Package ‘CreditRisk’

January 21, 2018

Type Package
Title Evaluation of Credit Risk with Structural and Reduced Form Models
Version 0.1.3
Date 2017-09-01
Author Alessandro Cimarelli <alessandro.cimarelli@icloud.com> [anl, aut, cre]
 Nicolò Manca <n.manca1992@gmail.com> [anl, aut, cre]
Maintainer Alessandro Cimarelli <alessandro.cimarelli@icloud.com>
Description Evaluation of default probability of sovereign and corporate entities based on structural or intensity based models and calibration on market Credit Default Swap quotes. Damiano Brigo, Massimo Morini, Andrea Pallavicini (2013): “Counterparty Credit Risk, Collateral and Funding. With Pricing Cases for All Asset Classes”.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Imports fOptions, stats
RoxygenNote 6.0.1
Suggests testthat
NeedsCompilation no
Repository CRAN
Date/Publication 2018-01-21 17:10:42 UTC

R topics documented:

 at1p .. 2
 BlackCox ... 3
 calibrate.at1p ... 5
 calibrate.BlackCox ... 6
 calibrate.cds ... 7
 calibrate.sbtv .. 8
 cds ... 9
at1p

Analytically - Tractable First Passage (AT1P) model

Description

at1p calculates the survival probability $Q(\tau > t)$ and default intensity for each maturity according to the structural Analytically - Tractable First Passage model.

Usage

$at1p(V_0, H_0, B, \text{sigma}, r, t)$

Arguments

V_0 firm value at time $t = 0$ (it is a constant value).

H_0 value of the safety level at time $t = 0$.

B free positive parameter used for shaping the barrier H_t.

sigma a vector of constant stepwise volatility σ_t.

r a vector of constant stepwise risk-free rate.

t a vector of debt maturity structure (it is a numeric vector).

Details

In this function the safety level H_t is calculated using the formula:

$$H(t) = \frac{H_0}{V_0} * E_0[V_t] * \exp^{-B \int_0^t \sigma_u du}$$

The backbone of the default barrier at t is a proportion, controlled by the parameter H_0, of the expected value of the company assets at t. H_0 may depend on the level of the liabilities, on safety covenants, and in general on the characteristics of the capital structure of the company. Also, depending on the value of the parameter B, it is possible that this backbone is modified by accounting for the volatility of the company assets. For example, if $B > 0$ corresponds to the interpretation that when volatility increases - which can be independent of credit quality - the barrier is slightly lowered to cut some more slack to the company before going bankrupt. When $B = 0$ the barrier does not depend on the volatility and the "distance to default" is simply modelled through the barrier parameter H_0.
Value

at1p returns an object of class data.frame containing the firm value, safety level $H(t)$ and the survival probability for each maturity. The last column is the default intensity calculated among each interval Δt.

References

Damiano Brigo, Massimo Morini, Andrea Pallavicini (2013) Counterparty Credit Risk, Collateral and Funding. With Pricing Cases for All Asset Classes.

Examples

mod <- at1p(V0 = 1, H0 = 0.7, B = 0.4, sig = rep(0.1, 10), r = cdsdata$ED.Zero.Curve, t = cdsdata$Maturity)

plot(cdsdata$Maturity, mod$Ht, type = 'b', xlab = 'Maturity', ylab = 'Safety Level $H(t)$',
 main = 'Safety level for different maturities', ylim = c(min(mod$Ht), 1.5),
 col = 'red')

lines(cdsdata$Maturity, mod$Vt, xlab = 'Maturity', ylab = 'V(t)',
 main = 'Value of the Firm \n at time t', type = 's')

plot(cdsdata$Maturity, mod$Survival, type = 'b',
 main = 'Survival Probability for different Maturity \n (AT1P model)',
 xlab = 'Maturity', ylab = 'Survival Probability')

matplot(cdsdata$Maturity, mod$Default.Intensity, type = 'l', xlab = 'Maturity',
 ylab = 'Default Intensity')

BlackCox

Black and Cox’s model

Description

BlackCox calculates the survival probability $Q(\tau > t)$ and default intensity for each maturity according to the structural Black and Cox’s model.

Usage

BlackCox(L, K = L, V0, sigma, r, gamma, t)

Arguments

L debt face value at maturity $t = T$ (it is a constant value).
K positive parameter needed to calculate the safety level.
V0 firm value at time $t = 0$ (it is a constant value).
sigma volatility (constant for all t).
\[r \] risk-free rate (constant for all \(t \)).

\[\gamma \] interest rate used to discount the safety level \(H_t \) (it is a constant value).

\(t \) a vector of debt maturity structure (it is a numeric vector).

Details

In Merton’s model the default event can occur only at debt maturity \(T \) while in Black and Cox’s model the default event can occur even before. In this model the safety level is given by the output \(H_t \). Hitting this barrier is considered as an earlier default. Assuming a debt face value of \(L \) at the final maturity that coincides with the safety level in \(t = T \), the safety level in \(t \leq T \) is the \(K \), with \(K \leq L \), value discounted at back at time \(t \) using the interest rate \(\gamma \), obtaining:

\[
H(t|t \leq T) = K \cdot \exp^{-\gamma (T-t)}
\]

The output parameter \texttt{default.intensity} represents the default intensity of \(\Delta t \). The firm’s value \(V_t \) is calculated as in the \texttt{Merton} function.

Value

This function returns an object of class \texttt{data.frame} containing firm value, safety level \(H(t) \) and the survival probability for each maturity. The last column is the default intensity calculated among each interval \(\Delta t \).

References

Damiano Brigo, Massimo Morini, Andrea Pallavicini (2013) Counterparty Credit Risk, Collateral and Funding. With Pricing Cases for All Asset Classes.

Examples

```r
mod <- BlackCox(L = 0.55, K = 0.40, V_0 = 1, sigma = 0.3, r = 0.05, gamma = 0.04, 
t = c(0.50, 1.00, 2.00, 5.00, 7.00, 10.00, 20.00, 30.00))

plot(c(0.50, 1.00, 2.00, 5.00, 7.00, 10.00, 20.00, 30.00), mod$Ht, type = 'b', 
     xlab = 'Maturity', ylab = 'Safety Level H(t)', main = 'Safety level for different maturities', ylim = c(min(mod$Ht), 1.5), col = 'red')
abline(h = 0.55, col = 'red')
lines(c(0.50, 1.00, 2.00, 5.00, 7.00, 10.00, 20.00, 30.00), mod$Vt, xlab = 'Maturity', 
     ylab = 'V(t)', main = 'Value of the Firm \n at time t', type = 's')

plot(c(0.50, 1.00, 2.00, 5.00, 7.00, 10.00, 20.00, 30.00), mod$Survival, type = 'b', 
     main = 'Survival Probability for different Maturity \n (Black & Cox model)', xlab = 'Maturity', ylab = 'Survival Probability')

matplot(c(0.50, 1.00, 2.00, 5.00, 7.00, 10.00, 20.00, 30.00), mod$Default.Intensity, 
    type = 'l', xlab = 'Maturity', ylab = 'Default Intensity')
```
calibrate.at1p

AT1P model calibration to market CDS data

Description

Compares CDS rates quoted on the market with theoretic CDS rates calculated by the function `cds` and looks for the parameters to be used into `at1p` for returning the default intensities corresponding to real market CDS rates performing the minimization of the objective function.

Usage

```
calibrate.at1p(V0, cdsrate, r, t, ...)  
```

Arguments

- `V0` : firm value at time $t = 0$.
- `cdsrate` : CDS rates from market.
- `r` : a vector of risk-free rate.
- `t` : a vector of debt maturity structure.
- `...` : additional parameters used in `cds` function.

Details

Inside `calibrate.at1p`, the function `objfn` takes the input a vector of parameters and returns the mean error occurred estimating CDS rates with `cds` function. The inputs used in `cds` are the default intensities calculated by the `at1p` function with the calibrated parameters. In particular the error is calculated as:

$$
\frac{1}{n} \sum_{i=1}^{n} (cds - c_{mkt}^{ds})^2.
$$

This quantity is a function of the default intensities and it is the objective function to be minimized in order to take optimal solutions for intensities.

Value

`calibrate.at1p` returns an object of class `data.frame` with calculated parameters of the `at1p` model and the error occurred in the minimization procedure.

References

Damiano Brigo, Massimo Morini, Andrea Pallavicini (2013) Counterparty Credit Risk, Collateral and Funding. With Pricing Cases for All Asset Classes

Examples

```
calibrate.at1p(V0 = 1, cdsrate = cdsdata$Par.spread, r = cdsdata$ED.Zero.Curve, t = cdsdata$Maturity)
```
Description

Compares CDS rates quoted on the market with theoretic CDS rates calculated by the function `cds` and looks for the parameters to be used into `BlackCox` for returning the default intensities corresponding to real market CDS rates performing the minimization of the objective function.

Usage

`calibrate.BlackCox(V0, cdsrate, r, t, ...)`

Arguments

- `V0`: firm value at time \(t = 0 \).
- `cdsrate`: CDS rates from the market.
- `r`: risk-free rate.
- `t`: a vector of debt maturity structure.
- `...`: additional parameters used in `cds` function.

Details

Inside `calibrate.BlackCox`, the function `objfn` takes the input a vector of parameters and returns the mean error occurred estimating CDS rates with `cds` function. The inputs used in `cds` are the default intensities calculated by the `BlackCox` function with the calibrated parameters. In particular, the error is calculated as:

\[
\frac{1}{n} \sum_{i=1}^{n} (c_{\text{ds}} - c_{\text{mkt}}^{\text{ds}})^2.
\]

This quantity is a function of the default intensities and it is the objective function to be minimized in order to take optimal solutions for intensities.

Value

`calibrate.BlackCox` returns an object of class `data.frame` with calculated parameters of the `BlackCox` model and the error occurred in the minimization procedure.

References

Damiano Brigo, Massimo Morini, Andrea Pallavicini (2013) Counterparty Credit Risk, Collateral and Funding. With Pricing Cases for All Asset Classes

Examples

`calibrate.BlackCox(V0 = 1, cdsrate = cdsdata$Par.spread, r = 0.005, t = cdsdata$Maturity)`
calibrate.cds

Calibrate the default intensities to market CDS data

Description

Compares CDS rates quoted on market with theoretic CDS rates and looks for default intensities that correspond to real market CDS rates through a minimization problem of an objective function.

Usage

`calibrate.cds(r, t, T, cdsrate, ...)`

Arguments

- `r`: interest rates.
- `t`: premiums timetable.
- `T`: CDS maturities.
- `cdsrate`: CDS rates from market.
- `...`: additional parameters used in `cds` function.

Details

Inside `calibrate.cds`, the function `err.cds` takes the input a vector of intensities and returns the mean error occurred estimating CDS rates with `cds`. In particular such error is calculated as:

\[
\frac{1}{n} \sum_{i=1}^{n} (c_{i}^{ds} - c_{i}^{ds_{mkt}})^2.
\]

This quantity is a function of default intensities and is the our objective function to be minimized in order to take optimal solutions for intensities.

Value

returns an object of class `list` with calculated intensities and the error occurred in the minimization procedure.

References

- David Lando (2004) Credit risk modeling
- Damiano Brigo, Massimo Morini, Andrea Pallavicini (2013) Counterparty Credit Risk, Collateral and Funding. With Pricing Cases for All Asset Classes

Examples

```r
calibrate.cds( r = cdsdata$ED.Zero.Curve, t = seq(.5, 30, by = .5),
               T = c(1, 2, 3, 4, 5, 7, 10, 20, 30), cdsrate = cdsdata$par.spread, RR = 0.4)
```
calibrate.sbtv

SBTV model calibration to market CDS data

Description

Compares CDS rates quoted on the market with theoretic CDS rates calculated by the function cds and looks for the parameters to be used into sbtv for returning the default intensities corresponding to real market CDS rates performing the minimization of the objective function.

Usage

\texttt{calibrate.sbtv(V0, p, cdsrate, r, t, ...)}

Arguments

- \texttt{V0} firm value at time \(t = 0 \).
- \texttt{p} vector of the probability of different scenario (sum of \texttt{p} must be 1).
- \texttt{cdsrate} CDS rates from market.
- \texttt{r} a vector of risk-free rate.
- \texttt{t} a vector of debt maturity structure.
- \texttt{...} additional parameters used in \texttt{cds} function.

Details

Inside \texttt{calibrate.sbtv}, the function \texttt{objfn} takes the input a vector of parameters and returns the mean error occurred estimating CDS rates with \texttt{cds} function. The inputs used in \texttt{cds} are the default intensities calculated by the \texttt{sbtv} function with the calibrated parameters. In particular the error is calculated as:

\[
\frac{1}{n} \sum_{i=1}^{n} \left(c^{ds} - c^{ds}_{mkt} \right)^2.
\]

This quantity is a function of the default intensities and it is the objective function to be minimized in order to take optimal solutions for intensities.

Value

This function returns an object of class \texttt{list} with calculated parameters of \texttt{sbtv} model and the error occurred in the minimization procedure.

References

Damiano Brigo, Massimo Morini, Andrea Pallavicini (2013) Counterparty Credit Risk, Collateral and Funding. With Pricing Cases for All Asset Classes
Examples

calibrate.sbtv(V0 = 1, p = c(0.95, 0.05), cdsrate = cdsdata$Par.spread,
r = cdsdata$ED.Zero.Curve, t = cdsdata$maturity)

cds
Calculates Credit Default Swap rates

Description

Calculates CDS rates starting from default intensities.

Usage

cds(t, int, r, R = 0.005, RR = 0.4, simplified = FALSE)

Arguments

- **t**
 premium timetable.
- **int**
 deterministic default intensities vector.
- **r**
 spot interest rates.
- **R**
 constant premium payments, value that the buyer pays in each \(t_i \).
- **RR**
 recovery rate on the underline bond, default value is 40%.
- **simplified**
 logic argument. If FALSE calculates the CDS rates using the simplified version of calculations, if TRUE use the complete version.

Details

- Premium timetable is \(t_i; i = 1, ..., T \). The vector starts from \(t_1 \leq 1 \), i.e. the first premium is payed at a year fraction in the possibility that the bond is not yet defaulted. Since premium are a postponed payment (unlike usual insurance contracts).
- Intensities timetable have domains \(\gamma_i; i = t_1, ..., T \).
- spot interest rates of bond have domain \(r_i; i = t_1, ..., T \). The function transforms spot rates in forward rates. If we specify that we want to calculate CDS rates with the simplified alghoritm, in each period, the amount of the constant premium payment is expressed by:

\[
\pi^{pb} = \sum_{i=1}^{T} p(0, i) S(0, i) \alpha_i
\]

and the amount of protection, assuming a recovery rate \(\delta \), is:

\[
\pi^{ps} = (1 - \delta) \sum_{i=1}^{T} p(0, i) \hat{Q}(\tau = i) \alpha_i
\]
If we want to calculate the same quantities with the complete version, that evaluate premium in the continuous, the value of the premium leg is calculated as:

$$\pi_{pb}(0, 1) = -\int_{T_a}^{T_b} P(0, t) \cdot (t - T_\beta(t) - 1) dt \cdot Q(\tau \geq t) + \sum_{i=a+1}^{b} P(0, T_i) \cdot \alpha_i \cdot Q(\tau \geq T_i)$$

and the protection leg as:

$$\pi_{ps}^{a,b}(1) := -\int_{t-T_i}^{T_b} P(0, t) dt \cdot Q(\tau \geq t)$$

In both versions the forward rates and intensities are supposed as constant stepwise functions with discontinuity in t_i

Value

cds returns an object of class `data.frame` with columns, for each date t_i the value of survival probability, the premium and protection leg, CDS rate and CDS price.

References

Damiano Brigo, Massimo Morini, Andrea Pallavicini (2013) Counterparty Credit Risk, Collateral and Funding. With Pricing Cases for All Asset Classes

Examples

cds(t = seq(0.5, 10, by = 0.5), int = seq(0.01, 0.05, len = 20),
 r = seq(0.02, len=20), R = 0.005, RR = 0.4, simplified = FALSE)

cds2 CdsCalculate Credit Default Swap rates

Description

Calculate CDS rates starting from default intensities

Usage

cds2(t, T, tr, r, tint, int, R = 0.005, ...)
Arguments

- `t` premium timetable.
- `T` CDS maturities.
- `tr` interest rates timetable.
- `r` spot interest rates.
- `tint` intensity timetable.
- `int` default intensities timetable.
- `R` constant premium payment.
- `...` further arguments on cds.

Details

The function `cds2` is based on `cds` but allows a more fine control on maturities and on discretization of `r` and `int`. In particular input (`t`, `tr`, `tint`) can be of different length thanks to the function `approx`.

Value

An object of class `data.frame` that contains the quantities calculated by `cds` on `T` timetable.

References

- Damiano Brigo, Massimo Morini, Andrea Pallavicini (2013) Counterparty Credit Risk, Collateral and Funding. With Pricing Cases for All Asset Classes

Examples

```r
cds2(t = c(1:20), T = c(1:20), tr = c(1:20), r = seq(0.01, 0.06, len = 20),
     tint = c(1:20), int = seq(0.01, 0.06, len = 20))
```

cdsdata

CDS quotes from market

Description

- Maturity: Maturities of cds contracts expressed in years;
- Par. Spread: CDS rates quotes, spread that nullify the present value of the two legs;
- E0. Zero. Curve: EURIBOR interest rates (risk-free)

Usage

data(cdsdata)
Merton

Format
An object of class "data.frame".

Source
Thomson Reuters, CDS quotes of Unicredit on 2017-01-23

Merton

Merton’s model

Description
Merton calculates the survival probability \(Q(\tau > T) \) for each maturity according to the structural Merton’s model.

Usage
Merton(L, V0, sigma, r, t)

Arguments
L
- debt face value at maturity \(t = T \); if the value of the firm \(V_T \) is below the debt face value to be paid in \(T \) the company default has occurred (it is a constant value).

V0
- firm value at time \(t = 0 \) (it is a constant value).

sigma
- volatility (constant for all \(t \)).

r
- risk-free rate (constant for all \(t \)).

t
- a vector of debt maturity structure. The last value of this vector represents the debt maturity \(T \).

Details
In Merton’s model the default event can occur only at debt maturity \(T \) and not before. In this model the debt face value \(L \) represents the constant safety level. In this model the firm value is the sum of the firm equity value \(\Delta t \) and the firm debt value \(\Delta t \). The debt value at time \(t < T \) is calculated by the formula:

\[
D_t = L \exp^{-r(T-t)} - Put(t, T; V_t, L)
\]

The equity value can be derived as a difference between the firm value and the debt:

\[
S_t = V_t - D_t = V_t - L \exp^{-r(T-t)} + Put(t, T; V_t, L) = Call(t, T; V_t, L)
\]

(by the put-call parity) so that in the Merton’s model the equity can be interpreted as a Call option on the value of the firm.
Value

Merton returns an object of class `data.frame` with:

- **vt**: expected Firm value at time $t < T$ calculated by the simple formula $V_t = V_0 \times \exp^{rt}$.
- **st**: firm equity value at each $t < T$. This value can be seen as a call option on the firm value V_t.
- **dt**: firm debt value at each $t < T$.
- **survival**: survival probability for each maturity.

References

Damiano Brigo, Massimo Morini, Andrea Pallavicini (2013) Counterparty Credit Risk, Collateral and Funding. With Pricing Cases for All Asset Classes

Examples

```r
mod <- Merton(L = 10, V0 = 20, sigma = 0.2, r = 0.005, t = c(0.50, 1.00, 2.00, 3.25, 5.00, 10.00, 15.00, 20.00))

plot(c(0.50, 1.00, 2.00, 3.25, 5.00, 10.00, 15.00, 20.00), mod$Surv, main = 'Survival Probability for different Maturity

n (Merton model)', xlab = 'Maturity', ylab = 'Survival Probability', type = 'b')
```

Merton.sim

Firm value in Merton's model

Description

With this function we simulate n trajectories of firm value based on Merton's model.

Usage

```r
Merton.sim(V0, r, sigma, t, n, seed = as.numeric(Sys.time()))
```

Arguments

- **V0**: firm value at time $t = 0$.
- **r**: risk-free interest rate (constant for all t).
- **sigma**: volatility (constant for all t).
- **t**: a vector of debt maturity structure.
- **n**: number of trajectories to be generated.
- **seed**: starting seed, default seed is setted randomly.
Details

The trajectories are calculated according to the equation:

\[V_T = V_0 \exp \int_0^T d\ln V_t \]

Where we express \(d\ln V_t \) using Ito’s lemma to derive the differential of the logarithm of the firm value as:

\[d\ln V_t = \left(\mu - \frac{\sigma^2}{2} \right) dt + \sigma dW_t \]

Value

This function returns a matrix containing the simulated firm values.

References

Examples

```r
V <- Merton.sim(V0 = 20, r = 0.05, sigma = 0.2, t = seq(0, 30, by = 0.5), n = 5)
matplot(x = seq(0, 30, by = 0.5), y = V, type = 's', lty = 1, xlab = 'Time',
        ylab = 'Firm value trajectories', main = "Trajectories of the firm values in the Merton's model")
```

sbtv

Scenario Barrier Time-Varying Volatility AT1P model

Description

sbtv calculates the survival probability \(Q(\tau > t) \) and default intensity for each maturity according to the structural SBTV model.

Usage

```
sbtv(V0, H, p, B, sigma, r, t)
```

Arguments

- `V0`: firm value at time \(t = 0 \) (it is a constant value).
- `H`: vector of differents safety level at time \(t = 0 \).
- `p`: vector of the probability of different scenario (sum of p must be 1).
- `B`: free positive parameter used for shaping the barrier \(H_t \).
- `sigma`: a vector of constant stepwise volatility \(\sigma_t \).
- `r`: a vector of constant stepwise risk-free rate.
- `t`: a vector of debt maturity structure (it is a numeric vector).
Details

`sbtv` is an extension of the `at1p` model. In this model the parameter H_0 used in the `at1p` model is replaced by a random variable assuming different values in different scenarios, each scenario with a different probability. The survival probability is calculated as a weighted average of the survival probability using the formula:

$$SBTV.Surv = \sum_{i=1}^{N} p[i] * AT1P.Surv(H[i])$$

where $AT1P.Surv(H[i])$ is the survival probability computed according to the `AT1P` model when $H_0 = H[i]$ and with weights equal to the probabilities of the different scenarios.

Value

`sbtv` returns an object of class `data.frame` containing the survival probability for each maturity. The last column is the default intensity calculated among each interval Δt.

References

Damiano Brigo, Massimo Morini, Andrea Pallavicini (2013) Counterparty Credit Risk, Collateral and Funding. With Pricing Cases for All Asset Classes.

Examples

```r
mod <- sbtv(V0 = 1, H = c(0.4, 0.8), p = c(0.95, 0.05), B = 0, sigma = rep(0.20, 10),
             r = cdsdata$ED.Zero.Curve, t = cdsdata$Maturity)

plot(cdsdata$Maturity, mod$Survival, type = 'b')
```
Index

*Topic datasets
 cdsdata, 11

approx, 11
at1p, 2

BlackCox, 3

calibrate.at1p, 5
calibrate.BlackCox, 6
calibrate.cds, 7
calibrate.sbtv, 8
cds, 9
cds2, 10
cdsdata, 11

Merton, 12
Merton.sim, 13

sbtv, 14