Package ‘CytOpT’

February 9, 2022

Type Package
Title Optimal Transport for Gating Transfer in Cytometry Data with Domain Adaptation
Version 0.9.4
Date 2022-02-08
Maintainer Boris Hejblum <boris.hejblum@u-bordeaux.fr>
SystemRequirements Python (>= 3.7)
Description Supervised learning from a source distribution (with known segmentation into cell sub-populations) to fit a target distribution with unknown segmentation. It relies regularized optimal transport to directly estimate the different cell population proportions from a biological sample characterized with flow cytometry measurements. It is based on the regularized Wasserstein metric to compare cytometry measurements from different samples, thus accounting for possible misalignment of a given cell population across sample (due to technical variability from the technology of measurements). Supervised learning technique based on the Wasserstein metric that is used to estimate an optimal re-weighting of class proportions in a mixture model Details are presented in Freulon P, Bigot J and Hejblum BP (2021) <arXiv:2006.09003>.

Config/reticulate list(packages = list(list(package = "numpy"), list(package = "scikit-learn"), list(package = "scipy")))
License GPL (>= 2)
Repository CRAN
Depends R (>= 3.6)
LazyData true
RoxygenNote 7.1.2
Function to display a bland plot in order to visually assess the agreement between CytOpt estimation of the class proportions and the estimate of the class proportions provided through manual gating.

Usage

```r
barplot_prop(proportions, title = "", xaxis_angle = 45)
```
Arguments

- **proportions**: data.frame of (true and) estimated proportions from CytOpt()
- **title**: plot title. Default is "", i.e. no title.
- **xaxis_angle**: scalar indicating an angle to tilt the labels of x_axis. Default is 45.

Value

- a ggplot object

Examples

```r
if(interactive()){
  res <- CytOpT(X_s = HIPC_Stanford_1228_1A, X_t = HIPC_Stanford_1369_1A,
                 Lab_source = HIPC_Stanford_1228_1A_labels,
                 eps = 0.0001, lbd = 0.0001, n_iter = 10000, n_stoc=10,
                 step_grad = 10, step = 5, power = 0.99,
                 method='minmax')
  barplot_prop(res$proportions)
}
```

Description

Function to display a Bland & Altman plot in order to visually assess the agreement between CytOpt estimation of the class proportions and the estimate of the class proportions provided through manual gating. Requires that either theta_true or Lab_target was provided when running CytOpT().

Usage

```r
Bland_Altman(proportions, additional_info_shape = NULL)
```

Arguments

- **proportions**: data.frame of true and estimated proportion returned from CytOpT().
- **additional_info_shape**: vector of additional information to be used for shape in the plot. Not implemented yet.

See Also

CytOpT
Examples

```r
if(interactive()){

gold_standard_manual_prop <- c(table(HIPC_Stanford_1369_1A_labels) / 
length(HIPC_Stanford_1369_1A_labels))
res <- CytOpT(X_s = HIPC_Stanford_1228_1A, X_t = HIPC_Stanford_1369_1A, 
Lab_source = HIPC_Stanford_1228_1A_labels, 
theta_true = gold_standard_manual_prop, 
eps = 0.0001, lbd = 0.0001, n_iter = 10000, n_stoc=10, 
step_grad = 10, step = 5, power = 0.99, 
method='both')
Bland_Altman(res$proportions)
}
```

CytOpT
Function to estimate the type cell proportions in an unclassified cytometry data set denoted X_s by using the classification Lab_source from an other cytometry data set X_s. With this function the computation of the estimate of the class proportions is done with a descent ascent or minmax or two algorithms.

Description

Function to estimate the type cell proportions in an unclassified cytometry data set denoted X_s by using the classification Lab_source from an other cytometry data set X_s. With this function the computation of the estimate of the class proportions is done with a descent ascent or minmax or two algorithms.

Usage

```r
CytOpT(
X_s, 
X_t, 
Lab_source, 
Lab_target = NULL, 
theta_true = NULL, 
method = c("minmax", "desasc", "both"), 
eps = 1e-04, 
n_iter = 10000, 
power = 0.99, 
step_grad = 10, 
step = 5, 
lbd = 1e-04, 
n_out = 5000, 
n_stoc = 10, 
minMaxScaler = TRUE,
```

monitoring = FALSE,
thresholding = TRUE
)

Arguments

\textbf{X}_s \quad \text{a cytometry dataframe with only d numerical variables for ns observations. The columns correspond to the different biological markers measured. One line corresponds to the cytometry measurements performed on one cell. The classification of this Cytometry data set must be provided with the Lab_source parameters.}

\textbf{X}_t \quad \text{a cytometry dataframe with only d numerical variables for nt observations. The columns correspond to the different biological markers measured. One line corresponds to the cytometry measurements performed on one cell. The CytOpT algorithm targets the cell type proportion in this Cytometry data set}

\textbf{Lab}_source \quad \text{a vector of length ns Classification of the X}_s \text{ cytometry data set}

\textbf{Lab}_target \quad \text{a vector of length nt Classification of the X}_s \text{ cytometry data set}

\textbf{theta_true} \quad \text{If available, gold-standard proportions in the target data set X}_t \text{ derived from manual gating. It allows to assess the gap between the estimate and the gold-standard. Default is NULL, in which case no assessment is performed.}

\textbf{method} \quad \text{a character string indicating which method to use to compute the cytopt, either 'minmax', 'desasc' or 'both' for comparing both Min-max swapping and descent-ascent procedures. Default is 'minmax'.}

\textbf{eps} \quad \text{a float value of regularization parameter of the Wasserstein distance. Default is 1e-04}

\textbf{n_iter} \quad \text{an integer Constant that iterate method select. Default is 10000}

\textbf{power} \quad \text{a float constant the step size policy of the gradient ascent method is step/n^power. Default is 0.99}

\textbf{step_grad} \quad \text{an integer number step size of the gradient descent algorithm of the outer loop. Default is 10}

\textbf{step} \quad \text{an integer constant that multiply the step-size policy. Default is 5}

\textbf{lbd} \quad \text{a float constant that multiply the step-size policy. Default is 1e-04}

\textbf{n_out} \quad \text{an integer number of iterations in the outer loop. This loop corresponds to the gradient descent algorithm to minimize the regularized Wasserstein distance between the source and target data sets. Default is 1000}

\textbf{n_stoc} \quad \text{an integer number of iterations in the inner loop. This loop corresponds to the stochastic algorithm that approximates a maximizer of the semi dual problem. Default is 10}

\textbf{minMaxScaler} \quad \text{a logical flag indicating to whether to scale observations between 0 and 1. Default is TRUE.}

\textbf{monitoring} \quad \text{a logical flag indicating to possibly monitor the gap between the estimated proportions and the manual gold-standard. Default is FALSE.}

\textbf{thresholding} \quad \text{a logical flag indicating whether to threshold negative values. Default is TRUE.}
Value

a object of class CytOpt, which is a list of two elements:

- **proportions** a data.frame with the (optionally true and) estimated proportions for each method
- **monitoring** a list of estimates over the optimization iterations for each method (listed within)

Examples

```r
if(interactive()){
  res <- CytOpt(X_s = HIPC_Sanford_1228_1A, X_t = HIPC_Sanford_1369_1A,
                 Lab_source = HIPC_Sanford_1228_1A_labels,
                 method='minmax')
  summary(res)
  plot(res)
}
```

cytopt_desasc_r

Function to estimate the type cell proportions in an unclassified cytometry data set denoted X_s by using the classification Lab_source from an other cytometry data set X_s. With this function the computation of the estimate of the class proportions is done with a descent ascent algorithm.

description

Function to estimate the type cell proportions in an unclassified cytometry data set denoted X_s by using the classification Lab_source from an other cytometry data set X_s. With this function the computation of the estimate of the class proportions is done with a descent ascent algorithm.

Usage

```r
cytopt_desasc_r(
  X_s,
  X_t,
  Lab_source,
  theta_true = NULL,
  eps = 1e-04,
  n_out = 5000,
  n_stoc = 10,
  step_grad = 10,
  monitoring = FALSE
)
```
Arguments

- **X_s**
 A cytometry dataframe. The columns correspond to the different biological markers tracked. One line corresponds to the cytometry measurements performed on one cell. The classification of this Cytometry data set must be provided with the `Lab_source` parameters.

- **X_t**
 A cytometry dataframe. The columns correspond to the different biological markers tracked. One line corresponds to the cytometry measurements performed on one cell. The CytOpT algorithm targets the cell type proportion in this Cytometry data set.

- **Lab_source**
 A vector of length `n`. Classification of the `X_s` cytometry data set.

- **theta_true**
 If available, gold-standard proportions in the target data set `X_t` derived from manual gating. It allows to assess the gap between the estimate and the gold-standard. Default is `NULL`, in which case no assessment is performed.

- **eps**
 A float value of regularization parameter of the Wasserstein distance. Default is `1e-04`.

- **n_out**
 An integer number of iterations in the outer loop. This loop corresponds to the gradient descent algorithm to minimize the regularized Wasserstein distance between the source and target data sets. Default is `5000`.

- **n_stoc**
 An integer number of iterations in the inner loop. This loop corresponds to the stochastic algorithm that approximates a maximizer of the semi-dual problem. Default is `10`.

- **step_grad**
 An integer number step size of the gradient descent algorithm of the outer loop. Default is `10`.

- **monitoring**
 Boolean indicating whether Kullback-Leibler divergence should be monitored and stored throughout the optimization iterations. Default is `FALSE`.

Value

A list with the following elements: `h_hat`.

Function

`cytopt_minmax_r`

Function to estimate the type cell proportions in an unclassified cytometry data set denoted `X_s` by using the classification `Lab_source` from an other cytometry data set `X_s`. With this function an additional regularization parameter on the class proportions enables a faster computation of the estimator.

Description

Function to estimate the type cell proportions in an unclassified cytometry data set denoted `X_s` by using the classification `Lab_source` from an other cytometry data set `X_s`. With this function an additional regularization parameter on the class proportions enables a faster computation of the estimator.
Usage

cytopt_minmax_r(
 X_s,
 X_t,
 Lab_source,
 theta_true = NULL,
 eps = 1e-04,
 lbd = 1e-04,
 n_iter = 10000,
 step = 5,
 power = 0.99,
 monitoring = FALSE
)

Arguments

X_s Cytometry data set. The columns correspond to the different biological markers tracked. One line corresponds to the cytometry measurements performed on one cell. The classification of this Cytometry data set must be provided with the Lab_source parameters.

X_t Cytometry data set. The columns correspond to the different biological markers tracked. One line corresponds to the cytometry measurements performed on one cell. The CytOpT algorithm targets the cell type proportion in this Cytometry data set.

Lab_source Classification of the X_s Cytometry data set

theta_true If available, gold-standard proportions in the target data set X_t derived from manual gating. It allows to assess the gap between the estimate and the gold-standard. Default is NULL, in which case no assessment is performed.

eps Regularization parameter of the Wasserstein distance

lbd an float constant that multiply the step-size policy. Default is 1e-04.

n_iter an integer Constant that iterate method select. Default is 10000.

step Constant that multiply the step-size policy. Default is 5.

power the step size policy of the gradient ascent method is step/n^power. Default is 0.99.

monitoring boolean indicating whether Kullback-Leibler divergence should be monitored and store throughout the optimization iterations. Default is FALSE.

Value

A list with the following elements: Results_Minmax
HIPC T cell data set from HIPC program for patients 1228 and 1369 (replicate 1A from Stanford).

Usage

data(HIPC_Stanford)

Format

The data are composed of 4 objects:

- `HIPC_Stanford_1228_1A`: a data.frame of 31342 cells and 7 markers.
- `HIPC_Stanford_1228_1A_labels`: a factor vector with the cell type of each of the 31342 observed cells.
- `HIPC_Stanford_1369_1A`: a data.frame of 33992 cells and 7 markers.
- `HIPC_Stanford_1369_1A_labels`: a factor vector with the cell type of each of the 33992 observed cells.

Details

This immunophenotyping T cell panel from the Lyoplate HIPC dataset was used as part of the FlowCAP III Lyoplate challenge.

Flow cytometry data set from the HIPC T-cell panel study. In the HIPC T-cell panel study, Flow cytometry was measured in 3 samples for each 3 patients (IDs: 1228, 1349 and 1369) with 3 replicates each (1A, 2B and 3C) in 7 centers (NHLBI, Yale, UCLA, CIMR, Baylor, Stanford and Miami), i.e. 63 data sets in total. Manual gating was performed in the different centers to cluster the observed cells into one of 10 cellular populations:

1. CD8 Effector
2. CD8 Naive
3. CD8 Central Memory
4. CD8 Effector Memory
5. CD8 Activated
6. CD4 Effector
7. CD4 Naive
8. CD4 Central Memory
9. CD4 Effector Memory
10. CD4 Activated
KL_plot

Source

References

KL_plot

Kullback-Leibler divergence plot

Description

A plotting function for displaying Kullback-Liebler (KL) divergence across iterations of the optimization algorithm(s).

Usage

KL_plot(
 monitoring,
 n_0 = 10,
 n_stop = 1000,
 title = "Kullback-Liebler divergence trace"
)

Arguments

monitoring list of monitoring estimates from CytOpt() output.
n_0 first iteration to plot. Default is 10.
n_stop last iteration to plot. Default is 1000.
title plot title. Default is "Kullback-Liebler divergence trace".

Value

a ggplot object
Examples

```r
if(interactive()){

gold_standard_manual_prop <- c(table(HIPC_Stanford_1369_1A_labels) / length(HIPC_Stanford_1369_1A_labels))
res <- CytOpT(X_s = HIPC_Stanford_1228_1A, X_t = HIPC_Stanford_1369_1A, Lab_source = HIPC_Stanford_1228_1A_labels, theta_true = gold_standard_manual_prop, eps = 0.0001, lbd = 0.0001, n_iter = 10000, n_stoc=10, step_grad = 10, step = 5, power = 0.99, method='both', monitoring = TRUE)
plot(res)
}
```

Label_Prop_sto_r Computes a classification on the target data

Description

Computes a classification on the target data thanks to the approximation of the transport plan and the classification of the source data. Transport plan is approximated with the stochastic algorithm.

Usage

```r
Label_Prop_sto_r(
  X_s,
  X_t,
  Lab_source,
  eps = 1e-04,
  const = 0.1,
  n_iter = 4000,
  minMaxScaler = TRUE,
  monitoring = TRUE,
  thresholding = TRUE
)
```

Arguments

- **X_s**: a cytomtery dataframe. The columns correspond to the different biological markers tracked. One line corresponds to the cytomtery measurements performed on one cell. The classification of this Cytomtery data set must be provided with the Lab_source parameters.
- **X_t**: a cytomtery dataframe. The columns correspond to the different biological markers tracked. One line corresponds to the cytomtery measurements performed on one cell. The CytOpT algorithm targets the cell type proportion in this Cytomtery data set.
plot.CytOpt

Lab_source a vector of length n Classification of the \(X_s \) cytometry data set
eps an float value of regularization parameter of the Wasserstein distance. Default is 1e-04
const an float constant. Default is 1e-01
n_iter an integer Constant that iterate method select. Default is 4000
minMaxScaler a logical flag indicating to possibly Scaler
monitoring a logical flag indicating to possibly monitor the gap between the estimated proportions and the manual gold-standard. Default is FALSE
thresholding a logical flag.

Value

a \texttt{ggplot} object
an vector of length nrow(\(X_t \)) with the propagated labels

Examples

```r
if(interactive()){

  res <- Label_Prop_sto_r(X_s = HIPC_Stanford_1228_1A, X_t = HIPC_Stanford_1369_1A,
                           Lab_source = HIPC_Stanford_1228_1A_labels)
}
```

plot.CytOpt \hspace{1cm} CytOpt plot

Description

plot S3 method for CytOpt object

Usage

```r
## S3 method for class 'CytOpt'
plot(x, ...)
```

Arguments

- \(x \) an object of class CytOpt to plot.
- \(\ldots \) further arguments passed to or from other methods. Not implemented.

Value

a \texttt{ggplot} object, potentially composed through \texttt{patchwork}
Examples

if(interactive()){

 res <- CytOpT(X_s = HIPC_Stanford_1228_1A, X_t = HIPC_Stanford_1369_1A,
 Lab_source = HIPC_Stanford_1228_1A_labels,
 eps = 0.0001, lbd = 0.0001, n_iter = 10000, n_stoc=10,
 step_grad = 10, step = 5, power = 0.99,
 method='minmax')

 plot(res)

}

Description

print S3 method for CytOpt object

Usage

S3 method for class 'CytOpt'
print(x, ...)

Arguments

x

an object of class CytOpt to print.

...

further arguments passed to or from other methods. Not implemented.

Value

the proportions data.frame from x

Examples

if(interactive()){

 res <- CytOpT(X_s = HIPC_Stanford_1228_1A, X_t = HIPC_Stanford_1369_1A,
 Lab_source = HIPC_Stanford_1228_1A_labels,
 eps = 0.0001, lbd = 0.0001, n_iter = 10000, n_stoc=10,
 step_grad = 10, step = 5, power = 0.99,
 method='minmax')

 print(res)

}

print.summary.CytOpt CytOpt print summary

Description

print S3 method for summary.CytOpt object

Usage

S3 method for class 'summary.CytOpt'
print(x, ...)

Arguments

x an object of class summary.CytOpt to print.
...

Value

a list object

summary.CytOpt CytOpt summary

Description

summary S3 method for CytOpt object

Usage

S3 method for class 'CytOpt'
summary(object, ...)

Arguments

object an object of class CytOpt to summarized.
...

Value

a list object
Examples

if(interactive()){

res <- CytOpt(X_s = HIPC_Stanford_1228_1A, X_t = HIPC_Stanford_1369_1A,
 Lab_source = HIPC_Stanford_1228_1A_labels,
 eps = 0.0001, lbd = 0.0001, n_iter = 10000, n_stoc=10,
 step_grad = 10, step = 5, power = 0.99,
 method='minmax', monitoring=TRUE)

summary(res)

}

summary.CytOpt
Index

* data
 - HIPC_Stanford, 9
 - barplot_prop, 2
 - Bland_Altman, 3
 - CytOpT, 3, 4
 - cytopt_desasc_r, 6
 - cytopt_minmax_r, 7
 - ggplot, 3, 10, 12
 - HIPC_Stanford, 9
 - HIPC_Stanford_1228_1A (HIPC_Stanford), 9
 - HIPC_Stanford_1228_1A_labels (HIPC_Stanford), 9
 - HIPC_Stanford_1369_1A (HIPC_Stanford), 9
 - HIPC_Stanford_1369_1A_labels (HIPC_Stanford), 9
 - KL_plot, 10
 - Label_Prop_sto_r, 11
 - patchwork, 12
 - plot.CytOpt, 12
 - print.CytOpt, 13
 - print.summary.CytOpt, 14
 - summary.CytOpt, 14