Package ‘CorrectedFDR’

February 14, 2018

Type Package
Title Correcting False Discovery Rates
Version 1.0
Date 2018-02-08
Author Abbas Rahal, Anna Akpawu, Justin Chitpin and David R. Bickel
Maintainer Abbas Rahal <arahal@uottawa.ca>
Description There are many estimators of false discovery rate. In this package we compute the Nonlocal False Discovery Rate (NFDR) and the estimators of local false discovery rate: Corrected False discovery Rate (CFDR), Re-ranked False Discovery rate (RFDR) and the blended estimator. Bickel, D. R. (2016) <http://hdl.handle.net/10393/34277>.
Depends R(>= 2.14.2)
Suggests LFDR.MLE, LFDREmpiricalBayes, ProData
biocViews Bayesian Statistics, MathematicalBiology
URL https://davidbickel.com
License LGPL-3
NeedsCompilation no
Repository CRAN
Date/Publication 2018-02-14 16:56:05 UTC

R topics documented:

CorrectedFDR-package .. 2
BlendedLFDR .. 3
EstimatorsFDR .. 4

Index 7
Description

There are many estimators of false discovery rate. In this package we compute the Nonlocal False Discovery Rate (NFDR) and the estimators of local false discovery rate: Corrected False discovery Rate (CFDR), Re-ranked False Discovery rate (RFDR) and the blended estimator. Bickel, D. R. (2016) <http://hdl.handle.net/10393/34277>.

Details

The DESCRIPTION file:

<table>
<thead>
<tr>
<th>Package</th>
<th>CorrectedFDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>1.0</td>
</tr>
<tr>
<td>Date</td>
<td>2018-02-08</td>
</tr>
<tr>
<td>License</td>
<td>GPL-3</td>
</tr>
<tr>
<td>Depends</td>
<td>R(>= 2.14.2)</td>
</tr>
<tr>
<td>Suggests</td>
<td>LFDR.MLE, LFDREmpiricalBayes, ProData</td>
</tr>
<tr>
<td>URL</td>
<td>https://davidbickel.com</td>
</tr>
</tbody>
</table>

Two functions in CorrectedFDR package to compute the LFDR estimators. The function estimatorsFDR computes the nonlocal false discovery rate (NFDR), the CFDR and the RFDR. The function BlendedLFDR uses a Benchmark of FDR, and other estimators of LFDR in order to get an estimate of LFDR.

Author(s)

Abbas Rahal, Anna Akpawu, Justin Chitpin and David R. Bickel
Maintainer: Abbas Rahal <arahal@uOttawa.ca>

References

Bickel, D. R. (2015). Corrigendum to: Simple estimators of false discovery rates given as few as one or two p-values without strong parametric assumptions. Statistical Applications in Genetics and Molecular Biology, 2015, 14, 225.
Bickel, D. R. (2013). Simple estimators of false discovery rates given as few as one or two p-values without strong parametric assumptions. Statistical Applications in Genetics and Molecular Biology, 2013, 12, 529-543.
BlendedLFDR

Blended Estimator of Local False Discovery Rate (LFDR)

Description

BlendedLFDR is a function used to compute the blended estimator based on a benchmark estimator, usually the nonlocal false discovery rate (NFDR), and a set of estimators of local false discovery rates (LFDR).

Usage

```r
blendedlfdr(benchmark, estlfdr)
```

Arguments

- `benchmark`: Input numeric vector for benchmark estimator (often NFDR).
- `estlfdr`: Input a matrix containing two or more sets of LFDR estimators.

Details

- **Benchmark**: An estimator of the FDR. This is usually the nonlocal false discovery rate (NFDR).
- **EstLFDR**: A matrix of several LFDR estimators such as corrected FDR (CFDR), re-ranked FDR (RFDR), MLE (Maximum Likelihood Estimator), BBE1 (Binomial Based Estimator), etc.

The output returns a single numeric vector containing the blended estimator of the LFDR.

Value

The value of the blended estimator is an estimator of the LFDR.

Note

The number of rows for the Benchmark and EstLFDR must have equal lengths.

Author(s)

- Code: Abbas Rahal.
- Documentation: Anna Akpawu, Justin Chitpin and Abbas Rahal.
- Maintainer: Abbas Rahal <arahal@uOttawa.ca>

References

Examples

#The data used to compute the LFDR estimators (CFDR, RFDR, MLE, and BBE1)
#comes from the ER/PR breast cancer data from the "ProData" package.
#To read more about the data, visit the website: https://www.bioconductor.org/
#Test statistics were first obtain, then the estimators for the FDR and LFDR were estimated.

#Benchmark vector
NFDR<-c(0.5661106448, 0.6897735492, 0.0000288516, 0.1549745113, 0.1305508978, 0.2421032979, 0.1482335568, 1, 1, 1, 0.6602562828, 0.7034682859, 0.7036322234, 0.0071192090, 0.8204536037, 0.9757716498, 0.7379329991, 1, 0.6333245479, 0.9904389701)

#Estimators of LFDR
CFDR<- c(1, 1, 0.0000288516, 0.2841199373, 0.2980912149, 0.5931530799, 0.3088199101, 1, 1, 1, 1, 1, 0.016788135, 1, 1, 1, 1, 1)
RFDR<- c(0.689773549, 1, 0.007119209, 0.130550897, 0.703632223, 0.660256282, 0.242103298, 1, 1, 1, 0.820453604, 1, 0.703468286, 0.154974511, 1, 1, 1, 0.975771650, 1)
MLE<- c(0.9865479126, 0.9969935995, 0.0002372158, 0.6531633437, 0.7611453549, 0.9187425383, 0.7359259207, 0.9996548155, 0.9997310453, 0.9997437131, 0.9944712582, 0.9981685029, 0.9937604664, 0.0215892618, 0.9990504315, 0.9997493086, 0.9967673540, 0.9997016985, 0.9970142319, 0.9997625673)
BBE1<- c(1,1, 0.0003169812, 0.1138333734, 1, 1, 1, 1, 1, 0.3279109564, 1, 0.0504755806, 0.0091823115, 0.0182614994, 0.0165386682, 1, 0.6964403713, 0.1001337298, 0.8415641198)

#Matrix of LFDR Estimators
Est.LFDR<- matrix(c(CFDR,RFDR,MLE,BBE1), ncol=4)
output<-BlendedLFDR(Benchmark = NFDR, EstLFDR = Est.LFDR)
outputBlended

EstimatorsFDR

Estimators of Local False Discovery Rate (LFDR)

Description

EstimatorsFDR is an R function that computes the Nonlocal False Discovery Rate (NFDR) and the estimators of local false discovery rate: Corrected False discovery Rate (CFDR) and Re-ranked False Discovery rate (RFDR).

Usage

EstimatorsFDR(pvalue)

Arguments

pvalue Input numeric vector of pvalues.
Details
The input is a list of p-values. The p-values can be obtained for example by performing Student’s t-test between two datasets. The two groups can be data from healthy and disease states. Let $i = 1, 2, ..., N$, where i represents the ith feature (SNP or gene, for example). Then, for each i, the hypothesis indicator A_i can have two possible values:

- $A_i = 0$, if the ith null hypothesis is true,
- $A_i = 1$, if the ith null hypothesis is not true,

where the null hypothesis is defined by: the ith feature is unaffected by a treatment, unassociated with a disease, etc. The values for each estimator (NFDR, CFDR, RFDR) indicate the probability that the null hypothesis of the ith feature is true ($A_i = 0$) given the statistics T_i. The alternative hypothesis is true if $A_i = 1$. For example, in gene expression data analysis, if the null hypothesis is true, this would mean that the genes are not differentially expressed.

Value
The output returns three lists. It returns the NFDR, CFDR, and RFDR estimators:

- NFDR nonlocal FDR
- CFDR corrected FDR
- RFDR re-ranked FDR

Author(s)
Code: Abbas Rahal.
Documentation: Anna Akpawu, Justin Chitpin and Abbas Rahal.
Maintainer: Abbas Rahal <arahal@uOttawa.ca>

References

Bickel, D. R. (2015). Corrigendum to: Simple estimators of false discovery rates given as few as one or two p-values without strong parametric assumptions. Statistical Applications in Genetics and Molecular Biology, 2015, 14, 225.

Bickel, D. R. (2013). Simple estimators of false discovery rates given as few as one or two p-values without strong parametric assumptions. Statistical Applications in Genetics and Molecular Biology, 2013, 12, 529-543.

Examples
#The examples below are from the "ProData" package.
#In order to use the "Prodata" input you would first need to install the ProData package.
#You will also need the function exprs in this package.
#First, make sure that the ProData package is properly installed:
#source("https://bioconductor.org/biocLite.R")
#biocLite("ProData")
#library(ProData)
data("f45cbmk")
For estimating the false discovery rate (FDR), the null hypothesis is evaluated for each protein using a t-test. The p-values obtained from the t-tests are then used to calculate the FDR estimates. The script calculates the FDR for a set of proteins and groups, with two groups: control (Healthy) and case (ER/PR-positive). The FDR estimates are calculated using the Benjamini-Hochberg procedure.

```r
#q1<- quantile(as_exprs(f45cbmk[, pData(f45cbmk)$GROUP == "B"]), "numeric"), probs = 0.25)
#logish<- function(x){log(x + q1)}
#Vectors of proteins for 20 patients ER/PR-positive and Healthy
#Y<- logish(as_exprs(f45cbmk[, pData(f45cbmk)$GROUP == "B"))) # Control (Healthy)
#X.ER<- logish(as_exprs(f45cbmk[, pData(f45cbmk)$GROUP == "C"))) # Case ER/PR-positive
#pvalue<- NULL
#for (i in 1:nrow(X.ER))
#{
#  t<- t.test(x=X.ER[i,], y=Y[i,], alternative = "two.sided")
#  pvalue[i]<- t$p.value
#}

#The pvalues obtained from the t-test:
pvalue<- c(0.1981, 0.3794, 0.000001443, 0.02325, 0.03264, 0.07263, 0.02965, 0.8016, 0.8888, 0.9133, 0.2971, 0.4573, 0.2815, 0.0007119, 0.5743, 0.927, 0.369, 0.8478, 0.38, 0.9904)
output<- EstimatorsFDR(pvalue)
#Three lists
output$NFDR
output$CFDR
output$RFDR
```
Index

* Topic **BBE1**
 BlendedLFDR, 3

* Topic **Blended**
 BlendedLFDR, 3

* Topic **CFDR**
 BlendedLFDR, 3
 EstimatorsFDR, 4

* Topic **False Discovery Rate**
 BlendedLFDR, 3
 EstimatorsFDR, 4

* Topic **LFDR**
 BlendedLFDR, 3
 EstimatorsFDR, 4

* Topic **MLE**
 BlendedLFDR, 3

* Topic **NFDR**
 BlendedLFDR, 3
 EstimatorsFDR, 4

* Topic **Null**
 EstimatorsFDR, 4

* Topic **RFDR**
 BlendedLFDR, 3
 EstimatorsFDR, 4

* Topic **hypothesis**
 EstimatorsFDR, 4

* Topic **package**
 CorrectedFDR-package, 2

BlendedLFDR, 3

CorrectedFDR-package, 2

EstimatorsFDR, 4