Package ‘CorporaCoCo’

November 23, 2017

Encoding UTF-8
Type Package
Title Corpora Co-Occurrence Comparison
Version 1.1-0
Date 2017-11-22
Description A set of functions used to compare co-occurrence between two corpora.

URL
License GPL (>= 3)
Depends R (>= 3.2.0),
Imports methods, stats, data.table (>= 1.9.6), RColorBrewer, rlist
Suggests unitest, stringi, R.rsp
VignetteBuilder R.rsp

BugReports https://github.com/birmingham-ccc/CorporaCoCo/issues
LazyData yes

NeedsCompilation no

Author Anthony Hennessey [aut, cre],
Viola Wiegand [aut],
Michaela Mahlberg [aut],
Christopher R. Tench [aut],
Jamie Lentin [aut]

Maintainer Anthony Hennessey <anthony.hennessey@nottingham.ac.uk>
Repository CRAN
Date/Publication 2017-11-23 10:54:35 UTC

R topics documented:

CorporaCoCo-package .. 2
coco ... 2
coco-class .. 4
surface .. 5
surface_coco ... 8
CocoCoCo-package Comparing Co-occurrence between corpora.

Description

Implements the method described in Hennessey and Wiegand et al. (2017).

Details

A good place to start is the ‘Proof of Concept’ vignette. There is also a ‘FAQ’ vignette. You can see a list of package vignettes with vignette(package = "CocoCoCo") and you can see a particular vignette with something like vignette("faq", package = "CocoCoCo"). For a list of all documentation use library(help="CocoCoCo").

Author(s)

Maintainer: Anthony Hennessey <anthony.hennessey@nottingham.ac.uk>.

References

coco Co-occurrence comparison

Description

Calculates statistically significant difference in co-occurrence counts.

Usage

coco(A, B, nodes, fdr = 0.01, collocates = NULL)

Arguments

A A data.frame of co-occurrence counts. See details.
B A data.frame of co-occurrence counts. See details.
nodes A character vector of nodes or character string representing a single node.
fdr The desired level at which to control the False Discovery Rate. Default value is 0.01.
collocates A character vector of collocates or character string representing a single collocate. The collocates essentially act as a filter on the y column of the returned data structure. collocates should be used to target the testing; reducing the number of tests will reduce the loss of power from the multiple test correction.

Details

This function implements the method described in Hennessey and Wiegand (2017).

A and B are data.frames of the form

Classes 'data.frame': ...
$ x: chr
$ y: chr
$ H: int
$ M: int

The data.frames encapsulate the co-occurrence counts for the (x, y) term pairs within a corpus. For a description of the columns see the details section of the surface function.

The nodes essentially act as a filter on the A$x and B$x columns. For a description of the use of nodes see Hennessey and Wiegand (2017).

fdr indicates the level at which the False Discovery Rate will be controlled. For a description of the form of FDR used see Benjamini and Hochberg (1995). For a description of the use of FDR in this context see Hennessey and Wiegand (2017). For description of the p_adjusted column in the returned structure see p_adjust.

The returned data structure is a data.table. A data.table is also a data.frame and will behave exactly as such if the data.table library is not loaded.

The returned data.table contains details of all the co-occurrences for which there is evidence of a difference in co-occurrence between the two supplied data sets. The effect size is calculated as the log base 2 of the odds ratio. The effects size and its confidence interval are captured in the effect_size, CI_lower and CI_upper columns. The p_value column contains the non-adjusted p-value from the Fisher’s Exact Test. For more details see Hennessey and Wiegand (2017).

For an example of usage see the ‘Proof of Concept’ vignette.

Value

A data.table of the form

Classes ‘data.table’ and 'data.frame': 11 variables:
$ x : chr
$ y : chr
$ H_A : int
$ M_A : int
$ H_B : int
$ M_B : int
$ effect_size: num
$ CI_lower : num
References

coco-class coco class

Description

Object of class coco.

Usage

```r
## S3 method for class 'coco'
plot(x, as_matrix = FALSE, nodes = NULL, forest_plot_args = NULL, ...)
```

Arguments

- `x` An coco object.
- `as_matrix` If `as_matrix` is set to TRUE a matrix plot rather than a forest plot is produced.
- `nodes` If a vector of nodes is supplied this will be used to filter the set of results that are plotted. If nodes are supplied the plot will use the nodes order.
- `forest_plot_args` This is a list of arguments that is passed to the `plot.default` that produces the foundation of the forest plot. The list may contain a subset or all of the following documented arguments; any arguments that are not documented here will be ignored. A description of each argument can be found in the help for the `plot.default` function. Available arguments are
 - `xlim` Default: Calculated from the ranges of the confidence intervals.
 - `xlab` Default: 'Effect Size'
Details

An object of class coco is returned by `coco()` and `surface_coco()`. No constructor is exported.

Note

For example usage see the ‘FAQ’ vignette.

surface

Calculate Surface Co-occurrence Counts

Description

Calculates co-occurrence counts for the supplied vector. For each co-occurrence the maximum possible number of co-occurrences is also calculated.

Usage

```r
surface(x, span, nodes = NULL, collocates = NULL)
```

Arguments

- **x**
 - A vector. This is the subject of the co-occurrence counting. See details.

- **span**
 - A character string defining the co-occurrence span. See details.

- **nodes**
 - A character vector of nodes or character string representing a single node. The nodes essentially act as a filter on the `x` column of the returned data structure. Use of nodes will significantly reduce memory usage.

- **collocates**
 - A character vector of collocates or character string representing a single collocate. The collocates essentially act as a filter on the `y` column of the returned data structure.
Details

x is assumed to be an ordered vector of tokenized text. No processing will be applied to x prior to the co-occurrence count calculations.

’surface’ co-occurrence is easiest to describe with an example. The following is a span of '2LR', that is 2 to the left and 2 to the right.

```
("a", "man", "a", "plan", "a", "cat", "a", "canal", "panama")
|___________|___|___________|
```

In this example the term “plan” would co-occur once each with the collocates “man” and “cat”, and twice with the collocate “a”.

Other examples of span:

span = '1L2R'

```
("a", "man", "a", "plan", "a", "cat", "a", "canal", "panama")
|___|___|___________|
```

span = '2R'

```
("a", "man", "a", "plan", "a", "cat", "a", "canal", "panama")
|___|___________|
```

NAs can be used to implement co-occurrence barriers eg if two NA characters are inserted into x at each sentence boundary then with span = 2 co-occurrences will not happen across sentences. See Evert (2008) for detailed description of co-occurrence barriers.

For a detailed description of ‘surface’ co-occurrence and the other types of co-occurrence see Evert (2008).

Value

Returns a data.table containing counts for all co-occurrences in x. Note that a data.table is also a data.frame so if the data.table library is not loaded the returned object will behave exactly as a data.frame; however, for large data sets there will be significant performance enhancement offered by exploiting data.table functionality.

The returned object is of the form:

```
Classes 'data.table' and 'data.frame': ...
 $ x: chr
 $ y: chr
 $ H: int
 $ M: int
 - attr(*, "sorted")= chr "x" "y"
 - attr(*, "internal.selfref")=<externalptr>
```

where H is the number of times x co-occurs with y (think Hits), and M is the number of times x fails to co-occur with y when it could have (think Misses); hence H + M is the maximum number of times that x could have co-occurred with y.
References

Examples

```r
# ********************
# surface co-occurrence
# ********************

x <- c("a", "man", "a", "plan", "a", "canal", "panama")
surface(x, span = '2R')

## x y H M
## 1: a a 2 4
## 2: a canal 1 5
## 3: a man 1 5
## 4: a panama 1 5
## 5: a plan 1 5
## 6: canal panama 1 0
## 7: man a 1 1
## 8: man plan 1 1
## 9: plan a 1 1
## 10: plan canal 1 1

# filter on nodes
surface(x, span = '2R', nodes = c("canal", "man", "plan"))

## x y H M
## 1: canal panama 1 0
## 2: man a 1 1
## 3: man plan 1 1
## 4: plan a 1 1
## 5: plan canal 1 1

# filter on nodes and collocates
surface(x, span = '2R', nodes = c("canal", "man", "plan"), collocates = c("panama", "a"))

## x y H M
## 1: canal panama 1 0
## 2: man a 1 1
## 3: plan a 1 1

# co-occurrence barrier
x <- c("a", "man", "a", "plan", NA, NA, "a", "canal", "panama")
surface(x, span = '2R')

## x y H M
## 1: a a 1 4
## 2: a canal 1 4
## 3: a man 1 4
```
surface_coco

4: a panama 1 4
5: a plan 1 4
6: canal panama 1 0
7: man a 1 1
8: man plan 1 1

Surface co-occurrence comparison

Description

Convenience function that combined the functionality of the `surface` and `coco` functions.

Usage

surface_coco(a, b, span, nodes, fdr = 0.01, collocates = NULL)

Arguments

- `a`: A character vector.
- `b`: A character vector.
- `span`: A character string defining the co-occurrence span. See `surface` function for details.
- `nodes`: A character vector of nodes or character string representing a single node.
- `fdr`: The desired level at which to control the False Discovery Rate.
- `collocates`: A character vector of collocates or character string representing a single collocate.

Details

See `surface` and `coco`.

For an example of usage see the ‘Proof of Concept’ vignette.

Value

A `data.table` of the form returned by the `coco` functions.
Index

coco, 2, 5, 8
 coco-class, 4
 CorporaCoCo (CorporaCoCo-package), 2
 CorporaCoCo-package, 2

data.table, 3, 6, 8

p.adjust, 3
 plot.coco (coco-class), 4
 plot.default, 4

surface, 3, 5, 8
 surface_coco, 5, 8