
Package ‘CooRTweet’
September 5, 2023

Version 1.5.0

Date 2023-08-16

Type Package

Title Coordinated Networks Detection on Social Media

Description Detects a variety of coordinated actions on Twitter and outputs the network of coordi-
nated users along with related information.

Author Nicola Righetti [aut, cre] (<https://orcid.org/0000-0002-9257-5113>),
Paul Balluff [aut] (<https://orcid.org/0000-0001-9548-3225>)

Maintainer Nicola Righetti <nicola.righetti@univie.ac.at>

URL https://github.com/nicolarighetti/CooRTweet

BugReports https://github.com/nicolarighetti/CooRTweet/issues

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.2.3

Imports data.table, tidytable, RcppSimdJson, Matrix, lubridate,
igraph, stringi, textreuse

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

Depends R (>= 2.10)

LazyData true

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2023-09-05 11:40:02 UTC

1

https://orcid.org/0000-0002-9257-5113
https://orcid.org/0000-0001-9548-3225
https://github.com/nicolarighetti/CooRTweet
https://github.com/nicolarighetti/CooRTweet/issues

2 detect_coordinated_groups

R topics documented:

detect_coordinated_groups . 2
detect_similar_text . 3
filter_min_repetition . 4
generate_network . 5
group_stats . 6
load_many_tweets_json . 6
load_tweets_json . 7
load_twitter_users_json . 8
normalize_text . 8
preprocess_tweets . 9
preprocess_twitter_users . 10
remove_hashtags . 10
remove_loops . 11
reshape_tweets . 11
russian_coord_tweets . 12
simulate_data . 13
user_stats . 14

Index 15

detect_coordinated_groups

detect_coordinated_groups

Description

Function to detect coordinated behaviour based on content groups. See details.

Usage

detect_coordinated_groups(x, time_window = 10, min_repetition = 2)

Arguments

x a data.table with the columns: object_id (uniquely identifies coordinated con-
tent), id_user (unique ids for users), content_id (id of user generated content),
timestamp_share (integer)

time_window the number of seconds within which shared contents are to be considered as
coordinated (default to 10 seconds).

min_repetition the minimum number of repeated coordinated actions a user has to perform (de-
fault to 2 times)

detect_similar_text 3

Details

The function groups the data by object_id (uniquely identifies coordinated content) and calculates
the time differences between all content_id (ids of user generated contents) within their groups.
It then filters out all content_id that are higher than the time_window (in seconds). It returns a
data.table with all IDs of coordinated contents. The object_id can be for example: hashtags,
IDs of tweets being retweeted, or URLs being shared.

Value

a data.table with ids of coordinated contents. Columns: object_id, id_user, id_user_y, content_id,
content_id_y, timedelta. The id_user and content_id represent the "older" data points, id_user_y
and content_id_y represent the "newer" data points. For example, User A retweets from User B,
then User A’s content is newer (i.e., id_user_y).

detect_similar_text detect_similar_text

Description

This function detects coordinated cotweets, i.e. pairs of social media posts that are similar in terms
of their text and were posted within a short time window.

Usage

detect_similar_text(
x,
min_repetition = 2,
time_window = 10,
min_similarity = 0.8,
similarity_function = textreuse::jaccard_similarity,
tokenizer = textreuse::tokenize_ngrams,
minhash_seed = NULL,
minhash_n = 200

)

Arguments

x A data.table with the following columns:

• content_id: The ID of the content (e.g. a tweet ID)
• object_id: The text of the social media post
• id_user: The ID of the user who shared the content
• timestamp_share: The timestamp when the content was shared

min_repetition the minimum number of repeated coordinated actions a user has to perform (de-
faults to 2 times)

time_window The maximum time difference between two posts in order for them to be con-
sidered coordinated cotweets (defaults to 10 seconds).

4 filter_min_repetition

min_similarity The minimum similarity score between two posts in order for them to be con-
sidered coordinated cotweets (defaults to 0.8).

similarity_function

The function that is used to calculate the similarity between two tweets. The
default function is Jaccard Similarity (see: jaccard_similarity).

tokenizer The function that is used to tokenize the text of the tweets. The default function
is the tokenize_ngrams function.

minhash_seed The seed that is used to generate the minhash signatures. If NULL, a random
seed will be used.

minhash_n The number of minhash signatures that are used (see textreuse package for
details).

Details

Uses the textreuse package to compare each post with each other and determine their text similarity.
Use the reshape_tweets() function with intent = "cotweet" parameter to prepare your data.

Value

A data.table with the following columns:

• content_id: The ID of the first post

• content_id_y: The ID of the second post

• id_user: The ID of the user who shared the first post

• id_user_y: The ID of the user who shared the second post

• timestamp_share: The timestamp when the first post was shared

• timestamp_share_y: The timestamp when the second post was shared

• similarity_score: The similarity score between the two posts

• time_delta: The time difference between the two posts

filter_min_repetition Filter the result by minimum repetition.

Description

This private function filters the result by the minimum number of repetitions required.

Usage

filter_min_repetition(x, result, min_repetition)

https://cran.r-project.org/package=textreuse

generate_network 5

Arguments

x A data table from a coordination detection function

result A data table containing the result data.

min_repetition The minimum repetition threshold. Users with repetition count greater than this
threshold will be retained.

Value

A data table with filtered rows based on the specified minimum repetition.

generate_network generate_network

Description

Take the results of coordinated content detection and generate a network from the data. This
function generates a two-mode (bipartite) incidence matrix first, and then projects the matrix to
a weighted adjacency matrix.

Usage

generate_network(x, intent = c("users", "content", "objects"))

Arguments

x a data.table (result from detect_coordinated_groups) with the Columns: object_id,
id_user, id_user_y, content_id, content_id_y, timedelta

intent the intended network. The option "users" generates a network of users who
are connected over the same content that they share (default). Option "content"
generates a network based on content ids. Option "objects" generates a network
of the coordinated content (object_id) that is connected via the users.

Value

A weighted, undirected network (igraph object) where the vertices (nodes) are users (or content_ids)
and edges (links) are the membership in coordinated groups (object_id)

6 load_many_tweets_json

group_stats group_stats

Description

Calculate coordinated group statistics: total unique users per group, total posts in per group, average
time delta per group

Usage

group_stats(x)

Arguments

x a result data.table generated by detect_coordinated_groups

Details

This helper function gives you a summary of the coordinated groups.

Value

a data.table with summary statistics for each group

load_many_tweets_json load_many_tweets_json

Description

EXPERIMENTAL. Batched version of load_tweets_json with control over retained columns. Not
as efficient as load_tweets_json but requires less memory. Wrapper of the function fload

Usage

load_many_tweets_json(
data_dir,
batch_size = 1000,
keep_cols = c("text", "possibly_sensitive", "public_metrics", "lang",
"edit_history_tweet_ids", "attachments", "geo"),

query = NULL,
query_error_ok = TRUE

)

load_tweets_json 7

Arguments

data_dir string that leads to the directory containing JSON files

batch_size integer specifying the number of JSON files to load per batch. Default: 1000

keep_cols character vector with the names of columns you want to keep. Set it to NULL
to only retain the required columns. Default: keep_cols = c("text", "possi-
bly_sensitive", "public_metrics", "lang", "edit_history_tweet_ids", "attachments",
"geo")

query (string) JSON Pointer query passed on to fload (optional). Default: NULL

query_error_ok (Boolean) stop if query causes an error. Passed on to fload (optional). Default:
FALSE

Details

Unlike load_tweets_json this function loads JSON files in batches and processes each batch before
loading the next batch. You can specify which columns to keep, which in turn requires less memory.
For example, you can decide not to keep the "text column, which requires quite a lot of memory.

Value

a data.table with all tweets loaded

load_tweets_json load_tweets_json

Description

Very efficient and fast way to load tweets stored in JSON files. Wrapper of the function fload

Usage

load_tweets_json(data_dir, query = NULL, query_error_ok = TRUE)

Arguments

data_dir string that leads to the directory containing JSON files

query (string) JSON Pointer query passed on to fload (optional). Default: NULL

query_error_ok (Boolean) stop if query causes an error. Passed on to fload (optional). Default:
FALSE

Details

This function is optimized to load tweets that were collected using the academicTwittr Package
(Twitter API V2). It uses RcppSimdJson to load the JSON files, which is extremely fast and ef-
ficient. It returns the twitter data as is. The only changes are that the function renames the id of
tweets to tweet_id, and it also deduplicates the data (by tweet_id). The function expects that the
individual JSON files start with data.

8 normalize_text

Value

a data.table with all tweets loaded

load_twitter_users_json

load_twitter_users_json

Description

Very efficient and fast way to load user information from JSON files. Wrapper of the function fload

Usage

load_twitter_users_json(data_dir, query_error_ok = TRUE)

Arguments

data_dir string that leads to the directory containing JSON files

query_error_ok (Boolean) stop if query causes an error. Passed on to fload (optional). Default:
TRUE

Details

This function is optimized to load user data JSON files that were collected using the academicTwittr
Package (Twitter API V2). It uses RcppSimdJson to load the JSON files, which is extremely fast
and efficient. It returns the user data as is. The only changes are that the function renames the id
of tweets to user_id, and it also deduplicates the data (by user_id). The function expects that the
individual JSON files start with user.

Value

a data.table with all users loaded

normalize_text Normalize text

Description

Utility function that normalizes text by removing mentions of other users, removing "RT", convert-
ing to lower case, and trimming whitespace.

Usage

normalize_text(x)

preprocess_tweets 9

Arguments

x The text to be normalized.

Value

The normalized text.

preprocess_tweets preprocess_tweets

Description

Reformat nested Twitter data (retrieved from Twitter V2 API). Spreads out columns and reformats
nested a data.table to a named list of unnested data.tables. All output is in long-format.

Usage

preprocess_tweets(
tweets,
tweets_cols = c("possibly_sensitive", "lang", "text", "public_metrics_retweet_count",

"public_metrics_reply_count", "public_metrics_like_count",
"public_metrics_quote_count")

)

Arguments

tweets a data.table to unnest. Twitter data loaded with load_tweets_json‘.

tweets_cols a character vector specifying the columns to keep (optional).

Details

Restructure your nested Twitter data that you loaded with load_tweets_json. The function unnests
the following columns: public_metrics (likes, retweets, quotes), referenced_tweets (IDs of
"replied to" and "retweet"), entities (hashtags, URLs, other users). Returns a named list with
several data.tables, each data.table represents one aspect of the nested data. The function
also expects that the following additional columns are present in the data.table: created_at,
tweet_id, author_id, conversation_id, text, in_reply_to_user_id. Implicitely dropped
columns: edit_history_tweet_ids

Value

a named list with 5 data.tables: tweets (contains all tweets and their meta-data), referenced (infor-
mation on referenced tweets), urls (all urls mentioned in tweets), mentions (other users mentioned
in tweets), hashtags (hashtags mentioned in tweets)

10 remove_hashtags

preprocess_twitter_users

preprocess_twitter_users

Description

Reformat nested twitter user data (retrieved from Twitter v2 API). Spreads out columns and refor-
mats nested data.table to long format.

Usage

preprocess_twitter_users(users)

Arguments

users a data.table with unformatted (nested user data).

Details

Take the Twitter user data that you loaded with load_twitter_users_json and unnests the following
columns: public_metrics and entities.

Value

a data.table with reformatted user data.

remove_hashtags Remove hashtags

Description

Utility function that removes hashtags from tags.

Usage

remove_hashtags(x)

Arguments

x The text to be processed.

Value

The text without hashtags.

remove_loops 11

remove_loops Remove loops from the result.

Description

This function is a private utility function that removes loops (i.e., users sharing their own content)
from the result.

Usage

remove_loops(result)

Arguments

result The result of the previous filtering steps.

Value

The result with loops removed.

reshape_tweets reshape_tweets

Description

Reshape twitter data for coordination detection.

Usage

reshape_tweets(
tweets,
intent = c("retweets", "hashtags", "urls", "urls_domains", "cotweet"),
drop_retweets = TRUE,
drop_replies = TRUE,
drop_hashtags = FALSE

)

Arguments

tweets a named list of Twitter data (output of preprocess_tweets)

intent the desired intent for analysis.

drop_retweets Option passed to intent = "cotweet". When analysing tweets based on text
similarity, you can choose to drop all tweets that are retweets. Default: TRUE

12 russian_coord_tweets

drop_replies Option passed to intent = "cotweet". When analysing tweets based on text
similarity, you can choose to drop all tweets that are replies to other tweets.
Default: TRUE

drop_hashtags Option passed to intent = "cotweet". You can choose to remove all hashtags
from the tweet texts. Default: FALSE

Details

This function takes the pre-processed Twitter data (output of preprocess_tweets) and reshapes it for
coordination detection (detect_coordinated_groups). You can choose the intent for reshaping the
data. Use "retweets" to detect coordinated retweeting behaviour; "hashtags" for coordinated
usage of hashtags; "urls" to detect coordinated link sharing behaviour; "urls_domain" to detect
coordinated link sharing behaviour at the domain level. "cotweet" to detect coordinated cotweeting
behaviour (users posting same text). The output of this function is a reshaped data.table that can
be passed to detect_coordinated_groups.

Value

a reshaped data.table

russian_coord_tweets Pro-Government Russian Tweet Dataset

Description

A anonymized dataset of Tweets. All IDs have been obscured using sha256 algorithm.

Usage

russian_coord_tweets

Format

russian_coord_tweets:
A data frame with 35,125 rows and 4 columns:

object_id ID of retweeted content. Twitter API calls this "referenced_tweet_id".
id_user ID of the user who tweeted. Twitter API: "author_id"
content_id Tweet ID.
timestamp_share Ingeger. Timestamp (posix time)

Source

Kulichkina (in Press).

simulate_data 13

simulate_data simulate_data

Description

Create a simulated input and output of detect_coordinated_groups function.

Usage

simulate_data(
n_users_coord = 5,
n_users_noncoord = 4,
n_objects = 5,
min_repetition = 3,
time_window = 10

)

Arguments

n_users_coord the desired number of coordinated users.
n_users_noncoord

the desired number of non-coordinated users.

n_objects the desired number of objects.

min_repetition the minimum number of repeated coordinated action to define two user as coor-
dinated.

time_window the time window of coordination.

Details

This function generates a simulated dataset with fixed numbers for coordinated users, uncoordinated
users, and shared objects. You can set minimum repetition and time window and the coordinated
users will "act" randomly within these restrictions.

Value

a list with two data frames: a data frame with the columns required by the function detect_ co-
ordinated_groups (object_id, id_user, content_id, timestamp_share) and the output table
of the same detect_coordinated_groups function and columns: object_id, id_user, id_user_y,
content_id, content_id_y, time_delta.

14 user_stats

user_stats user_stats

Description

Calculate user statistics: total posts shared, average time delta.

Usage

user_stats(x)

Arguments

x a result data.table generated by detect_coordinated_groups

Details

With this helper function you get a summary of the users, who share coordinated content. High
number of posts shared and low average time delta are indicators for highly coordinated (potentially
automated) user behaviour.

Value

a data.table with summary statistics for each user

Index

∗ datasets
russian_coord_tweets, 12

detect_coordinated_groups, 2, 12, 13
detect_similar_text, 3

filter_min_repetition, 4
fload, 6–8

generate_network, 5
group_stats, 6

jaccard_similarity, 4

load_many_tweets_json, 6
load_tweets_json, 6, 7, 7, 9
load_twitter_users_json, 8, 10

normalize_text, 8

preprocess_tweets, 9, 11, 12
preprocess_twitter_users, 10

remove_hashtags, 10
remove_loops, 11
reshape_tweets, 11
reshape_tweets(), 4
russian_coord_tweets, 12

simulate_data, 13

tokenize_ngrams, 4

user_stats, 14

15

	detect_coordinated_groups
	detect_similar_text
	filter_min_repetition
	generate_network
	group_stats
	load_many_tweets_json
	load_tweets_json
	load_twitter_users_json
	normalize_text
	preprocess_tweets
	preprocess_twitter_users
	remove_hashtags
	remove_loops
	reshape_tweets
	russian_coord_tweets
	simulate_data
	user_stats
	Index

