Package ‘CorDiff’

September 17, 2018

Type Package
Imports mcc
Title Set-Based Differential Covariance Testing for Genomics
Version 1.0
Date 2018-09-05
Author Yi-Hui Zhou
Maintainer Yi-Hui Zhou <yihui_zhou@ncsu.edu>
Description We describe four different summary statistics, to ensure power and flexibility under various settings, including a new connectivity statistic that is sensitive to changes in overall covariance magnitude.
License GPL-2
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2018-09-17 13:10:10 UTC

R topics documented:

 CorDiff-package ... 2
 fastresid .. 3
 getMpfast .. 3
 Qresid .. 4
 x ... 5

Index 6
CorDiff-package

Set-based differential covariance testing for genomics

Description

We describe four different summary statistics, to ensure power and flexibility under various settings. This is a uniform framework to test association of covariance matrices with an experimental variable, whether discrete or continuous. (1) A summation statistic S which is to detect global changes in covariances that are concordantly associated with the experimental variable y; (2) A quadratic form statistic Q which is sensitive to changes that are not directionally concordant; (3) A connectivity statistic C which reflects the tendency for the aggregate magnitude of feature-feature correlations to be associated with y; (4) A maximum statistic M.

Author(s)

Yi-Hui Zhou

Maintainer: Yi-Hui Zhou <yihui_zhou@ncsu.edu>

References

Set-based differential covariance testing for genomics, Yi-Hui Zhou, under review

Examples

```r
library(mcc)

n1=5
n2=5
y=c(rep(1/n1,n1),rep(-1/n2,n2))
data(x)
w=(colSums(x))^2
output=getbetap.A(getAmoment(rbind(y,y),w,z=NULL),A=NULL,fix.obs=TRUE)
S.p=output$twosidedp[1]

Qresult=Qresid(y,x,numperms=1e6,thresh=10)
Q.p=Qresult$myp
newx=(t(x)%*%x)^2
v=colSums(newx)
output2=getbetap.A(getAmoment(rbind(y,y),v,z=NULL),A=NULL,fix.obs=TRUE)
C.p=output2$twosidedp[1]
M.p=getMpfast(y,x,num perms=1e4)$pval
```
fastresid

Residulize the effect of y away from x

Description

This function is to prepare for the next Q calculation. Basically, Q does not like phenotype y to add complication. Therefore we use this function to get rid of the impact of y.

Usage

`fastresid(X, y)`

Arguments

- **x**: The data matrix, each column is for each sample and each row is for different feature.
- **y**: Experimental condition/phenotypes, it can be discrete or continuous

Value

- **xresid**: The new x after residulizing y

Author(s)

Yi-Hui Zhou

References

Set-based differential covariance testing for genomics

getMpfast

Calculate the statistic M

Description

This function provides the permutation algorithm to calculate the maximum statistic M.

Usage

`getMpfast(y, x, num.perms = 1000)`
Arguments

- **y**
 Experimental condition/phenotypes, it can be discrete or continuous

- **x**
 The data matrix, each column is for each sample and each row is for different feature.

- **numperms**
 You can specify the number of permutation in the calculation. The default is 1000.

Value

- **Mobs**
 M statistic

- **pval**
 p value under permutation

Author(s)

Yi-Hui Zhou

References

Set-based differential covariance testing for genomics

Qresid

Calculate statistic Q.

Description

For the purposes of computing type I error and power, we only need care about p-values that are smallish. If the p-value is large, we do not care if it’s 0.8 or 0.9. When we hit ratio=10, then our current p-value is 10 standard deviations larger than zero, which is a safe criterion to stop and say we have enough permutations. Therefore we saved a ton of time.

Usage

Qresid(y, X, numperms = 10000, thresh = 10)

Arguments

- **y**
 Experimental condition/phenotypes, it can be discrete or continuous

- **x**
 The data matrix, each column is for each sample and each row is for different feature.

- **numperms**
 The number of permutations.

- **thresh**
 The threshold we set up to stop the permutation. The default value is 10 which comes from a 10 standard deviation criterion.
The toy data we used to illustrate the package.

Usage

```r
data("x")
```

Details

The toy data is a p by n matrix, where n is the sample size

Author(s)

Yi-Hui Zhou

References

Set-based differential covariance testing for genomics

Examples

```r
data(x)
dim(x)
```
Index

+Topic datasets
 x, 5
+Topic package
 CorDiff-package, 2

CorDiff (CorDiff-package), 2
CorDiff-package, 2

fastresid, 3
getMpfast, 3
Qresid, 4
x, 5