ImportData()`.

Slots

- **Cons**: Object of class "character" label for the individuals
- **Crit**: Object of class "character" label for the criterion
- **Prod**: Object of class "character" label for the products
- **Paircomp**: Object of class "list" corresponding to the individual results of paired comparisons for each criteria, when products i and j are presented to individual h, the (i,j) element resulting is coded by 1 if i is choosen against j and 0 otherwise

Methods

- `getCons signature(object = "DataPairComp")`
- `getCrit signature(object = "DataPairComp")`
- `getPaircomp signature(object = "DataPairComp")`
- `getProd signature(object = "DataPairComp")`
- `show signature(object = "DataPairComp")`

See Also

- `ImportData`

Examples

```r
data(Cocktail)
show(Cocktail)
```
DataSimulH0

Simulation of paired comparison data

Description

Returns paired comparison data according a given configuration

Usage

DataSimulH0(Data, ResH0)

Arguments

Data Object of class DataPairComp
ResH0 Object of class BradleyEstim.

Details

The paired comparison data are simulated according the products configuration, the weight of the different classes for the different criteria (stored in the object ResH0 of class BradleyEstim) obtained on the basis of the results of EstimBradley function for the paired comparison data contained in the objet Data of class DataPairComp

Value

Object of class DataPairComp with the following components:
Cons: corresponding to the label of consumers
Crit: names of the different criteria
Prod: names of the different products
Paircomp: list of number of criteria elements each corresponding to the results of simulated paired comparisons performed by the consumers according their belonging to the different classes.

EstimBradley

Estimation of Bradley's scores in the different classes of subjects

Description

Estimates Bradley’s scores according the desired number of classes.

Usage

EstimBradley(Data, Constraint=0, Tcla=1, eps=1e-04, epsl=1e-04, TestPi=TRUE)
EstimBradley

Arguments

Data Object of class DataPairComp
Constraint Kind of constraint on Bradley’s scores. If Constraint=0, the sum of Bradley’s scores should be equal to 1. For other values for Constraint, the product of Bradley’s scores should be equal to 1. (default constraint=0)
Tcla Number of classes, default=1, no segmentation.
eps value of the convergence criteria for the EM algorithm (default eps=1e-04).
eps1 value of the criteria convergence for Dykstra algorithm (default eps1=1e-04).
TestPi if TestPi=TRUE multiple comparison tests for Bradley’s scores are performed. Else no multiple comparison test. (default is TestPi=TRUE)

Details

The estimation is based on maximum likelihood for mixture distributions with E.M. algorithm.

Value

Object of class BradleyEstim with the following components:

Lvriter matrix describing the evolution of log likelihood at the different steps of the maximization procedure.
Lvr Final value of the log likelihood
Lambda numeric Final estimates of classes’ weight
Pi list of Tcla elements containing Bradley’s scores for the different criteria
Zh matrix of the belongings probabilities of the individuals to the different classes and the belonging class according to these probabilities
IC value of Information Criterion (AIC,BIC,CAIC)
Restestglob (given if TestPi=TRUE) list of five elements:
1vrH0 matrix of size (Tcla * number of criteria), giving the value of the log likelihood under the hypothesis of equality of Bradley’s scores
1vrH1 matrix of size (Tcla * number of criteria), giving the value of the log likelihood under the hypothesis of non equality of Bradley’s scores
1Ratio matrix of size (Tcla * number of criteria), giving the value of the log likelihood Ratio statistic
Pvalue matrix of size (Tcla * number of criteria), giving the P value of the log likelihood Ratio test
H1 matrix of size (Tcla * number of criteria) giving the result of rejection of equality of Bradley’s scores
Restestprod (given if TestPi=TRUE and if Bradley’s scores are not equal) list of Tcla elements of type matrix of size (number of paired comparison * 7), each column corresponding to:
class identification, criterion identification, product identification i,
getCons

Gets the individuals labels.

Description

Gets the individuals labels.

Usage

getCons(object)

Arguments

object An object of class DataPairComp

Value

vector of the individuals labels.

Examples

data(Cocktail)
Cocktail_Cons<-getCons(Cocktail)
Methods for Function `getCons`

Description

Methods for function `getCons`

Methods

signature(object = "DataPairComp")

Methods for Function `getCrit`

Description

Gets the criteria’s labels.

Usage

`getCrit(object)`

Arguments

object An object of class `DataPairComp`

Value

vector of the criteria’s labels.

Examples

```r
data(Cocktail)
Cocktail_Crit <- getCrit(Cocktail)
```

Methods for Function `getCrit`

Description

Methods for function `getCrit`

Methods

signature(object = "DataPairComp")
getIc

Gets the Information criteria's labels.

Description

Gets the Information criteria's labels (AIC, BIC, CAIC).

Usage

getIc(object)

Arguments

object

An object of class BradleyEstim

Value

vector of Information criteria.

Examples

data(Cocktail)
ResCock<-EstimBradley(Cocktail,Constraint=0,Tcla=1,eps=1e-04,eps1=1e-04,TestPi=TRUE)
ResCock_Ic<-getIc(ResCock)

getIc-methods

Methods for Function getIc

Description

Methods for function getIc

Methods

signature(object = "BradleyEstim")
getLambda

Description

Gets the weight of the different classes from the function `EstimBradley()`.

Usage

```r
getLambda(object)
```

Arguments

- `object` An object of class `BradleyEstim`

Value

A vector of the weights of the different classes.

Examples

```r
data(Cocktail)
ResCock<-EstimBradley(Cocktail,Constraint=0,Tcla=1,eps=1e-04,eps1=1e-04,TestPi=TRUE)
ResCock_Lambda<-getLambda(ResCock)
```

getLambda-methods

Description

Methods for function `getLambda`

Methods

signature(object = "BradleyEstim")
getLvr

Description

Gets the final value of loglikelihood.

Usage

getLvr(object)

Arguments

object An object of class BradleyEstim

Value

Numeric value of the loglikelihood.

Examples

data(Cocktail)
ResCock<-EstimBradley(Cocktail,Constraint=0,Tcla=1,eps=1e-04,eps1=1e-04,TestPi=TRUE)
ResCock_Lvr<-getLvr(ResCock)

getLvr-methods

Methods for Function getLvr

Description

Methods for function getLvr

Methods

signature(object = "BradleyEstim")
getLvriter

Description

Gets the iteration done until convergence of the loglikelihood estimation of Bradley's scores.

Usage

```r
getLvriter(object)
```

Arguments

- `object` An object of class BradleyEstim

Value

A matrix with numbers of iteration rows and 4 columns giving the iteration, the previous value of loglikelihood, the current value of the loglikelihood, and the difference between these loglikelihoods.

Examples

```r
data(Cocktail)
ResCock<-EstimBradley(Cocktail,Constraint=0,Tcla=1,eps=1e-04,eps1=1e-04,TestPi=TRUE)
ResCock_Lvriter<-getLvriter(ResCock)
```

Methods for Function `getLvriter`

Description

Methods for function `getLvriter`

Methods

```r
signature(object = "BradleyEstim")
```
getPaircomp

Description

Gets the individual paired comparisons.

Usage

getPaircomp(object)

Arguments

object An object of class DataPairComp

Value

list of number of criteria elements each corresponding to the results of paired comparisons performed by the consumers.

Examples

data(Cocktail)
Cocktail_Paircomp<-getPaircomp(Cocktail)

getPaircomp-methods

Description

Methods for function getPaircomp

Methods

signature(object = "DataPairComp")
getPi

Description

Gets the Bradley’s scores.

Usage

```r
getPi(object)
```

Arguments

- `object`: An object of class `BradleyEstim`

Value

A list of the Bradley’s scores for the different criteria.

Examples

```r
data(Cocktail)
ResCock<-EstimBradley(Cocktail,Constraint=0,Tcla=1,eps=1e-04,eps1=1e-04,TestPi=TRUE)
ResCock_Pi<-getPi(ResCock)
```

Methods for Function getPi

Description

Methods for function `getPi`

Methods

```r
signature(object = "BradleyEstim")
```
getProd

Description

Gets the products labels.

Usage

getProd(object)

Arguments

object An object of class DataPairComp

Value

vector of the products labels.

Examples

data(Cocktail)
Cocktail_Prod<-getProd(Cocktail)

getProd-methods

Methods for Function getProd

Description

Methods for function getProd

Methods

signature(object = "DataPairComp")
getRestestglob-methods

getRestestglob

Gets the result of the test of Bradley’s scores equality.

Description

Gets the result of the test of Bradley’s scores equality from the function EstimBradley().

Usage

getRestestglob(object)

Arguments

object An object of class BradleyEstim

Value

list of five elements:

- lvrH0 matrix of size (Tcla * number of criteria), giving the value of the log likelihood under the hypothesis of equality of Bradley’s scores
- lvrH1 matrix of size (Tcla * number of criteria), giving the value of the log likelihood under the hypothesis of non equality of Bradley’s scores
- lRatio matrix of size (Tcla * number of criteria), giving the value of the log likelihood Ratio statistic
- Pvalue matrix of size (Tcla * number of criteria), giving the P value of the log likelihood Ratio test
- H1 matrix of size (Tcla * number of criteria) giving the result of rejection of equality of Bradley’s scores

Examples

data(Cocktail)
ResCock<-EstimBradley(Cocktail,Constraint=0,Tcla=1,eps=1e-04,eps1=1e-04,TestPi=TRUE)
ResCock_Restestglob<-getRestestglob(ResCock)

getRestestglob-methods

Methods for Function getRestestglob

Description

Methods for function getRestestglob

Methods

signature(object = "BradleyEstim")
getRestestprod

Description

Gets the result of the Bradley's scores multiple comparison tests from the function EstimBradley().

Usage

getRestestprod(object)

Arguments

object

A n object of class BradleyEstim

Value

list of Tcla elements of type matrix of size (number of paired comparison * 7), each column corresponding to:
 - class identification,
 - criterion identification,
 - product identification i,
 - product identification j,
 - value for the statistic corresponding to H0: equality of the Bradley's scores of products i and j,
 - P value of this test,
 - Rejection or acceptance of H0 for a level of 5%.

Examples

data(Cocktail)
ResCock<-EstimBradley(Cocktail,Constraint=0,Tcla=1,eps=1e-04,eps1=1e-04,TestPi=TRUE)
ResCock_Restestprod<-getRestestprod(ResCock)

gRestestprod-methods

Methods for Function getRestestprod

Description

Methods for function getRestestprod

Methods

signature(object = "BradleyEstim")
getSimu

Gets the results of Likelihood Ratio Test.

Description

Gets the results of Likelihood Ratio Test obtained by Monte-Carlo simulations.

Usage

```r
getSimu(object)
```

** Arguments**

- `object`: An object of class `LvrRatio`

Value

A matrix with the number of classes under H0, the values of Loglikelihood under H0 and H1 and the differences between these Loglikelihoods.

getSimu-methods

Methods for Function getSimu

Description

Methods for function `getSimu`

Methods

```r
signature(object = "LvrRatio")
```

getTest

Gets the level and the quantile of Likelihood ratio test.

Description

Gets the level and the quantile of Likelihood ratio test from the function `ResSimulLvrRatio()`.

Usage

```r
getTest(object)
```

Arguments

- `object`: An object of class `LvrRatio`
Value

Matrix with the level and the associated quantile after performing Likelihood Ratio test.

Description

Methods for function `getTest`

Methods

```
signature(object = "LvrRatio")
```

getVarcov

`getVarcov(object)`

Description

`getVarcov` gets the Bradley's scores covariance matrices from the function `EstimBradley()`.

Usage

```
getVarcov(object)
```

Arguments

- `object`: An object of class `BradleyEstim`

Value

List of `Tcla` elements containing Bradley's scores covariance matrices for the different criteria.

Examples

```
data(Cocktail)
ResCock<-EstimBradley(Cocktail,Constraint=0,Tcla=1,eps=1e-04,eps1=1e-04,TestPi=TRUE)
ResCock_Varcov<-getVarcov(ResCock)
```
getVarcov-methods

Methods for Function getVarcov

Description

Methods for function `getVarcov`

Methods

`signature(object = "BradleyEstim")`

getZh

`getZh(object)`

Description

Gets the result of the function `EstimBradley()`

Usage

`getZh(object)`

Arguments

`object` An object of class `BradleyEstim`

Value

Object of class `matrix` with the posterior probabilities for each individual to belong to the different classes and the class with the higher probability.

Examples

```r
data(Cocktail)
ResCock2<-EstimBradley(Cocktail,Constraint=0,Tcla=2,eps=1e-04,eps1=1e-04,TestPi=TRUE)
ResCock2_Zh<-getZh(ResCock2)
```
Description

Methods for function getZh

Methods

signature(object = "BradleyEstim")

ImportData

Description

Import the different paired comparison data files in csv format and create an object of class DataPairComp

Usage

ImportData(name, labelprod = FALSE, labelconso = NULL, sep = ";", dec = ".")

Arguments

name part of name of the different data files (.csv files)
labelprod indicate the existence of labels of the different products in data files (default = FALSE) given in the header of each column of the data files.
labelconso vector of label of consummers given by the user (default = NULL)
sep the field separator character. Values on each line of the file are separated by this character. (default = ";")
dec the character used in the file for decimal points. (default = ".")

Value

Object of class DataPairComp with the following elements:
Cons: corresponding to the label of consummers (default : Number of consumer)
Crit: names of the different criteria contained in the name of the different data files
Prod: names of the different products (default : number of the product)
Paircomp: list of number of criteria elements each corresponding to the results of paired comparisons performed by the consummers.
LvrRatio-class Class "LvrRatio"

Description

A class for Likelihood Ration Test results

Objects from the Class

Objects can be created by ResSimulLvrRatio().

Slots

Simu: Object of class "matrix" with the number of classes under H0, Loglikelihoods under H0 and H1, difference between these Loglikelihoods.

Test: Object of class "matrix" with the level and the associated quantile after performing Likelihood Ratio test.

Methods

getSimu signature(object = "LvrRatio")

getTest signature(object = "LvrRatio")

Examples

```r
showClass("LvrRatio")
```

Piplot
Graphical representation of the Bradley’s scores

Description

Gives a graphical representation of the Bradley’s scores.

Usage

```r
Piplot(Pi, SigmaPi = NULL, level=0.05, main = NULL, ylab = "Bradley's scores", xlab = "Item", labelprod = NULL)
```
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pi</td>
<td>vector of Bradley’s scores</td>
</tr>
<tr>
<td>SigmaPi</td>
<td>vector of Bradley’s scores standard deviation given by the user. (default SigmaPi=NULL)</td>
</tr>
<tr>
<td>level</td>
<td>level to use for the confidence intervals. (default level=0.05)</td>
</tr>
<tr>
<td>main</td>
<td>Title of the plot. (default main=NULL)</td>
</tr>
<tr>
<td>ylab</td>
<td>value for ylab. (default ylab= Bradley’s scores)</td>
</tr>
<tr>
<td>xlab</td>
<td>value for xlab. (default xlab=Item)</td>
</tr>
<tr>
<td>labelprod</td>
<td>label vector of the Item. (default labelprod=NULL)</td>
</tr>
</tbody>
</table>

Details

The representation is based on plot(x) function, with Item on x axis, and Bradley’s scores on y axis. If SigmaPi is provided by user, a 1-level (default 95%) confidence interval is drawn for each Item.

Value

A graphical representation of bradley’s scores.

Examples

```r
data(Cocktail_Cum)
res<-C_piBTL(Cocktail_Cum,Constraint=0,eps1=0.0001,Pi=NULL,TestPi=TRUE)
Res_Pi<-res$Pi
Res_Varcov<-res$VarcovPi
Res_Sigma<-sqrt(diag(Res_Varcov))
Piplot(Res_Pi, SigmaPi = Res_Sigma, level=0.01, main = NULL, ylab = "Bradley’s scores", xlab = "Item", labelprod = NULL)
```

ResCocktail1

Result of EstimBradley function for 1 class and data Cocktail

Description

Result of EstimBradley function for 1 class and data Cocktail

Usage

```r
data(ResCocktail1)
```

Format

A BradleyEstim class object with the following elements:
ResSimulLvrRatio

Examples

data(ResCocktail1)
show(ResCocktail1)

ResSimulLvrRatio

Log Likelihood Ratio Test for Paired comparison data

Description

Returns the result of Log Likelihood Ratio Test of the number of classes for Paired comparison data (T classes versus (T+1) classes)

Usage

ResSimulLvrRatio(Data,ResH0,Constraint,nsimul,level,eps=1e-04,eps1=1e-04)

Arguments

Data Object of class DataPairComp
ResH0 Object of class BradleyEstim corresponding to the result of BradleyEstim() function for T classes (H0)
Constraint Kind of constraint on Bradley’s scores. If Constraint=0, the sum of Bradley’s scores should be equal to 1. For other values for Constraint, the product of Bradley’s scores should be equal to 1 (default Constraint=0).
nsimul number of Monte Carlo simulations
level level of the Log Likelihood Ratio test defined by the user (default level=0.05).
eps value of the convergence criteria for the EM algorithm (default eps=1e-04).
eps1 value of the criteria convergence for Dykstra algorithm (default eps1=1e-04).

Details

The likelihood ratio test is based on a Monte Carlo procedure. A simulation of nsimul data set is done. We perform estimation of the different parameters for the number of classes defined in the object ResH0 of class BradleyEstim (corresponding to the null hypothesis) and for one more class corresponding to the alternative hypothesis.

We obtain a set of Log Likelihoods under the null and alternative hypothesis on the basis of simulated data and so of the Log Likelihood Ratio Statistic.

We replace the observed value of this statistic for the true data set. And we conclude on the acceptance or not of the null hypothesis (no differences between T and T+1 classes).

Value

Object of class LvrRatio with the following components:

Simu Matrix with the number of classes under H0, Loglikelihoods under H0 and H1, difference between these Loglikelihoods.
Test Matrix with the level of the test and the associated quantile
Examples

data(Cocktail)
ResCock1<-EstimBradley(Cocktail,Constraint=0,Tcla=1,eps=1e-04,eps1=1e-04,TestPi=TRUE)
Res_LvrRatio1<-ResSimulLvrRatio(Cocktail,ResCock1,0,3,level=0.05,eps=0.001,eps1=0.001)
getSimu(Res_LvrRatio1)
getTest(Res_LvrRatio1)

Description

Methods for function show

Methods

signature(object = "BradleyEstim")
signature(object = "DataPairComp")
Index

* package
 CompR-package, 2
 BradleyEstim-class, 4
 C_piBTL, 8
 ClassDataPairComp, 6
 ClassifPaired, 6
 Cocktail, 7
 Cocktail_Cum, 8
 CompR (CompR-package), 2
 CompR-package, 2
 DataPairComp-class, 10
 DataSimulH0, 11
 EstimBradley, 4, 11
 getCons, 13
 getCons, DataPairComp-method
 (DataPairComp-class), 10
 getCons-methods, 14
 getCrit, 14
 getCrit, DataPairComp-method
 (DataPairComp-class), 10
 getCrit-methods, 14
 getIc, 15
 getIc, BradleyEstim-method
 (BradleyEstim-class), 4
 getIc-methods, 15
 getLambda, 16
 getLambda, BradleyEstim-method
 (BradleyEstim-class), 4
 getLambda-methods, 16
 getLvr, 17
 getLvr, BradleyEstim-method
 (BradleyEstim-class), 4
 getLvr-methods, 17
 getLvrriter, 18
 getLvrriter, BradleyEstim-method
 (BradleyEstim-class), 4
 getLvrriter-methods, 18
 getPaircomp, 19
 getPaircomp, DataPairComp-method
 (DataPairComp-class), 10
 getPaircomp-methods, 19
 getPi, 20
 getPi, BradleyEstim-method
 (BradleyEstim-class), 4
 getPi-methods, 20
 getProd, 21
 getProd, DataPairComp-method
 (DataPairComp-class), 10
 getProd-methods, 21
 getRestestglob, 22
 getRestestglob, BradleyEstim-method
 (BradleyEstim-class), 4
 getRestestglob-methods, 22
 getRestestprod, 23
 getRestestprod, BradleyEstim-method
 (BradleyEstim-class), 4
 getRestestprod-methods, 23
 getSimu, 24
 getSimu, LvrRatio-method
 (LvrRatio-class), 28
 getSimu-methods, 24
 getTest, 24
 getTest, LvrRatio-method
 (LvrRatio-class), 28
 getTest-methods, 25
 getVarcov, 25
 getVarcov, BradleyEstim-method
 (BradleyEstim-class), 4
 getVarcov-methods, 26
 getZh, 26
 getZh, BradleyEstim-method
 (BradleyEstim-class), 4
 getZh-methods, 27

ImportData, 27
INDEX

LvrRatio-class, 28

Piplo, 4, 28

ResCocktail1, 29
ResSimulLvrRatio, 4, 30

show, BradleyEstim-method
 (BradleyEstim-class), 4

show, DataPairComp-method
 (DataPairComp-class), 10

show-methods, 31