Package ‘CptNonPar’

June 13, 2023

Type Package

Title Nonparametric Change Point Detection for Multivariate Time Series

Version 0.1.1

Depends R (>= 4.1.0)

Maintainer Euan T. McGonigle <e.t.mcgonigle@soton.ac.uk>

License GPL (>= 3)

Encoding UTF-8

LinkingTo Rcpp

Imports Rcpp, doParallel, parallel, parallelly, foreach, Rfast, iterators, stats

URL https://github.com/EuanMcGonigle/CptNonPar

BugReports https://github.com/EuanMcGonigle/CptNonPar/issues

RoxygenNote 7.2.3

Suggests covr, testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation yes

Author Euan T. McGonigle [aut, cre], Haeran Cho [aut]

Repository CRAN

Date/Publication 2023-06-13 08:20:20 UTC

R topics documented:

- multilag.cpts.merge .. 2
- np.mojo ... 3
- np.mojo.multilag ... 7
multilag.cpts.merge

Merge Change Point Estimators from Multiple Lags

Description

Merges change point estimators from different lagged values into a final set of overall change point estimators.

Usage

```r
multilag.cpts.merge(
  x.c,
  eta.merge = 1,
  merge.type = c("sequential", "bottom-up")[1]
)
```

Arguments

- `x.c` A list object, where each element of the list is the output of the `np.mojo` function computed at a different lag.
- `eta.merge` A positive numeric value for the minimal mutual distance of changes, relative to bandwidth, used to merge change point estimators across different lags.
- `merge.type` String indicating the method used to merge change point estimators from different lags. Possible choices are
 - "sequential": starting from the left-most change point estimator and proceeding forward in time, estimators are grouped into clusters based on mutual distance. The estimator yielding the smallest corresponding p-value is chosen as the change point estimator for that cluster. See McGonigle and Cho (2023) for details.
 - "bottom-up": starting with the smallest p-value, the change points are merged using bottom-up merging (Messer et al. (2014)).

Details

See McGonigle and Cho (2023) for further details.

Value

A list object which contains the following fields

- `cpts` A matrix with rows corresponding to final change point estimators, with estimated change point location and associated lag and p-value given in columns.
- `cpt.clusters` A list object of length given by the number of detected change points. Each field contains a matrix of all change point estimators that are declared to be associated to the corresponding change point in the `cpts` field.
np.mojo

References

See Also

np.mojo, np.mojo.multilag

Examples

```r
set.seed(1)
n <- 500
noise <- c(rep(1, 300), rep(0.4, 200)) * stats::arima.sim(model = list(ar = 0.3), n = n)
signal <- c(rep(0, 100), rep(2, 400))
x <- signal + noise
x.c0 <- np.mojo(x, G = 83, lag = 0)
x.c1 <- np.mojo(x, G = 83, lag = 1)
x.c <- multilag.cpts.merge(list(x.c0, x.c1))
x.c
```

np.mojo

Nonparametric Single Lag Change Point Detection

Description

For a given lagged value of the time series, performs nonparametric change point detection of a possibly multivariate time series. If lag $\ell = 0$, then only marginal changes are detected. If lag $\ell \neq 0$, then changes in the pairwise distribution of $(X_t, X_{t+\ell})$ are detected.

Usage

```r
np.mojo(
  x,
  G,
  lag = 0,
  kernel.f = c("quad.exp", "gauss", "euclidean", "laplace", "sine")[1],
  kern.par = 1,
  data.driven.kern.par = TRUE,
  alpha = 0.1,
  threshold = c("bootstrap", "manual")[1],
  threshold.val = NULL,
  reps = 199,
  boot.dep = 1.5 * (nrow(as.matrix(x))^(1/3)),
  parallel = FALSE,
)```
boot.method = c("mean.subtract", "no.mean.subtract")[1],
criterion = c("eta", "epsilon", "eta.and.epsilon")[3],
eta = 0.4,
epsilon = 0.02,
use.mean = FALSE)
}

Arguments

x  
Input data (a numeric vector or an object of classes ts and timeSeries, or a numeric matrix with rows representing observations and columns representing variables).

G  
An integer value for the moving sum bandwidth; G should be less than half the length of the time series.

lag  
The lagged values of the time series used to detect changes. If \( \text{lag } \ell = 0 \), then only marginal changes are detected. If \( \text{lag } \ell \neq 0 \), then changes in the pairwise distribution of \((X_t, X_{t+\ell})\) are detected.

kernel.f  
String indicating which kernel function to use when calculating the NP-MOJO detectors statistics; with \( \text{kern.par} = a \), possible values are
- "quad.exp": kernel \( h_2 \) in McGonigle and Cho (2023), kernel 5 in Fan et al. (2017):
  \[
  h(x, y) = \prod_{i=1}^{2p} \frac{(2a - (x_i - y_i)^2) \exp\left(-\frac{1}{4a}(x_i - y_i)^2\right)}{2a}.
  \]
- "gauss": kernel \( h_1 \) in McGonigle and Cho (2023), the standard Gaussian kernel:
  \[
  h(x, y) = \exp\left(-\frac{a^2}{2} \|x - y\|\right).
  \]
- "euclidean": kernel \( h_3 \) in McGonigle and Cho (2023), the Euclidean distance-based kernel:
  \[
  h(x, y) = \|x - y\|^a.
  \]
- "laplace": kernel 2 in Fan et al. (2017), based on a Laplace weight function:
  \[
  h(x, y) = \prod_{i=1}^{2p} \left(1 + a^2(x_i - y_i)^2\right)^{-1}.
  \]
- "sine": kernel 4 in Fan et al. (2017), based on a sinusoidal weight function:
  \[
  h(x, y) = \prod_{i=1}^{2p} \frac{-2|x_i - y_i| + |x_i - y_i - 2a| + |x_i - y_i + 2a|}{4a}.
  \]

kern.par  
The tuning parameter that appears in the expression for the kernel function, which acts as a scaling parameter, only to be used if data.driven.kern.par = FALSE. If kernel.f = "euclidean", then kern.par \( \in (0, 2) \), otherwise kern.par \( > 0 \).
data.driven.kern.par
A logical variable, if set to TRUE, then the kernel tuning parameter is calculated using the median heuristic, if FALSE it is given by kern.par.

alpha
A numeric value for the significance level with 0 <= alpha <= 1; use iff threshold = "bootstrap".

threshold
String indicating how the threshold is computed. Possible values are
- "bootstrap": the threshold is calculated using the bootstrap method with significance level alpha.
- "manual": the threshold is set by the user and must be specified using the threshold.val parameter.

threshold.val
The value of the threshold used to declare change points, only to be used if threshold = "manual".

reps
An integer value for the number of bootstrap replications performed, if threshold = "bootstrap".

boot.dep
A positive value for the strength of dependence in the multiplier bootstrap sequence, if threshold = "bootstrap".

parallel
A logical variable, if set to TRUE, then parallel computing is used in the bootstrapping procedure if bootstrapping is performed.

boot.method
A string indicating the method for creating bootstrap replications. It is not recommended to change this. Possible choices are
- "mean.subtract": the default choice, as described in McGonigle and Cho (2023). Empirical mean subtraction is performed to the bootstrapped replicates, improving power.
- "no.mean.subtract": empirical mean subtraction is not performed, improving size control.

criterion
String indicating how to determine whether each point k at which NP-MOJO statistic exceeds the threshold is a change point; possible values are
- "epsilon": k is the maximum of its local exceeding environment, which has at least size epsilon*G.
- "eta": there is no larger exceeding in an eta*G environment of k.
- "eta.and.epsilon": the recommended default option; k satisfies both the eta and epsilon criterion. Recommended to use with the standard value of eta that would be used if criterion = "eta" (e.g. 0.4), but much smaller value of epsilon than would be used if criterion = "epsilon", e.g. 0.02.

eta
A positive numeric value for the minimal mutual distance of changes, relative to bandwidth (if criterion = "eta" or criterion = "eta.and.epsilon").

epsilon
a numeric value in (0,1] for the minimal size of exceeding environments, relative to moving sum bandwidth (if criterion = "epsilon" or criterion = "eta.and.epsilon").

use.mean
Logical variable, only to be used if data.drive.kern.par=TRUE. If set to TRUE, the mean of pairwise distances is used to set the kernel function tuning parameter, instead of the median. May be useful for binary data, not recommended to be used otherwise.
Details


Value

A list object that contains the following fields:

- `x` Input data
- `G` Moving window bandwidth
- `lag` Lag used to detect changes
- `kernel.f, data.driven.kern.par, use.mean` Input parameters
- `kern.par` The value of the kernel tuning parameter
- `threshold, alpha, reps, boot.dep, boot.method, parallel` Input parameters
- `threshold.val` Threshold value for declaring change points
- `criterion, eta, epsilon` Input parameters
- `test.stat` A vector containing the NP-MOJO detector statistics computed from the input data
- `cpts` A vector containing the estimated change point locations
- `p.vals` The corresponding p values of the change points, if the bootstrap method was used

References


See Also

- `np.mojo.multilag`

Examples

```r
set.seed(1)
n <- 500
noise <- c(rep(1, 300), rep(0.4, 200)) * stats::arima.sim(model = list(ar = 0.3), n = n)
signal <- c(rep(0, 100), rep(2, 400))
x <- signal + noise
x.c <- np.mojo(x, G = 83, lag = 0)
x.c$cpts
x.c$p.vals
```
np.mojo.multilag

Nonparametric Multiple Lag Change Point Detection

Description

For a given set of lagged values of the time series, performs nonparametric change point detection of a possibly multivariate time series.

Usage

np.mojo.multilag(
    x, G,
    lags = c(0, 1),
    kernel.f = c("quad.exp", "gauss", "euclidean", "laplace", "sine")[1],
    kern.par = 1,
    data.driven.kern.par = TRUE,
    threshold = c("bootstrap", "manual")[1],
    threshold.val = NULL,
    alpha = 0.1,
    reps = 199,
    boot.dep = 1.5 * (nrow(as.matrix(x))^(1/3)),
    parallel = FALSE,
    boot.method = c("mean.subtract", "no.mean.subtract")[1],
    criterion = c("eta", "epsilon", "eta.and.epsilon")[3],
    eta = 0.4,
    epsilon = 0.02,
    use.mean = FALSE,
    eta.merge = 1,
    merge.type = c("sequential", "bottom-up")[1]
)

Arguments

x       Input data (a numeric vector or an object of classes ts and timeSeries, or a numeric matrix with rows representing observations and columns representing variables).

G       An integer value for the moving sum bandwidth; G should be less than half the length of the time series.

lags    A numeric vector giving the range of lagged values of the time series that will be used to detect changes. See np.mojo for further details.

kernel.f  String indicating which kernel function to use when calculating the NP-MOJO detector statistics; with kern.par = a, possible values are
np.mojo.multilag

- "quad.exp": kernel $h_2$ in McGonigle and Cho (2023), kernel 5 in Fan et al. (2017):
  $$h(x, y) = \prod_{i=1}^{2p} \frac{(2a - (x_i - y_i)^2) \exp(-\frac{1}{4a}(x_i - y_i)^2)}{2a}.$$ 

- "gauss": kernel $h_1$ in McGonigle and Cho (2023), the standard Gaussian kernel:
  $$h(x, y) = \exp(-\frac{a^2}{2}\|x - y\|^2).$$ 

- "euclidean": kernel $h_3$ in McGonigle and Cho (2023), the Euclidean distance-based kernel:
  $$h(x, y) = \|x - y\|^a.$$ 

- "laplace": kernel 2 in Fan et al. (2017), based on a Laplace weight function:
  $$h(x, y) = \prod_{i=1}^{2p} \left(1 + a^2(x_i - y_i)^2\right)^{-1}.$$ 

- "sine": kernel 4 in Fan et al. (2017), based on a sinusoidal weight function:
  $$h(x, y) = \prod_{i=1}^{2p} \frac{-2|x_i - y_i| + |x_i - y_i - 2a| + |x_i - y_i + 2a|}{4a}.$$ 

kern.par The tuning parameter that appears in the expression for the kernel function, which acts as a scaling parameter.

data.driven.kern.par
A logical variable, if set to TRUE, then the kernel tuning parameter is calculated using the median heuristic, if FALSE it is given by kern.par.

threshold String indicating how the threshold is computed. Possible values are

- "bootstrap": the threshold is calculated using the bootstrap method with significance level $\alpha$.
- "manual": the threshold is set by the user and must be specified using the threshold.val parameter.

threshold.val The value of the threshold used to declare change points, only to be used if threshold = "manual".

alpha A numeric value for the significance level with $0 \leq \alpha \leq 1$; use iff threshold = "bootstrap".

reps An integer value for the number of bootstrap replications performed, if threshold = "bootstrap".

boot.dep A positive value for the strength of dependence in the multiplier bootstrap sequence, if threshold = "bootstrap".

parallel A logical variable, if set to TRUE, then parallel computing is used in the bootstrapping procedure if bootstrapping is performed.

boot.method A string indicating the method for creating bootstrap replications. It is not recommended to change this. Possible choices are
• "mean.subtract": the default choice, as described in McGonigle and Cho (2023). Empirical mean subtraction is performed to the bootstrapped replicates, improving power.

• "no.mean.subtract": empirical mean subtraction is not performed, improving size control.

**criterion**

String indicating how to determine whether each point \( k \) at which NP-MOJO statistic exceeds the threshold is a change point; possible values are

• "epsilon": \( k \) is the maximum of its local exceeding environment, which has at least size \( \epsilon \cdot G \).

• "eta": there is no larger exceeding in a \( \eta \cdot G \) environment of \( k \).

• "eta.and.epsilon": the recommended default option; \( k \) satisfies both the eta and epsilon criterion. Recommended to use with the standard value of \( \epsilon \) that would be used if \( \text{criterion} = \text{"eta"} \) (e.g. 0.4), but much smaller value of epsilon than would be used if \( \text{criterion} = \text{"epsilon"} \), e.g. 0.02.

**eta**

A positive numeric value for the minimal mutual distance of changes, relative to bandwidth (if \( \text{criterion} = \text{"eta"} \) or \( \text{criterion} = \text{"eta.and.epsilon"} \)).

**epsilon**

A numeric value in \((0,1]\) for the minimal size of exceeding environments, relative to moving sum bandwidth (if \( \text{criterion} = \text{"epsilon"} \) or \( \text{criterion} = \text{"eta.and.epsilon"} \)).

**use.mean**

Logical variable, only to be used if \( \text{data.drive.kern.par=TRUE} \). If set to \( \text{TRUE} \), the mean of pairwise distances is used to set the kernel function tuning parameter, instead of the median. May be useful for binary data, not recommended to be used otherwise.

**eta.merge**

A positive numeric value for the minimal mutual distance of changes, relative to bandwidth, used to merge change point estimators across different lags.

**merge.type**

String indicating the method used to merge change point estimators from different lags. Possible choices are

• "sequential": Starting from the left-most change point estimator and proceeding forward in time, estimators are grouped into clusters based on mutual distance. The estimator yielding the smallest corresponding p-value is chosen as the change point estimator for that cluster. See McGonigle and Cho (2023) for details.

• "bottom-up": starting with the smallest p-value, the change points are merged using bottom-up merging (Messer et al. (2014)).

**Details**


**Value**

A list object that contains the following fields:

- **G**: Moving window bandwidth
lags  Lags used to detect changes
kernel.f, data.driven.kern.par, use.mean
Input parameters
threshold, alpha, reps, boot.dep, boot.method, parallel
Input parameters
criterion, eta, epsilon
Input parameters
cpts  A matrix with rows corresponding to final change point estimators, with estimated change point location and associated lag and p-value given in columns.
cpt.clusters  A list object of length given by the number of detected change points. Each field contains a matrix of all change point estimators that are declared to be associated to the corresponding change point in the cpts field.

References


See Also

np.mojo, multilag.cpts.merge

Examples

```r
set.seed(1)
n <- 500
noise <- c(rep(1, 300), rep(0.4, 200)) * stats::arima.sim(model = list(ar = 0.3), n = n)
signal <- c(rep(0, 100), rep(2, 400))
x <- signal + noise
x.c <- np.mojo.multilag(x, G = 83, lags = c(0, 1))
x.c$cpts
x.c$cpt.clusters
```
Index

multilag.cpts.merge, 2, 10

np.mojo, 2, 3, 3, 7, 10
np.mojo.multilag, 3, 6, 7