Package ‘CompoundEvents’

February 28, 2020

Type Package
Title Statistical Modeling of Compound Events
Version 0.1.0
Author Zengchao Hao
Maintainer Zengchao Hao <z.hao4univ@gmail.com>
Description Tools for extracting occurrences, assessing potential driving factors, predicting occurrences, and quantifying impacts of compound events in hydrology and climatology. Please see Hao Zengchao et al. (2019) <doi:10.1088/1748-9326/ab4df5>.
Depends R (>= 3.5.0)
License GPL-3
Encoding UTF-8
Repository CRAN
LazyData true
RoxygenNote 7.0.1
Date 2020-02-02
NeedsCompilation no
Date/Publication 2020-02-28 09:20:02 UTC

R topics documented:

 CompoundEvents-package .. 2
 DriverLGR .. 2
 GetDC .. 3
 GetDH .. 4
 GetWH .. 5
 ImpactMG .. 6
 LMFDH ... 7
 PredLGR .. 8

Index 9
Description

Tools for extracting occurrences, assessing potential driving factors, predicting occurrences, and quantifying impacts of compound events in hydrology and climatology.

Details

Examples of compound events in hydroclimatology include, but not limited to, compound dry-hot events and compound precipitation and surge (or sea level) events. Take the compound dry and hot event as an example. The function `GetDH` is used for extracting occurrences based on thresholds of dry and hot indicators. The function `DriverLGR` is used for assessing potential driving factors of compound events based on logistic regression model. The function `PredLGR` is used for predicting occurrences of compound events. The function `ImpactMG` is used for quantifying impacts of compound dry and hot events based on meta-Gaussian model.

Author(s)

Zengchao Hao

References

Usage

DriverLGR(Y, CI)
GetDC

Arguments

Y Occurrence of compound dry-hot events (0-1 binary variable)
CI Climate index as the driving factor of compound events (e.g., ENSO)

Value

slope parameter and associated p-value

References

Examples

CI=c(-0.7,-1.2,1.3,0.7,-0.6,1.1,-0.5,0.8,0.5,-0.5,1.6,-1.8,-0.5,-1.4,-0.1,2.2,-0.7,-1.1,0.6,-1.7)
Y=c(0,0,1,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0)
res<DriverLGR(Y,CI)

GetDC Occurrence of compound dry-cold events

Description

Extract compound dry-cold occurrences based on thresholds of precipitation and temperature. The binary variable of the dry and cold (DC) event can be obtained.

Usage

GetDC(mp,mt,threp,thret)

Arguments

mp Precipitation
mt Temperature
threp Threshold of precipitation (e.g., 20th percentile)
thret Threshold of temperature (e.g., 20th percentile)

Value

The occurrence of compound wet-hot event (0-1 binary variable)

References

GetDH

Occurrence of compound dry-hot events

Description

Extract compound dry-hot (DH) occurrences based on thresholds of precipitation and temperature. The binary variable of the DH (or dry-warm) event can be obtained.

Usage

GetDH(mp, mt, threp, thret)

Arguments

mp
Precipitation

mt
Temperature

threp
Threshold of precipitation (e.g., 20th percentile)

thret
Threshold of temperature (e.g., 80th percentile)

Value

The occurrence of compound dry-hot events (0-1 binary variable)

References

Examples

mp = matrix(rnorm(120, 0, 1), ncol = 1)
mt = matrix(rnorm(120, 0, 1), ncol = 1)
threp = 20
thret = 80
DH <- GetDH(mp, mt, threp, thret)
GetWH

Occurrence of compound wet-hot events

Description

Extract compound wet-hot (WH) occurrences based on thresholds of precipitation and temperature. The binary variable of the WH (or wet-warm, WW) event can be obtained.

Usage

```r
GetWH(mp, mt, threp, thret)
```

Arguments

- `mp`: Precipitation
- `mt`: Temperature
- `threp`: Threshold of precipitation (e.g., 80th percentile)
- `thret`: Threshold of temperature (e.g., 80th percentile)

Value

The occurrence of compound wet-hot events (0-1 binary variable)

References

Examples

```r
mp = matrix(rnorm(120, 0, 1), ncol = 1)
mt = matrix(rnorm(120, 0, 1), ncol = 1)
threp = 80
thret = 80
WH <- GetWH(mp, mt, threp, thret)
```
ImpactMG

Impacts under droughts and hot extremes

Description

Use the meta-Gaussian model to construct conditional distributions of the impact variable (Y) given drought and hot conditions P(Y|PRC,TEM).

Usage

ImpactMG(PRC,TEM,Y,u0)

Arguments

- **PRC**: Precipitation or drought indicator corresponding to the impact variable Y
- **TEM**: Temperature or heat indicator corresponding to the impact variable Y
- **Y**: Impact variable (e.g., Crop yield)
- **u0**: Initial condition of (PRC,TEM)

Value

A vector of conditional mean and variance evaluated at u0

References

Examples

```r
PRC=matrix(rnorm(60,0,1),ncol=1)
TEM=matrix(rnorm(60,0,1),ncol=1)
Y=matrix(rnorm(60,0,1),ncol=1)
u0=c(-1.2,1.2) # Specify the compound dry-hot condition
ImpactMG(PRC,TEM,Y,u0)
```
Description

Compute joint probabilities of compound dry-hot events and the independent case.

Usage

```r
LMFDH(mp, mt, threp, thret)
```

Arguments

- `mp`: Precipitation
- `mt`: Temperature
- `threp`: Threshold of precipitation (e.g., 50th percentile)
- `thret`: Threshold of temperature

Value

Joint probability of DH divided by that of independent case

References

Examples

```r
mp=matrix(rnorm(120,0,1),ncol=1)
mt=matrix(rnorm(120,0,1),ncol=1)
threp=20
thret=80
res<-LMFDH(mp,mt,threp,thret)
```
PredLGR

Prediction of compound event occurrences

Description

Fit the logistic regression model (LGR) based on occurrences of compound events (Y) and climate index (CI). The output is the predicted probability of compound event occurrence for the given climate index value CI0.

Usage

`PredLGR(Y, CI, CI0)`

Arguments

- **Y**: Occurrences of compound dry-hot events (0-1 binary variable) (L lead time)
- **CI**: Climate index (CI) as the driving factor of compound events (e.g., ENSO)
- **CI0**: Specified CI value based on which the prediction is issued

Value

Probability of occurrences estimated at CI0

References

Examples

```r
CI=c(-0.7,-1.2,1.3,0.7,-0.6,1.1,-0.5,0.8,0.5,-0.5,1.6,-1.8,-0.5,-1.4,-0.1,2.2,-0.7,-1.1,0.6,-1.7)
Y=c(0,0,1,1,0,0,0,0,1,0,1,0,1,0,0,0,0,0)
PredLGR(Y,CI,2)
```
Index

CompoundEvents-package, 2

DriverLGR, 2, 2

GetDC, 3
GetDH, 2, 4
GetWH, 5

ImpactMG, 2, 6

LMFDH, 7

PredLGR, 2, 8