Package ‘Compind’

January 8, 2024

Type Package
Title Composite Indicators Functions
Version 3.0
Date 2023-12-28
Author Francesco Vidoli, Elisa Fusco
Maintainer Francesco Vidoli <fvidoli@gmail.com>
Depends R (>= 3.5.0), Benchmarking, psych, boot, lpSolve, spdep
Imports Hmisc, MASS, GPArotation, nonparaeff, smaa, np, FactoMineR, GWmodel, sp
License GPL-3
Suggests R.rsp
VignetteBuilder R.rsp
NeedsCompilation no
Repository CRAN
Date/Publication 2024-01-08 10:00:12 UTC

R topics documented:

Compind-package ... 2
bandwidth_CI ... 3
BLI_2017 .. 4
ci_ampi ... 5
ci_bod ... 7
Compind-package

Description

Compind package contains functions to enhance several approaches to the Composite Indicators (CIs) methods, focusing, in particular, on the normalisation and weighting-aggregation steps.

Author(s)

Francesco Vidoli, Elisa Fusco Maintainer: Francesco Vidoli <fvidoli@gmail.com>

References

bandwidth_CI

Multivariate mixed bandwidth selection for exogenous variables

Description

A function for the selection of optimal multivariate mixed bandwidths for the kernel density estimation of continuous and discrete exogenous variables.

Usage

bandwidth_CI(x, indic_col, ngood, nbad, Q=NULL, Q_ord=NULL)
Arguments

- **x**: A data frame containing simple indicators.
- **indic_col**: Simple indicators column number.
- **ngood**: The number of desirable outputs; it has to be greater than 0.
- **nbad**: The number of undesirable outputs; it has to be greater than 0.
- **Q**: A matrix containing continuous exogenous variables.
- **Q_ord**: A matrix containing discrete exogenous variables.

Details

Author thanks Nicky Rogge for his help and for making available the original code of the bandwidth function.

Value

- **bandwidth**: A matrix containing the optimal bandwidths for the exogenous variables indicated in `Q` and `Q_ord`.
- **ci_method**: "bandwidth_CI"

Author(s)

Fusco E., Rogge N.

Examples

```r
indic <- c("employ_2011", "gasemiss_2011","deprived_2011")
dat <- EU_2020[-c(10,18),indic]
Q_GDP <- EU_2020[-c(10,18),"percGDP_2011"]

# Conditional robust BoD Constrained VWR
band = bandwidth_CI(dat, ngood=1, nbad=2, Q = Q_GDP)
```

Description

Data related to BLI Edition 2017 (OECD, 2017) for all 38 OECD and non-OECD countries (Data extracted on: 19\/02\/2020).

For more info, please see https://data-explorer.oecd.org.

Usage

```r
data(BLI_2017)
```
Format

BLI_2017 is a dataset with 38 observations and 12 indicators.

- **country** OECD and non-OECD countries.
- **housing** Housing.
- **income** Income and wealth.
- **jobs** Jobs and earnings.
- **community** Community engagement.
- **education** Education.
- **environment** Environment quality.
- **civic** Civic engagement.
- **health** Health.
- **satisfaction** Life satisfaction.
- **safety** Personal security (safety).
- **worklife** Work-Life balance.

Author(s)

Fusco E.

Examples

```r
data(BLI_2017)
```

ci_ampi

Adjusted Mazziotta-Pareto Index (AMPI) method

Description

Adjusted Mazziotta-Pareto Index (AMPI) is a non-compensatory composite index that allows to take into account the time dimension, too. The calculation part is similar to the MPI framework, but the standardization part make the scores obtained over the years comparable.

Usage

```r
ci_ampi(x, indic_col, gp, time, polarity, penalty = "NEG")
```
Arguments

x A data.frame containing simple indicators in a Long Data Format.
indic_col Simple indicators column number.
gp Goalposts; to facilitate the interpretation of results, the goalposts can be chosen so that 100 represents a reference value (e.g., the average in a given year).
time The time variable (mandatory); if the analysis is carried out over a single year, it is necessary to create a constant variable (i.e. dataframe@year <- 2014).
polarity Polarity vector: "POS" = positive, "NEG" = negative. The polarity of an individual indicator is the sign of the relationship between the indicator and the phenomenon to be measured (e.g., in a well-being index, "GDP per capita" has 'positive' polarity and "Unemployment rate" has 'negative' polarity).
penalty Penalty direction; Use "NEG" (default) in case of 'increasing' or 'positive' composite index (e.g., well-being index), "POS" in case of 'decreasing' or 'negative' composite index (e.g., poverty index).

Details

Author thanks Leonardo Alaimo for their help and for making available the original code of the AMPI function. Federico Roscioli for his integrations to the original code.

Value

An object of class "CI". This is a list containing the following elements:

- ci_ampi_est Composite indicator estimated values.
- ci_method Method used; for this function ci_method="ampi".
- ci_penalty Matrix containing penalties only.
- ci_norm List containing only the normalised indicators for each year.

Author(s)

Fusco E., Alaimo L., Giovagnoli C., Patelli L., F. Roscioli

References

See Also

ci_bod, normalise_ci
Examples

data(EU_2020)

data_test = EU_2020[,c("employ_2010","employ_2011","finalenergy_2010","finalenergy_2011")]

EU_2020_long<-reshape(data_test,
 varying=c("employ_2010","employ_2011","finalenergy_2010","finalenergy_2011"),
 direction="long",
 idvar="geo",
 sep="_")

CI <- ci_ampi(EU_2020_long,
 indic_col=c(2:3),
 gp=c(50, 100),
 time=EU_2020_long[,1],
 polarity= c("POS", "POS"),
 penalty="POS")

CI$ci_ampi_est
CI$ci_penalty
CI$ci_norm

\textit{ci_bod} \hspace{1cm} \textit{Benefit of the Doubt approach (BoD)}

\textbf{Description}

Benefit of the Doubt approach (BoD) is the application of Data Envelopment Analysis (DEA) to the field of composite indicators. It was originally proposed by Melyn and Moesen (1991) to evaluate macroeconomic performance.

\textbf{Usage}

\texttt{ci_bod(x, indic_col)}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{x} \hspace{1cm} A data.frame containing simple indicators.
 \item \texttt{indic_col} \hspace{1cm} A numeric list indicating the positions of the simple indicators.
\end{itemize}

\textbf{Value}

An object of class "CI". This is a list containing the following elements:

\begin{itemize}
 \item \texttt{ci_bod_est} \hspace{1cm} Composite indicator estimated values.
 \item \texttt{ci_method} \hspace{1cm} Method used; for this function \texttt{ci_method="bod"}.
 \item \texttt{ci_bod_weights} \hspace{1cm} Raw weights assigned to the simple indicators (Dual values - prices - in the dual DEA formulation).
\end{itemize}
ci_bod_constr

Author(s)

Vidoli F.

References

OECD (2008) "Handbook on constructing composite indicators: methodology and user guide".

See Also

ci_bod_dir, ci_rbod

Examples

```r
i1 <- seq(0.3, 0.5, len = 100) - rnorm(100, 0.2, 0.03)
i2 <- seq(0.3, 1, len = 100) - rnorm(100, 0.2, 0.03)
Indic = data.frame(i1, i2)
CI = ci_bod(Indic)
# validating BoD score
w = CI$ci_bod_weights
Indic[,1]*w[,1] + Indic[,2]*w[,2]
```

```r
data(EU_NUTS1)
data_norm = normalise_ci(EU_NUTS1,c(2:3), polarity = c("POS","POS"), method=2)
CI = ci_bod(data_norm$ci_norm,c(1:2))
```

ci_bod_constr

Constrained Benefit of the Doubt approach (BoD)

Description

The constrained Benefit of the Doubt function lets to introduce additional constraints to the weight variation in the optimization procedure so that all the weights obtained are greater than a lower value (low_w) and less than an upper value (up_w).

Usage

```r
ci_bod_constr(x, indic_col, up_w, low_w)
```
ci_bod_constr

Arguments

x A data.frame containing simple indicators.
indic_col A numeric list indicating the positions of the simple indicators.
up_w Importance weights upper bound.
low_w Importance weights lower bound.

Value

An object of class "CI". This is a list containing the following elements:

 ci_bod_constr_est Constrained composite indicator estimated values.
 ci_method Method used; for this function ci_method="bod_constrained".
 ci_bod_constr_weights Raw constrained weights assigned to the simple indicators.

Author(s)

Rogge N., Vidoli F.

References

Van Puyenbroeck T. and Rogge N. (2017) "Geometric mean quantity index numbers with Benefit-of-
the-Doubt weights", European Journal of Operational Research, Volume 256, Issue 3, Pages 1004 -
1014.

See Also

 ci_bod_dir, ci_bod

Examples

i1 <- seq(0.3, 0.5, len = 100) - rnorm (100, 0.2, 0.03)
i2 <- seq(0.3, 1, len = 100) - rnorm (100, 0.2, 0.03)
Indic = data.frame(i1, i2)
CI = ci_bod_constr(Indic, up_w=1, low_w=0.05)

data(EU_NUTS1)
data_norm = normalise_ci(EU_NUTS1, c(2:3), polarity = c("POS","POS"), method=2)
CI = ci_bod_constr(data_norm$ci_norm, c(1:2), up_w=1, low_w=0.05)
ci_bod_constr_bad
Constrained Benefit of the Doubt approach (BoD) in presence of undesirable indicators

Description

The constrained Benefit of the Doubt function introduces additional constraints to the weight variation in the optimization procedure (Constrained Virtual Weights Restriction) allowing to restrict the importance attached to a single indicator expressed in percentage terms, ranging between a lower and an upper bound (VWR); this function, furthermore, allows to calculate the composite indicator simultaneously in presence of undesirable (bad) and desirable (good) indicators allowing to impose a preference structure (ordVWR).

Usage

```r
ci_bod_constr_bad(x, indic_col, ngood=1, nbad=1, low_w=0, pref=NULL)
```

Arguments

- `x`: A data.frame containing simple indicators; the order is important: first columns must contain the desirable indicators, while second ones the undesirable indicators.
- `indic_col`: A numeric list indicating the positions of the simple indicators.
- `ngood`: The number of desirable outputs; it has to be greater than 0.
- `nbad`: The number of undesirable outputs; it has to be greater than 0.
- `low_w`: Importance weights lower bound.
- `pref`: The preference vector among indicators; For example if Indic1 is the most important, Indic2,Indic3 are more important than Indic4 and no preference judgment on Indic5 (= not included in the vector), the `pref` vector can be written as: `c("Indic1", "Indic2", "Indic3", "Indic4")`

Value

An object of class "CI". This is a list containing the following elements:

- `ci_bod_constr_bad_est`: Composite indicator estimated values.
- `ci_method`: Method used; for this function `ci_method="bod_constr_bad"`.
- `ci_bod_constr_bad_weights`: Raw weights assigned to each simple indicator.
- `ci_bod_constr_bad_target`: Indicator target values.

Author(s)

Fusco E., Rogge N.
References

See Also
 ci_bod_constr

Examples
 data(EU_2020)
 dat <- EU_2020[-c(10,18),indic]

 # BoD Constrained VWR
 CI_BoD_C = ci_bod_constr_bad(dat, ngood=2, nbad=2, low_w=0.05, pref=NULL)
 CI_BoD_C$ci_bod_constr_bad_est

 # BoD Constrained ordVWR
 importance <- c("gasemiss_2011","percGDP_2011","employ_2011")
 CI_BoD_C = ci_bod_constr_bad(dat, ngood=2, nbad=2, low_w=0.05, pref=importance)
 CI_BoD_C$ci_bod_constr_bad_est

ci_bod_dir
Directional Benefit of the Doubt (D-BoD) model

Description
Directional Benefit of the Doubt (D-BoD) model enhance non-compensatory property by introducing directional penalties in a standard BoD model in order to consider the preference structure among simple indicators.

Usage
 ci_bod_dir(x, indic_col, dir)

Arguments
 x
 A data.frame containing score of the simple indicators.
 indic_col
 Simple indicators column number.
 dir
 Main direction. For example you can set the average rates of substitution.
ci_bod_mdir

Value

An object of class "CI". This is a list containing the following elements:

- ci_bod_dir_est: Composite indicator estimated values.
- ci_method: Method used; for this function ci_method="bod_dir".

Author(s)

Vidoli F., Fusco E.

References

See Also

ci_bod, ci_rbod

Examples

```r
i1 <- seq(0.3, 0.5, len = 100) - rnorm(100, 0.2, 0.03)
i2 <- seq(0.3, 1, len = 100) - rnorm(100, 0.2, 0.03)
Indic = data.frame(i1, i2)
CI = ci_bod_dir(Indic, dir=c(1,1))

data(EU_NUTS1)
data_norm = normalise_ci(EU_NUTS1,c(2:3), polarity = c("POS","POS"), method=2)
CI = ci_bod_dir(data_norm$ci_norm,c(1:2), dir=c(1,0.5))
```

Multi-directional Benefit of the Doubt approach (MDBoD)

Description

Multi-directional Benefit of the Doubt (MDBoD) allows to introduce the non-compensability among simple indicators in a standard BOD in an objective manner: the preference structure, i.e., the direction, is determined directly from the data and is specific for each unit.

Usage

ci_bod_mdir(x, indic_col)

Arguments

- **x**: A data.frame containing simple indicators.
- **indic_col**: A numeric list indicating the positions of the simple indicators.
Value

An object of class "CI". This is a list containing the following elements:

- **ci_bod_mdir_est**: Composite indicator estimated values.
- **ci_method**: Method used; for this function `ci_method="bod"`.
- **ci_bod_mdir_spec**: Simple indicators specific scores.
- **ci_bod_mdir_dir**: Directions for each simple indicator and unit.

Author(s)

Fusco E.

References

See Also

- `ci_bod_dir`, `mea`

Examples

```r
data(BLI_2017)
CI <- ci_bod_mdir(BLI_2017,c(2:12))
```

ci_bod_var_w

Variance weighted Benefit of the Doubt approach (BoD variance weighted)

Description

Variance weighted Benefit of the Doubt approach (BoD variance weighted) is a particular form of BoD method with additional information in the optimization problem. In particular it has been added weight constraints (in form of an Assurance region type I (AR I)) endogenously determined in order to take into account the ratio of the vertical variability of each simple indicator relative to one another.

Usage

```r
ci_bod_var_w(x,indic_col,boot_rep = 5000)
```
ci_bod_var_w

Arguments

- **x**: A data.frame containing score of the simple indicators.
- **indic_col**: Simple indicators column number.
- **boot_rep**: The number of bootstrap replicates (default=5000) for the estimates of the non-parametric bootstrap (first order normal approximation) confidence intervals for the variances of the simple indicators.

Details

For more informations about the estimation of the confidence interval for the variances, please see function `boot.ci`, package `boot`.

Value

An object of class "CI". This is a list containing the following elements:

- **ci_bod_var_w_est**: Composite indicator estimated values.
- **ci_method**: Method used; for this function `ci_method="bod_var_w"`.

Author(s)

Vidoli F.

References

See Also

`ci_bod`, `ci_rbod`

Examples

```r
i1 <- seq(0.3, 0.5, len = 100) - rnorm(100, 0.2, 0.03)
i2 <- seq(0.3, 1, len = 100) - rnorm(100, 0.2, 0.03)
Indic = data.frame(i1, i2)
CI = ci_bod_var_w(Indic)
```
ci_factor Weighting method based on Factor Analysis

Description

Factor analysis groups together collinear simple indicators to estimate a composite indicator that captures as much as possible of the information common to individual indicators.

Usage

`ci_factor(x, indic_col, method="ONE", dim)`

Arguments

- `x`: A data.frame containing score of the simple indicators.
- `indic_col`: Simple indicators column number.
- `method`: If method = "ONE" (default) the composite indicator estimated values are equal to first component scores; if method = "ALL" the composite indicator estimated values are equal to component score multiplied by its proportion variance; if method = "CH" it can be choose the number of the component to take into account.
- `dim`: Number of chosen component (if method = "CH", default is 3).

Value

An object of class "CI". This is a list containing the following elements:

- `ci_factor_est`: Composite indicator estimated values.
- `loadings_fact`: Variance explained by principal factors (in percentage terms).
- `ci_method`: Method used; for this function `ci_method="factor"`.

Author(s)

Vidoli F.

References

OECD (2008) "Handbook on constructing composite indicators: methodology and user guide".

See Also

`ci_bod, ci_mpi`
ci_factor_mixed

Examples

```r
i1 <- seq(0.3, 0.5, len = 100) - rnorm(100, 0.2, 0.03)
i2 <- seq(0.3, 1, len = 100) - rnorm(100, 0.2, 0.03)
Indic = data.frame(i1, i2)
CI = ci_factor(Indic)

data(EU_NUTS1)
CI = ci_factor(EU_NUTS1, c(2:3), method = "ALL")

data(EU_2020)
data_norm = normalise_ci(EU_2020, c(47:51), polarity = c("POS", "POS", "POS", "POS"), method = 2)
CI3 = ci_factor(data_norm$ci_norm, c(1:5), method = "CH", dim = 3)
```

Description

Factor analysis of mixed data (FAMD) can be seen as a principal component method dedicated to analyze a data set containing both quantitative and qualitative variables making possible to compute composite indicators taking into account continuous, dummy, or factor variables.

Usage

```r
ci_factor_mixed(x, indic_col, method = "ONE", dim)
```

Arguments

- `x` A data.frame containing score of the simple indicators.
- `indic_col` Simple indicators column number.
- `method` If method = "ONE" (default) the composite indicator estimated values are equal to first component scores; if method = "ALL" the composite indicator estimated values are equal to component score multiplied by its proportion variance; if method = "CH" it can be choose the number of the component to take into account.
- `dim` Number of chosen component (if method = "CH", default is 3).

Value

An object of class "CI". This is a list containing the following elements:

- `ci_factor_est` Composite indicator estimated values.
- `loadings_fact` Variance explained by principal factors (in percentage terms).
- `ci_method` Method used; for this function ci_method="factor_mixed".

Author(s)

Luis Carlos Castillo Tellez
ci_generalized_mean

See Also
ci_bod, ci_factor

Examples

```r
i1 <- seq(0.3, 0.5, len = 100) - rnorm(100, 0.2, 0.03)
i2 <- seq(0.3, 1, len = 100) - rnorm(100, 0.2, 0.03)
i3 <- seq(0, 1, len = 100)
i3 = as.factor(ifelse(i3>0.5,1,0))
Indic = data.frame(i1, i2, i3)

CI = ci_factor_mixed(Indic,c(1:3))
CI2 = ci_factor_mixed(Indic,c(1:3), method="ALL")
CI3 = ci_factor_mixed(Indic,c(1:3), method="CH", dim=2)
```

ci_generalized_mean
Weighting method based on generalized mean

Description

Generalized means are a family of functions for aggregating sets of numbers (it include as special cases the Pythagorean means, arithmetic, geometric, and harmonic means). The generalized mean is also known as power mean or Holder mean.

Usage

```r
ci_generalized_mean(x, indic_col, p, na.rm=TRUE)
```

Arguments

- `x`
 A data.frame containing simple indicators.
- `indic_col`
 Simple indicators column number.
- `p`
 Exponent p (real number).
- `na.rm`
 Remove NA values before processing; default is TRUE.

Value

An object of class "CI". This is a list containing the following elements:

- `ci_generalized_mean_est`
 Composite indicator estimated values.
- `ci_method`
 Method used; for this function `ci_method="generalized_mean"`.

The generalized mean with the exponent p can be expressed as:

$$M_p(I_1, \ldots, I_n) = \left(\frac{1}{n} \sum_{i=1}^{n} I_i^p \right)^{\frac{1}{p}}$$

Particular cases are: $p = -\infty$: minimum, $p = -1$: harmonic mean, $p = 0$: geometric mean, $p = 1$: arithmetic mean, $p = 2$: root-mean-square and $p = \infty$: maximum.

Author(s)
Vidoli F.

See Also
- `ci_geom_gen`, `ci_factor`

Examples
```r
i1 <- seq(0.3, 0.5, len = 100) - rnorm(100, 0.2, 0.03)
i2 <- seq(0.3, 1, len = 100) - rnorm(100, 0.2, 0.03)
Indic = data.frame(i1, i2)
CI = ci_generalized_mean(Indic, p=-1) # harmonic mean
data(EU_NUTS1)
CI = ci_generalized_mean(EU_NUTS1[,c(2:3)],p=2) # geometric mean
```

Description
Intertemporal analysis for geometric mean quantity index numbers

Usage
```r
ci_geom_bod_intertemp(x0, x1, indic_col, up_w, low_w, bench)
```

Arguments
- `x0`: A data.frame containing simple indicators - time 0
- `x1`: A data.frame containing simple indicators - time 1
- `indic_col`: A numeric list indicating the positions of the simple indicators.
- `up_w`: Weights upper bound.
- `low_w`: Weights lower bound.
- `bench`: Row number of the benchmark unit
Value

An object of class "CI". This is a list containing the following elements:

- **ci_geom_bod_intertemp_est**
 A matrix containing the Overall Change (period t1 vs t0), the Change Effect (period t1 vs t0), the Benchmark Effect (period t1 vs t0) and Weight Effect (period t1 vs t0).

- **ci_method**
 Method used; for this function ci_method="Intertemporal_effects_Geometric_BoD".

Author(s)

Rogge N., Vidoli F.

References

See Also

`ci_bod_constr, ci_bod`

Examples

```r
i1_t1 <- seq(0.3, 0.5, len = 100)
i2_t1 <- seq(0.3, 1, len = 100)
Indic_t1 = data.frame(i1_t1, i2_t1)

i1_t0 <- i1_t1 - rnorm (100, 0.2, 0.03)
i2_t0 <- i2_t1 - rnorm (100, 0.2, 0.03)
Indic_t0 = data.frame(i1_t0, i2_t0)

intertemp = ci_geom_bod_intertemp(Indic_t0,Indic_t1,c(1:2),up_w=0.95,low_w=0.05,1)
intertemp
```

Description

This function use the geometric mean to aggregate the single indicators. Two weighting criteria has been implemented: EQUAL: equal weighting and BOD: Benefit-of-the-Doubt weights following the Puyenbroeck and Rogge (2017) approach.
Usage

`ci_geom_gen(x, indic_col, meth, up_w, low_w, bench)`

Arguments

- `x`: A data.frame containing simple indicators.
- `indic_col`: A numeric list indicating the positions of the simple indicators.
- `up_w`: if meth="BOD"; upper bound of the weighting set.
- `low_w`: if meth="BOD"; lower bound of the weighting set.
- `bench`: Row number of the benchmark unit used to normalize the data.frame x.

Value

An object of class "CI". This is a list containing the following elements:

- `ci_mean_geom_est`: Composite indicator estimated values.
- `ci_method`: Method used; for this function ci_method="mean_geom".

- `ci_geom_bod_est`: Constrained composite indicator estimated values.
- `ci_geom_bod_weights`: Raw constrained weights assigned to the simple indicators.
- `ci_method`: Method used; for this function ci_method="geometric_bod".

Author(s)

Rogge N., Vidoli F.

References

See Also

`ci_bod_dir`, `ci_bod`
Examples

```r
i1 <- seq(0.3, 1, len = 100) - rnorm(100, 0.1, 0.03)
i2 <- seq(0.3, 0.5, len = 100) - rnorm(100, 0.1, 0.03)
i3 <- seq(0.3, 0.5, len = 100) - rnorm(100, 0.1, 0.03)
Indic = data.frame(i1, i2, i3)

geom1 = ci.geom.gen(Indic, c(1:3), meth = "EQUAL")
geom1$ci.mean.geom_est
geom1$ci.method

geom2 = ci.geom.gen(Indic, c(1:3), meth = "BOD", 0.7, 0.3, 100)
geom2$ci.geom.bod_est
geom2$ci.geom.bod_weights
```

ci_mean_min

Mean-Min Function

Description

The Mean-Min Function (MMF) is an intermediate case between arithmetic mean, according to which no unbalance is penalized, and min function, according to which the penalization is maximum. It depends on two parameters that are respectively related to the intensity of penalization of unbalance (α) and intensity of complementarity (β) among indicators.

Usage

```r
ci_mean_min(x, indic_col, alpha, beta)
```

Arguments

- **x**: A data.frame containing simple indicators.
- **indic_col**: Simple indicators column number.
- **alpha**: The intensity of penalisation of unbalance among indicators, $0 \leq \alpha \leq 1$
- **beta**: The intensity of complementarity among indicators, $\beta \geq 0$

Value

An object of class "CI". This is a list containing the following elements:

- **ci_mean_min_est**: Composite indicator estimated values.
- **ci_method**: Method used; for this function ci_method="mean_min".
Mazziotta-Pareto Index (MPI) method

Description

Mazziotta-Pareto Index (MPI) is a non-linear composite index method which transforms a set of individual indicators in standardized variables and summarizes them using an arithmetic mean adjusted by a "penalty" coefficient related to the variability of each unit (method of the coefficient of variation penalty).

Usage

```r
ci_mpi(x, indic_col, penalty="POS")
```

Arguments

- `x` A data.frame containing simple indicators.
- `indic_col` Simple indicators column number.
- `penalty` Penalty direction; Use "POS" (default) in case of 'increasing' or 'positive' composite index (e.g., well-being index), "NEG" in case of 'decreasing' or 'negative' composite index (e.g., poverty index).

Value

An object of class "CI". This is a list containing the following elements:

- `ci_mpi_est` Composite indicator estimated values.
- `ci_method` Method used; for this function `ci_method="mpi"`.

Examples

```r
data(EU_NUTS1)
data_norm = normalise_ci(EU_NUTS1,c(2:3),c("NEG","POS"),method=2)
CI = ci_mean_min(data_norm$ci_norm, alpha=0.5, beta=1)
```
ci_ogwa

Author(s)
Vidoli F.

References

See Also
ci_bod, normalise_ci

Examples

data(EU_NUTS1)

Please, pay attention. MPI can be calculated only with two standardizations methods:
Classic MPI - method=1, z.mean=100 and z.std=10
Correct MPI - method=2
For more info, please see references.

data_norm = normalise_ci(EU_NUTS1,c(2:3),c("NEG","POS"),method=1,z.mean=100, z.std=10)
CI = ci_mpi(data_norm$ci_norm, penalty="NEG")

data(EU_NUTS1)
CI = ci_mpi(EU_NUTS1,c(2:3),penalty="NEG")

ci_ogwa Ordered Geographically Weighted Average (OWA)

Description
The Ordered Geographically Weighted Averaging (OWA) operator is an extension of the multi-criteria decision aggregation method called OWA (Yager, 1988) that accounts for spatial heterogeneity.

Usage

```r  
Ci_ogwa(x, id, indic_col, atleastjp, coords,  
kernel = "bisquare", adaptive = F, bw,  
p = 2, theta = 0, longlat = F, dMat)  
```

Arguments

- **x**: A data.frame containing score of the simple indicators.
- **id**: Units' unique identifier.
- **indic_col**: Simple indicators column number.
coords A two-column matrix of latitude and longitude coordinates.
atleastjp Fuzzy linguistic quantifier "At least j".
kernel function chosen as follows: gaussian: \(wgt = \exp(-.5*(vdist/bw)^2) \); exponential: \(wgt = \exp(-vdist/bw) \); bisquare: \(wgt = (1-(vdist/bw)^2)^2 \) if \(vdist < bw \), \(wgt=0 \) otherwise; tricube: \(wgt = (1-(vdist/bw)^3)^3 \) if \(vdist < bw \), \(wgt=0 \) otherwise; boxcar: \(wgt=1 \) if \(dist < bw \), \(wgt=0 \) otherwise.
adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance).
bw bandwidth used in the weighting function.
p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance.
theta an angle in radians to rotate the coordinate system, default is 0.
longlat if TRUE, great circle distances will be calculated.
dMat a pre-specified distance matrix, it can be calculated by the function \texttt{gw.dist}.

Value
An object of class "CI". This is a list containing the following elements:

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI_OGWA_n</td>
<td>Composite indicator estimated values for OGW A-.</td>
</tr>
<tr>
<td>CI_OGWA_p</td>
<td>Composite indicator estimated values for OGW A+.</td>
</tr>
<tr>
<td>wp</td>
<td>OGW A weights' vector "More than j".</td>
</tr>
<tr>
<td>wn</td>
<td>OGW A weights' vector "At least j".</td>
</tr>
<tr>
<td>ci_method</td>
<td>Method used; for this function ci_method="ogwa".</td>
</tr>
</tbody>
</table>

Author(s)
Fusco E., Liborio M.P.

References

See Also
ci_owa

Examples
data(data_HPI)
data_HPI_2019 = data_HPI[data_HPI$year==2019,]
Indic_name = c("Life_Expectancy","Ladder_of_life","Ecological_Footprint")
Indic_norm = normalise_ci(data_HPI_2019, Indic_name, c("POS","POS","NEG"),method=2)$ci_norm
```r
Indic_norm = Indic_norm[Indic_norm$Life_Expectancy > 0 &
                      Indic_norm$Ladder_of_life > 0 &
                      Indic_norm$Ecological_Footprint > 0,]

Indic_CI = data.frame(Indic_norm,
                      data_HPI_2019[rownames(Indic_norm),
                      c("lat","long","HPI","ISO","Country")]
                      atleast = 2

coord = Indic_CI[,c("lat","long")]

CI_ogwa_n = ci_ogwa(Indic_CI, id="ISO",
                    indic_col=c(1:3),
                    atleastjp=atleast,
                    coords=as.matrix(coord),
                    kernel = "gaussian",
                    adaptive=FALSE,
                    longlat=FALSE)$CI_OGWA_n

#CI_ogwa_p = ci_ogwa(Indic_CI, id="ISO",
#                    indic_col=c(1:3),
#                    atleastjp=atleast,
#                    coords=as.matrix(coord),
#                    kernel = "gaussian",
#                    adaptive=FALSE,
#                    longlat=FALSE)$CI_OGWA_p
```

ci_owa

Ordered Weighted Average (OWA)

Description

The Ordered Weighted Averaging (OWA) operator is a multi-criteria decision aggregation method that is structurally non-compensatory (Yager, 1988).

Usage

`ci_owa(x, id, indic_col, atleastjp)`

Arguments

- **x**: A data.frame containing score of the simple indicators.
- **id**: Units' unique identifier.
- **indic_col**: Simple indicators column number.
- **atleastjp**: Fuzzy linguistic quantifier "At least j".
Value

An object of class "CI". This is a list containing the following elements:

- **CI_OWA_n**: Composite indicator estimated values for OWA-.
- **CI_OWA_p**: Composite indicator estimated values for OWA+.
- **wp**: OWA weights’ vector “More than j”.
- **wn**: OWA weights’ vector “At least j”.
- **ci_method**: Method used; for this function ci_method="owa".

Author(s)

Fusco E., Liborio M.P.

References

See Also

- **ci_ogwa**

Examples

data(data_HPI)

data_HPI = data_HPI[complete.cases(data_HPI),]
data_HPI_2019 = data_HPI[data_HPI$year==2019,]

Indic_name = c("Life_Expectancy","Ladder_of_life","Ecological_Footprint")
Indic_norm = data.frame("ISO"=data_HPI_2019$ISO,
 normalise_ci(data_HPI_2019[, Indic_name],
 c(1:3),
 c("POS","POS","NEG"),
 method=2)$ci_norm)

Indic_norm = Indic_norm[Indic_norm$Life_Expectancy>0 &
 Indic_norm$Ladder_of_life>0 &
 Indic_norm$Ecological_Footprint >0 ,]

atleast = 2
CI_owa_n = ci_owa(Indic_norm, id="ISO",
 indic_col=c(2:4),
 atleastjp=atleast)$CI_OWA_n
CI_owa_p = ci_owa(Indic_norm, id="ISO",
 indic_col=c(2:4),
 atleastjp=atleast)$CI_OWA_p
Robust Benefit of the Doubt approach (RBoD)

Description

Robust Benefit of the Doubt approach (RBoD) is the robust version of the BoD method. It is based on the concept of the expected minimum input function of order-\(m \) so “in place of looking for the lower boundary of the support of \(F \), as was typically the case for the full-frontier (DEA or FDH), the order-\(m \) efficiency score can be viewed as the expectation of the maximal score, when compared to \(m \) units randomly drawn from the population of units presenting a greater level of simple indicators”, Daraio and Simar (2005).

Usage

\[
\text{ci_rbod}(x, \text{indic_col}, M, B)
\]

Arguments

- \(x \): A data.frame containing score of the simple indicators.
- \(\text{indic_col} \): Simple indicators column number.
- \(M \): The number of elements in each of the bootstrapped samples.
- \(B \): The number of bootstrap replicates.

Value

An object of class "CI". This is a list containing the following elements:

- \(\text{ci_rbod_est} \): Composite indicator estimated values.
- \(\text{ci_method} \): Method used; for this function \(\text{ci_method}"\text{=}"\text{rbod}"\).

Author(s)

Vidoli F.

References

See Also

\text{ci_bod}
Examples

\begin{verbatim}
 i1 <- seq(0.3, 0.5, len = 100) - rnorm (100, 0.2, 0.03)
i2 <- seq(0.3, 1, len = 100) - rnorm (100, 0.2, 0.03)
 Indic = data.frame(i1, i2)
 CI = ci_rbod(Indic,B=10)

 data(EU_NUTS1)
 data_norm = normalise_ci(EU_NUTS1,c(2:3),polarity = c("POS","POS"), method=2)
 CI = ci_rbod(data_norm$ci_norm,c(1:2),M=10,B=20)
\end{verbatim}

ci_rbod_constr_bad Robust constrained Benefit of the Doubt approach (BoD) in presence of undesirable indicators

Description

The Robust constrained Benefit of the Doubt function introduces additional constraints to the weight variation in the optimization procedure (Constrained Virtual Weights Restriction) allowing to restrict the importance attached to a single indicator expressed in percentage terms, ranging between a lower and an upper bound (VWR); this function, furthermore, allows to calculate the composite indicator simultaneously in presence of undesirable (bad) and desirable (good) indicators allowing to impose a preference structure (ordVWR). This function is the robust version of the ci_bod_constr_bad: it is based on the concept of the expected minimum input function of order-\(m\) (Daraio and Simar, 2005) allowing to compare the unit under analysis against \(M\) peers by extracting \(B\) samples with replacement.

Usage

\texttt{ci_rbod_constr_bad(x, indic_col, ngood=1, nbad=1, low_w=0, pref=NULL, M, B)}

Arguments

- **x**: A data.frame containing simple indicators.
- **indic_col**: A numeric list indicating the positions of the simple indicators.
- **ngood**: The number of desirable outputs; it has to be greater than 0.
- **nbad**: The number of undesirable outputs; it has to be greater than 0.
- **low_w**: Importance weights lower bound.
- **pref**: The preference vector among indicators: For example if \texttt{Indic1} is the most important, \texttt{Indic2,Indic3} are more important than \texttt{Indic4} and no preference judgment on \texttt{Indic5} (= not included in the vector), the \texttt{pref} vector can be written as: \texttt{c("Indic1","Indic2","Indic3","Indic4")}
- **M**: The number of elements in each of the bootstrapped samples.
- **B**: The number of bootstrap replicates.
Value

An object of class "CI". This is a list containing the following elements:

- **ci_rbod_constr_bad_est**: Composite indicator estimated values.
- **ci_method**: Method used; for this function ci_method="rbod_constr_bad".
- **ci_rbod_constr_bad_weights**: Raw weights assigned to each simple indicator.
- **ci_rbod_constr_bad_target**: Indicator target values.

Author(s)

Fusco E., Rogge N.

References

See Also

- `ci_bod_constr`
- `ci_bod_constr_bad`

Examples

data(EU_2020)
dat <- EU_2020[-c(10,18),indic]

Robust BoD Constrained VWR
CI_BoD_C = ci_rbod_constr_bad(dat, ngood=2, nbad=2, low_w=0.05, pref=NULL, M=10, B=50)
CI_BoD_C$ci_rbod_constr_bad_est

Robust BoD Constrained ordVWR
importance <- c("gasemiss_2011","percGDP_2011","employ_2011")
CI_BoD_C = ci_rbod_constr_bad(dat, ngood=2, nbad=2, low_w=0.05, pref=importance, M=10, B=50)
CI_BoD_C$ci_rbod_constr_bad_est
ci_rbod_constr_bad_Q
Conditional robust constrained Benefit of the Doubt approach (BoD)
in presence of undesirable indicators

Description

The Conditional robust constrained Benefit of the Doubt function introduces additional constraints to the weight variation in the optimization procedure (Constrained Virtual Weights Restriction) allowing to restrict the importance attached to a single indicator expressed in percentage terms, ranging between a lower and an upper bound (VWR); this function, furthermore, allows to calculate the composite indicator simultaneously in presence of undesirable (bad) and desirable (good) indicators allowing to impose a preference structure (ordVWR). This function, in addition to being robust against outlier data (see ci_rbod_constr_bad function) allows to take into account external contextual continuous (Q) or/and ordinal (Q_ord) variables.

Usage

ci_rbod_constr_bad_Q(x, indic_col, ngood=1, nbad=1,
low_w=0, pref=NULL, M, B, Q=NULL, Q_ord=NULL, bandwidth)

Arguments

x
A data.frame containing simple indicators.
indic_col
A numeric list indicating the positions of the simple indicators.
ngood
The number of desirable outputs; it has to be greater than 0.
nbad
The number of undesirable outputs; it has to be greater than 0.
low_w
Importance weights lower bound.
pref
The preference vector among indicators; For example if Indic1 is the most important, Indic2,Indic3 are more important than Indic4 and no preference judgment on Indic5 (= not included in the vector), the pref vector can be written as: c("Indic1", "Indic2","Indic3","Indic4")
M
The number of elements in each of the bootstrapped samples.
B
The number of bootstrap replicates.
Q
A matrix containing continuous exogenous variables.
Q_ord
A matrix containing discrete exogenous variables.
bandwidth
Multivariate mixed bandwidth for exogenous variables; it can be calculated by bandwidth_CI function.

Value

An object of class "CI". This is a list containing the following elements:

ci_rbod_constr_bad_Q_est
Composite indicator estimated values.
ci_rbod_constr_bad_Q

Method used; for this function ci_method="rbod_constr_bad_Q".

Raw weights assigned to each simple indicator.

Indicator target values.

Author(s)

Fusco E., Rogge N.

References

See Also

ci_rbod_constr_bad, ci_bod_constr_bad

Examples

data(EU_2020)

indic <- c("employ_2011", "gasemiss_2011", "deprived_2011")
dat <- EU_2020[-c(10,18), indic]
Q_GDP <- EU_2020[-c(10,18), "percGDP_2011"]

Conditional robust BoD Constrained VWR
band = bandwidth_CI(dat, ngood=1, nbad=2, Q = Q_GDP)

CI_BoD_C = ci_rbod_constr_bad_Q(dat, ngood=1, nbad=2, low_w=0.05, pref=NULL, M=10, B=50, Q=Q_GDP, bandwidth = band$bandwidth)

CI_BoD_C$ci_rbod_constr_bad_Q_est

Conditional robust BoD Constrained ordVWR
import <- c("gasemiss_2011", "employ_2011", "deprived_2011")

CI_BoD_C2 = ci_rbod_constr_bad_Q(dat,
ngood=1,
ci_rbod_dir

Description

Directional Robust Benefit of the Doubt approach (D-RBoD) is the directional robust version of the BoD method.

Usage

ci_rbod_dir(x, indic_col, M, B, dir)

Arguments

x A data.frame containing score of the simple indicators.
indic_col Simple indicators column number.
M The number of elements in each of the bootstrapped samples.
B The number of bootstrap replicates.
dir Main direction. For example you can set the average rates of substitution.

Value

An object of class "CI". This is a list containing the following elements:

 ci_rbod_dir_est Composite indicator estimated values.
 ci_method Method used; for this function ci_method="rbod_dir".

Author(s)

Fusco E., Vidoli F.

References

ci_rbd_spatial

See Also
ci_bod, ci_rbod

Examples

```r
data(EU_NUTS1)
data_norm = normalise_ci(EU_NUTS1,c(2:3),polarity = c("POS","POS"), method=2)
CI = ci_rbod_dir(data_norm$ci_norm, c(1:2), M = 25, B = 50, c(1,0.1))
```

ci_rbd_spatial
Spatial robust Benefit of the Doubt approach (Sp-RBoD)

Description

The Spatial robust Benefit of the Doubt approach (Sp-RBoD) method allows to take into account the spatial contextual condition into the robust Benefit of the Doubt method.

Usage

```r
ci_rbd_spatial(x, indic_col, M=20, B=100, W)
```

Arguments

- `x`: A data.frame containing score of the simple indicators.
- `indic_col`: Simple indicators column number.
- `M`: The number of elements in each of the bootstrapped samples; default is 20.
- `B`: The number of bootstrap replicates; default is 100.
- `W`: The spatial weights matrix. A square non-negative matrix with no NAs representing spatial weights; may be a matrix of class "sparseMatrix" (spdep package)

Value

An object of class "CI". This is a list containing the following elements:

- `ci_rbd_spatial_est`: Composite indicator estimated values.
- `ci_method`: Method used; for this function ci_method="rbod_spatial".

Author(s)

Fusco E., Vidoli F.

References

See Also

Examples

```r
data(EU_NUTS1)

coord = EU_NUTS1[,c("Long","Lat")]
k <- knearneigh(as.matrix(coord), k=5)
k_nb <- knn2nb(k)
W_mat <- nb2mat(k_nb,style="W",zero.policy=TRUE)

CI = ci_rbod_spatial(EU_NUTS1,c(2:3),M=10,B=20, W=W_mat)
```

Description

Stochastic multiobjective acceptability analysis (SMAA) is a multicriteria decision support technique for multiple decision makers based on exploring the weight space. Inaccurate or uncertain input data can be represented as probability distributions. In SMAA the decision makers need not express their preferences explicitly or implicitly; instead the technique analyses what kind of valuations would make each alternative the preferred one. The method produces for each alternative an acceptability index measuring the variety of different valuations that support that alternative, a central weight vector representing the typical valuations resulting in that decision, and a confidence factor measuring whether the input data is accurate enough for making an informed decision. (R Lahdelma, J. Hokkanen and P. Salminen, 1998); this function, in particular, allows to restricts the range of allowable weights within the SMAA analysis.

Usage

```r
ci_smaa_constr(x,indic_col,rep,label,low_w=NULL)
```

Arguments

- **x**: A data.frame containing simple indicators.
- **indic_col**: A numeric list indicating the positions of the simple indicators.
- **rep**: Number of samples.
- **label**: A factor column useful to identify units.
- **low_w**: Importance weights lower bound vector; default is NULL (for standard SMAA).
Details

Author thanks Giuliano Resce and Raffaele Lagravinese for their help and for making available the original code of the SMAA function. The lower bound vector must be set as a vector of the same size as the number of simple indicators; for example - in the presence of two indicators - if you want to constrain only one indicator, you must write: `low_w = c(0, 0.2).

Value

An object of class "CI". This is a list containing the following elements:

- `ci_smaa_constr_rank_freq` Frequency of the SMAA ranks based on the sampled alternatives’ values. The rows represent the analysis units while the first column represents the number of times the unit was in first rank, the second one in second rank and so on.
- `ci_smaa_constr_average_rank` The average rank.
- `ci_smaa_constr_values` The alternative values based on a set of samples from the criteria values distribution and the samples set from the feasible weight space.
- `ci_method` Method used; for this function `ci_method="smaa_const"`.

Author(s)

Vidoli F.

References

S. Greco, A. Ishizaka, B. Matarazzo and G. Torrisi (2017) "Stochastic multi-attribute acceptability analysis (SMAA): an application to the ranking of Italian regions", Regional Studies

See Also

- `ci_bod`

Examples

```r
# ----- Define a function for plotting a matrix ----- #
myImagePlot <- function(x, ...){
  min <- min(x)
  max <- max(x)
  yLabels <- rownames(x)
  ```
xLabels <- colnames(x)
title <- c()
check for additional function arguments
if(length(list(...))){
 Lst <- list(...)
 if(!is.null(Lst$zlim)){
 min <- Lst$zlim[1]
 max <- Lst$zlim[2]
 }
 if(!is.null(Lst$yLabels)){
 yLabels <- c(Lst$yLabels)
 }
 if(!is.null(Lst$xLabels)){
 xLabels <- c(Lst$xLabels)
 }
 if(!is.null(Lst$title)){
 title <- Lst$title
 }
}
check for null values
if(is.null(xLabels)){
 xLabels <- c(1:ncol(x))
}
if(is.null(yLabels)){
 yLabels <- c(1:nrow(x))
}
layout(matrix(data=c(1,2), nrow=1, ncol=2), widths=c(4,1), heights=c(1,1))

Red and green range from 0 to 1 while Blue ranges from 1 to 0
ColorRamp <- rgb(
 seq(0,1,length=256), # Red
 seq(0,1,length=256), # Green
 seq(1,0,length=256)) # Blue
ColorLevels <- seq(min, max, length=length(ColorRamp))

Reverse Y axis
reverse <- nrow(x) : 1
yLabels <- yLabels[reverse]
x <- x[reverse,]

Data Map
par(mar = c(3,5,2.5,2))
image(1:length(xLabels), 1:length(yLabels), t(x), col=ColorRamp, xlab="",
ylab="", axes=FALSE, zlim=c(min,max))
if(!is.null(title)){
 title(main=title)
}
axis(BELOW<-1, at=1:length(xLabels), labels=xLabels, cex.axis=0.7)
axis(LEFT<-2, at=1:length(yLabels), labels=yLabels, las= HORIZONTAL<-1,
cex.axis=0.7)

Color Scale
par(mar = c(3,2.5,2.5,2))


```r
image(1, ColorLevels,
      matrix(data=ColorLevels, ncol=length(ColorLevels),nrow=1),
      col=ColorRamp,
      xlab="",ylab="",
      xaxt="n")

layout(1)
}

# ----- END plot function ----- #

data(EU_NUTS1)

# Standard SMAA
test <- ci_smaa_constr(EU_NUTS1,c(2,3), rep=200, label = EU_NUTS1[,1])
# source("http://www.phaget4.org/R/myImagePlot.R")
# myImagePlot(test$ci_smaa_constr_rank_freq)
test$ci_smaa_constr_average_rank

# Constrained SMAA
test2 <- ci_smaa_constr(EU_NUTS1,c(2,3), rep=200, label = EU_NUTS1[,1], low_w=c(0.2,0.2) )
# myImagePlot(test2$ci_smaa_constr_rank_freq)
test2$ci_smaa_constr_average_rank
```

ci_wroclaw

Wroclaw Taxonomic Method

Description

Wroclaw taxonomy method (also known as the dendric method), originally developed at the University of Wroclaw, is based on the distance from a theoretical unit characterized by the best performance for all indicators considered; the composite indicator is therefore based on the sum of euclidean distances from the ideal unit and normalized by a measure of variability of these distance (mean + 2*std).

Usage

```r
ci_wroclaw(x,indic_col)
```

Arguments

- `x` A data.frame containing simple indicators.
- `indic_col` Simple indicators column number.

Details

Please pay attention that `ci_wroclaw_est` is the distance from the "ideal" unit; so, units with higher values for the simple indicators get lower values of composite indicator.
Value
An object of class "CI". This is a list containing the following elements:

- **ci_wroclaw_est**: Composite indicator estimated values.
- **ci_method**: Method used; for this function ci_method="wroclaw".

Author(s)
Vidoli F.

References

See Also
ci_bod, ci_mpi

Examples
```r
i1 <- seq(0.3, 0.5, len = 100) - rnorm(100, 0.2, 0.03)
i2 <- seq(0.3, 1, len = 100) - rnorm(100, 0.2, 0.03)
Indic = data.frame(i1, i2)
CI = ci_wroclaw(Indic)

data(EU_NUTS1)
CI = ci_wroclaw(EU_NUTS1,c(2:3))

data(EU_2020)
data_selez = EU_2020[,c(1,22,191)]
data_norm = normalise_ci(data_selez,c(2:3),c("POS","NEG"),method=3)
CI_wroclaw(data_norm$ci_norm,c(1:2))
```

data_HPI
Happy Planet Index 2017-2019 indicators

Description
Data related to Happy Planet Index for 151 countries and the period 2017-2019. For more info, please see https://happyplanetindex.org.

Usage
data(data_HPI)
Format

data_HPI is a dataset with 453 observations and 10 variables.

Country Country name
ISO ISO code
year Years 2017-2019
Continent Continent
Population Population (thousands)
Life_Expectancy Life Expectancy (years)
Ladder_of_life Ladder of life (Wellbeing) (0-10)
Ecological_Footprint Ecological Footprint (g ha)
HPI HPI
GDP_per_capita GDP per capita ($)
Format

EU_2020 is a dataset with 30 observations and 12 indicators (190 indicator per year).

- **geo** EU-Member States including EU (28 countries) and EU (27 countries) row.
- **employ** Employment rate - age group 20-64, year XXXX (1992-2012).
- **perc_GDP** Gross domestic expenditure on R&D (GERD), year XXXX (1990-2012).
- **share_ren** Share of renewable energy in gross final energy consumption, year XXXX (2004-2011).
- **prim_ener** Primary energy consumption, year XXXX (1990-2011).
- **final_energy** Final energy consumption, year XXXX (1990-2011).
- **final_energy** Early leavers from education and training - Perc. of the population aged 18-24 with at most lower secondary education and not in further education or training, year XXXX (1992-2012).
- **tertiary** Tertiary educational attainment - age group 30-34, year XXXX (2000-2012).
- **risk_poverty** People at risk of poverty or social exclusion - 1000 persons Perc. of total population, year XXXX (2004-2012).
- **low_work** People living in households with very low work intensity - 1000 persons Perc. of total population, year XXXX (2004-2012).
- **risk_poverty** People at risk of poverty after social transfers - 1000 persons Perc. of total population, year XXXX (2003-2012).
- **deprived** Severely materially deprived people - 1000 persons Perc. of total population, year XXXX (2003-2012).

Author(s)

Vidoli F.

Examples

data(EU_2020)

EU_NUTS1

EU NUTS1 Transportation data

Description

Eurostat regional transport statistics (reg_trant) data, year 2012.

Usage

data(EU_NUTS1)
EU_NUTS1 is a dataset with 34 observations and two indicators describing transportation infrastructure endowment of the main (in terms of population and GDP) European NUTS1 regions: France, Germany, Italy, Spain (United Kingdom has been omitted, due to lack of data concerning railways).

roads Calculated as (2 * Motorways - Kilometres per 1000 km2 + Other roads - Kilometres per 1000 km2)/3

trains Calculated as (2 *Railway lines double+Electrified railway lines)/3

Author(s)
Vidoli F.

References

Examples
data(EU_NUTS1)

This function lets to normalise simple indicators according to the polarity of each one.

Usage

normalise_ci(x, indic_col, polarity, method=1, z.mean=0, z.std=1, ties.method ="average")

Arguments

x A data frame containing simple indicators.
indic_col Simple indicators column number.
method Normalisation methods:
 • 1 (default) = standardization or z-scores using the following formulation:

\[z_{ij} = z.mean \pm \frac{x_{ij} - M_{x_j}}{S_{x_j}} \cdot z.std \]

where ± depends on polarity parameter and z.mean and z.std represent the shifting parameters.
• **2 = Min-max method using the following formulation:**
 \[
 \text{if } \text{polarity} = "\text{POS}"; \\
 \frac{x - \min(x)}{\max(x) - \min(x)} \\
 \text{if } \text{polarity} = "\text{NEG}"; \\
 \frac{\max(x) - x}{\max(x) - \min(x)}
 \]

• **3 = Ranking method.** If `polarity``"POS`` ranking is increasing, while if `polarity``"NEG`` ranking is decreasing.

polarity
Polarity vector: "POS" = positive, "NEG" = negative. The polarity of an individual indicator is the sign of the relationship between the indicator and the phenomenon to be measured (e.g., in a well-being index, "GDP per capita" has 'positive' polarity and "Unemployment rate" has 'negative' polarity).

z.mean
If method=1, Average shifting parameter. Default is 0.

z.std
If method=1, Standard deviation expansion parameter. Default is 1.

ties.method
If method=3, A character string specifying how ties are treated, see `rank` for details. Default is "average".

Value

ci_norm
A data.frame containing normalised score of the chosen simple indicators.

norm_method
Normalisation method used.

Author(s)

Vidoli F.

References

See Also

ci_bod, ci mpi

Examples

data(EU_NUTS1)

Standard z-scores normalisation
data_norm = normalise_ci(EU_NUTS1,c(2:3),c("NEG","POS"),method=1,z.mean=0, z.std=1)
summary(data_norm$ci_norm)

Normalisation for MPI index
data_norm = normalise_ci(EU_NUTS1,c(2:3),c("NEG","POS"),method=1,z.mean=100, z.std=10)
summary(data_norm$ci_norm)
data_norm = normalise_ci(EU_NUTS1,c(2:3),c("NEG","POS"),method=2)
summary(data_norm$ci_norm)
Index

bandwidth_CI, 3
BLI_2017, 4

ci_ami, 5
ci_bod, 6, 7, 9, 12, 14, 15, 17, 19, 20, 23, 27, 33, 35, 38, 42
ci_bod_constr, 8, 11, 18, 19, 29
ci_bod_constr_bad, 10, 29, 31
ci_bod_dir, 8, 9, 11, 13, 20
ci_bod_mdir, 12
ci_bod_var_w, 13
ci_factor, 15, 17, 18
ci_factor_mixed, 16
ci_generalized_mean, 17
ci_geom_bod_intertemp, 18
ci_geom_gen, 18, 19
ci_mean_min, 21
ci_mpi, 15, 22, 22, 38, 42
ci_ogwa, 23, 26
ci_owa, 24, 25
ci_rbod, 8, 12, 14, 27, 33, 34
ci_rbod_constr_bad, 28, 31
ci_rbod_constr_bad_Q, 30
ci_rbod_dir, 32
ci_rbod_spatial, 33
ci_smaa_constr, 34
ci_wroclaw, 37
Compind-package, 2

data_HPI, 38
EU_2020, 39
EU_NUTS1, 40
gw.dist, 24
mea, 13

normalise_ci, 6, 22, 23, 41
rank, 42