Package ‘DAC’

May 4, 2018

Type Package
Version 0.1.1
Title Calculating Data Agreement Criterion Scores to Rank Experts Based on Their Beliefs
Author Duco Veen [aut, cre],
 Naomi Schalken [aut],
 Rens van de Schoot [aut]
Maintainer Duco Veen <ducoveen@gmail.com>
Description Allows to calculate Data Agreement Criterion (DAC) scores. This can be done to determine prior-data conflict or to evaluate and compare multiple priors, which can be experts' predictions. Bousquet (2008) <doi.org/10.1080/02664760802192981>.
License GPL-3
Imports blavaan, utils, stats, flexmix, sfsmisc, truncnorm
Encoding UTF-8
LazyData true
Depends R(>= 3.5.0)
NeedsCompilation no
Repository CRAN
Date/Publication 2018-05-04 10:20:05 UTC

R topics documented:

 DAC.normal ... 2
 DAC.uniform ... 3
 Turnover ... 4

Index 6
Description

Calculates DAC values for multiple experts that provide predictions in the form of a prior. The benchmark is set to be a normal distribution with user specified boundaries.

Usage

DAC.normal(from, to, by, data, priors, mean.bench, sd.bench, n.iter = 10000)

Arguments

from
Lower bound of the parameter space that is to be evaluated, as in the seq function of the base package.

to
Upper bound of the parameter space that is to be evaluated, as in the seq function of the base package.

by
Step size by which the defined parameter space is mapped out, as in the seq function of the base package.

data
A vector of your data points.

priors
A matrix of densities with in each column a density of a specific prior mapped on the parameter space that is equal to the parameter space that is supplied using the from, to, by statements. E.g. the parameter space runs from -10 to 10 in steps of 0.01 than your density of a standard normal distribution should be obtained using dnorm(x = seq(from = -10, to = 10, by = 0.01), mean = 0, sd = 1). The first column will thus describe this density using 2001 rows and all other columns should use the same density mapping to the parameter space.

mean.bench
Mean of the benchmark prior.

sd.bench
SD of the benchmark prior.

n.iter
The number of iterations that is used to obtain the posterior distribution of the data and the benchmark prior note that only half of these iterations will be used to obtain samples, the other half is used for adaptation and burnin.

References

Examples

```r
y <- turnover$actual.data
from <- -500
to <- 500
by <- .01
xx <- seq(from, to, by)
priors <- matrix(NA, ncol=4, nrow=length(xx))
for(i in 1:4){
  priors[,] <- dnorm(xx, Turnover$expert.priors[i ,1], Turnover$expert.priors[i, 2])
}

out <- DAC.normal(from = from, to = to, by = by, data = turnover$actual.data,
  priors = priors ,mean.bench = 0, sd.bench = 100, n.iter = 1000)
```

Description

Calculates DAC values for multiple experts that provide predictions in the form of a prior. The benchmark is set to be a uniform distribution with user specified boundaries.

Usage

```r
DAC.uniform(from, to, by, data, priors, lb.bench, ub.bench, n.iter = 10000)
```

Arguments

- `from`: Lower bound of the parameter space that is to be evaluated, as in the seq function of the base package.
- `to`: Upper bound of the parameter space that is to be evaluated, as in the seq function of the base package.
- `by`: Step size by which the defined parameter space is mapped out, as in the seq function of the base package.
- `data`: A vector of your data points.
- `priors`: A matrix of densities with in each column a density of a specific prior mapped on the parameter space that is equal to the parameter space that is supplied using the from, to, by statements. E.g. the parameter space runs from -10 to 10 in steps of 0.01 than your density of a standard normal distribution should be obtained using dnorm(x = seq(from = -10, to = 10, by = 0.01), mean = 0, sd = 1). The first column will thus describe this density using 2001 rows and all other columns should use the same density mapping to the parameter space.
- `lb.bench`: Lower boundary of the benchmark prior.
- `ub.bench`: Upper boundary of the benchmark prior.
n.iter The number of iterations that is used to obtain the posterior distribution of the data and the benchmark prior note that only half of these iterations will be used to obtain samples, the other half is used for adaptation and burnin.

References

Examples

```r
y <- turnover$data
from <- -10
to <- 10
by <- .01
xx <- seq(from, to, by)
priors <- matrix(NA, ncol=4, nrow=length(xx))
for(i in 1:4){
  priors[,i] <- dnorm(xx, turnover$expert.priors[i,1], turnover$expert.priors[i,2])
}
out <- DAC.uniform(from = from, to = to, by = by, data = turnover$data, priors = priors, lb.bench = 0, ub.bench = 5, n.iter = 1000)
```

Turnover

Expert predictions and actual turnover for the first quarter of 2016

Description

Data set containing predictions of four experts concerning the turnover for the first quarter of 2016 and the actual realisation of the turnover. The scale is transformed so as to protect business sensitive information.

Usage

data(Turnover)

Format

A list of 2 providing the predictions of the experts and the actual data.

`expert.priors` Predictions of turnover by experts expressed in distributional form for the dnorm function of the fGarch package. Each row represents one expert, column the mean, column two the sd and column three the skewness parameter.

`actual.data` The realisation of turnover for the company.
References

Examples

head(Turnover)
Index

DAC.normal, 2
DAC.uniform, 3

Turnover, 4