Package ‘DALEXtra’

March 29, 2020

Title Extension for ‘DALEX’ Package

Version 0.2.1

Description Provides wrapper of various machine learning models.
In applied machine learning, there
is a strong belief that we need to strike a balance
between interpretability and accuracy.
However, in field of the interpretable machine learning,
there are more and more new ideas for explaining black-box models,
that are implemented in 'R'.
'DALEXtra' creates 'DALEX' Biecek (2018) <arXiv:1806.08915> ex-
plainer for many type of models
including those created using 'python' 'scikit-learn' and 'keras' libraries, 'java' 'h2o' library and
'mljar' API. Important part of the package is Champion-
Challenger analysis and innovative approach
to model performance across subsets of test data presented in Funnel Plot.
Third branch of 'DALEXtra' package is aspect importance analysis
that provides instance-level explanations for the groups of explanatory variables.

Depends R (>= 3.5.0), DALEX (>= 1.0.0)

License GPL

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

Imports reticulate, ggplot2, glmnet, ggdendro, gridExtra

Suggests auditor, ingredients, gbm, ggrepel, h2o, mlr, mlr3,
randomForest, rmarkdown, rpart, xgboost, testthat

URL https://ModelOriented.github.io/DALEXtra/,
https://github.com/ModelOriented/DALEXtra

BugReports https://github.com/ModelOriented/DALEXtra/issues

NeedsCompilation no
R topics documented:

Author Szymon Maksymiuk [aut, cre] (<https://orcid.org/0000-0002-3120-1601>),
 Przemyslaw Biecek [aut] (<https://orcid.org/0000-0001-8423-1823>),
 Katarzyna Pekala [aut],
 Anna Kozak [ctb]

Maintainer Szymon Maksymiuk <sz.maksymiuk@gmail.com>

Repository CRAN

Date/Publication 2020-03-29 15:00:12 UTC

R topics documented:

aspect_importance ... 3
aspect_importance_single .. 5
champion_challenger .. 7
create_env ... 8
explain_h2o ... 9
explain_keras ... 11
explain_mlr .. 13
explain_mlr3 .. 15
explain_scikitlearn .. 17
funnel_measure ... 20
get_sample .. 22
group_variables ... 23
model_info.WrappedModel .. 24
overall_comparison ... 25
plot.aspect_importance ... 26
plot.funnel_measure ... 27
plot.overall_comparison ... 28
plot.training_test_comparison .. 30
plot_aspects_importance_grouping 31
plot_group_variables ... 33
print.funnel_measure ... 34
print.overall_comparison .. 35
print.scikitlearn_set ... 36
print.training_test_comparison .. 36
training_test_comparison ... 37
triplot ... 40
yhat.WrappedModel .. 42

Index 44
Description

Aspect Importance function takes a sample from a given dataset and modifies it. Modification is made by replacing part of its aspects by values from the observation. Then function is calculating the difference between the prediction made on modified sample and the original sample. Finally, it measures the impact of aspects on the change of prediction by using the linear model or lasso.

Usage

```r
aspect_importance(x, ...) 

## S3 method for class 'explainer'
aspect_importance(
  x,
  new_observation,
  aspects,
  N = 100,
  sample_method = "default",
  n_var = 0,
  f = 2,
  show_cor = FALSE,
  ...
)

## Default S3 method:
aspect_importance(
  x,
  data,
  predict_function = predict,
  new_observation,
  aspects,
  N = 100,
  label = class(x)[1],
  sample_method = "default",
  n_var = 0,
  f = 2,
  show_cor = FALSE,
  ...
)

lime(x, ...)
```
Arguments

- `x`: an explainer created with the DALEX::explain() function or a model to be explained.
- `...`: other parameters
- `new_observation`: selected observation with columns that corresponds to variables used in the model
- `aspects`: list containing grouping of features into aspects
- `N`: number of observations to be sampled (with replacement) from data
- `sample_method`: sampling method in get_sample
- `n_var`: maximum number of non-zero coefficients after lasso fitting. If zero, than linear regression is used
- `f`: frequency in get_sample
- `show_cor`: show if all features in aspect are pairwise positively correlated, works only if dataset contains solely numeric values
- `data`: dataset, it will be extracted from `x` if it’s an explainer. NOTE: It is best when target variable is not present in the data
- `predict_function`: predict function, it will be extracted from `x` if it’s an explainer
- `label`: name of the model. By default it’s extracted from the ‘class’ attribute of the model.

Value

An object of the class `aspect_importance`. Contains dataframe that describes aspects’ importance.

Examples

```r
library("DALEX")

model_titanic_glm <- glm(survived == 1 ~
                        class+gender+age+sibsp+parch+fare+embarked,
                        data = titanic_imputed,
                        family = "binomial")

explain_titanic_glm <- explain(model_titanic_glm,
                                data = titanic_imputed[,-8],
                                y = titanic_imputed$survived == 1,
                                verbose = FALSE)

aspects <- list(wealth = c("class", "fare"),
                 family = c("sibsp", "parch"),
                 personal = c("gender", "age"),
                 embarked = "embarked")

aspect_importance(explain_titanic_glm,
                   new_observation = titanic_imputed[1,],
                   ...)
```
library("randomForest")
model_titanic_rf <- randomForest(survived ~ class + gender + age + sibsp +
 parch + fare + embarked,
 data = titanic_imputed)

explain_titanic_rf <- explain(model_titanic_rf,
 data = titanic_imputed[, -8],
 y = titanic_imputed$survived == 1,
 verbose = FALSE)

aspect_importance(explain_titanic_rf,
 new_observation = titanic_imputed[1,],
 aspects = aspects)

aspect_importance_single

Aspects importance for single aspects

Description

Calculates aspect_importance for single aspects (every aspect contains only one feature).

Usage

aspect_importance_single(x, ...)

S3 method for class 'explainer'
aspect_importance_single(
 x,
 new_observation,
 N = 100,
 sample_method = "default",
 n_var = 0,
 f = 2,
 ...
)

Default S3 method:
aspect_importance_single(
 x,
 data,
 predict_function = predict,
aspect_importance_single

```r
new_observation,
N = 100,
label = class(x)[1],
sample_method = "default",
n_var = 0,
f = 2,
...
```

Arguments

- **x**: an explainer created with the `DALEX::explain()` function or a model to be explained.
- **new_observation**: selected observation with columns that corresponds to variables used in the model, should be without target variable
- **N**: number of observations to be sampled (with replacement) from data
- **sample_method**: sampling method in `get_sample`
- **n_var**: how many non-zero coefficients for lasso fitting, if zero than linear regression is used
- **f**: frequency in `get_sample`
- **data**: dataset, it will be extracted from x if it’s an explainer NOTE: Target variable shouldn’t be present in the data
- **predict_function**: predict function, it will be extracted from x if it’s an explainer
- **label**: name of the model. By default it’s extracted from the ‘class’ attribute of the model.

Value

An object of the class ‘aspect_importance’. Contains dataframe that describes aspects’ importance.

Examples

```r
library("DALEX")

model_titanic_glm <- glm(survived == 1 ~ class + gender + age + sibsp + parch + fare + embarked,
data = titanic_imputed,
family = "binomial")

aspect_importance_single(model_titanic_glm, data = titanic_imputed[,-8],
                         new_observation = titanic_imputed[1,-8])
```
champion_challenger

champion_challenger Compare machine learning models

Description

Determining if one model is better than the other one is a difficult task. Mostly because there is a lot of fields that have to be covered to make such a judgement. Overall performance, performance on the crucial subset, distribution of residuals, those are only few among many ideas related to that issue. Following function allow user to create a report based on various sections. Each says something different about relation between champion and challengers. DALEXtra package share 3 base sections which are funnel_measure overall_comparison and training_test_comparison but any object that has generic plot function can be included at report.

Usage

champion_challenger(
 sections,
 dot_size = 4,
 output_dir_path = getwd(),
 output_name = "Report",
 model_performance_table = FALSE,
 title = "ChampionChallenger",
 author = Sys.info()["user"],
 ...
)

Arguments

sections - list of sections to be attached to report. Could be sections available with DALEXtra which are funnel_measure training_test_comparison, overall_comparison or any other explanation that can work with plot function. Please provide name for not standard sections, that will be presented as section titles. Otherwise class of the object will be used.
dot_size - dot_size argument passed to plot.funnel_measure if funnel_measure section present
output_dir_path - path to directory where Report should be created. By default it is current working directory.
output_name - name of the Report. By default it is "Report"
model_performance_table - If TRUE and overall_comparison section present, table of scores will be displayed.
title - Title for report, by default it is "ChampionChallenger".
author - Author of report. By default it is current user name.
... - other parameters passed to rmarkdown::render.
```r
library("mlr")
library("DALEXtra")
task <- mlr::makeRegrTask(
  id = "R",
  data = apartments,
  target = "m2.price"
)
learner_lm <- mlr::makeLearner("regr.lm")
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner("regr.randomForest")
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner("regr.gbm")
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "GBM")

plot_data <- funnel_measure(explainer_lm, list(explainer_rf, explainer_gbm),
                          nbins = 5, measure_function = DALEX::loss_root_mean_square)

champion_challenger(list(plot_data), dot_size = 3)
```

create_env

Create your conda virtual env with DALEX

Description

Python objects may be loaded into R. However, it requiers versions of the Python and libraries to match between both machines. This functions allow user to create conda virtual environment based on provided .yml file.
Usage

```r
create_env(yml, condaenv)
```

Arguments

- `yml`: a path to the .yml file. If OS is Windows conda has to be added to the PATH first path to main conda folder. If OS is Unix You may want to specify it. When passed with windows, param will be omitted.

Value

Name of created virtual env.

Author(s)

Szymon Maksymiuk

Examples

```r
create_env(system.file("extdata", "testing_environment.yml", package = "DALEXtra"))
```

explain_h2o

Create explainer from your h2o model

Description

DALEX is designed to work with various black-box models like tree ensembles, linear models, neural networks etc. Unfortunately R packages that create such models are very inconsistent. Different tools use different interfaces to train, validate and use models. One of those tools, we would like to make more accessible is H2O.

Usage

```r
explain_h2o(
  model,
  data = NULL,
  y = NULL,
  weights = NULL,
  predict_function = NULL,
  residual_function = NULL,
  ..., 
  label = NULL,
  verbose = TRUE,
  precalculate = TRUE,
  colorize = TRUE,
)```
```r
model_info = NULL,
 type = NULL
)

Arguments

model object - a model to be explained
data data.frame or matrix - data that was used for fitting. If not provided then will
 be extracted from the model. Data should be passed without target column (this
 shall be provided as the y argument). NOTE: If target variable is present in the
 data, some of the functionalities may not work properly.
y numeric vector with outputs / scores. If provided then it shall have the same size
 as data
weights numeric vector with sampling weights. By default it’s NULL. If provided then it
 shall have the same length as data
predict_function function that takes two arguments: model and new data and returns numeric
 vector with predictions
residual_function function that takes three arguments: model, data and response vector y. It should
 return a numeric vector with model residuals for given data. If not provided,
 response residuals (y - \hat{y}) are calculated.
... other parameters
label character - the name of the model. By default it’s extracted from the ‘class’
 attribute of the model
verbose if TRUE (default) then diagnostic messages will be printed
precalculate if TRUE (default) then ‘predicted_values’ and ‘residuals’ are calculated when
 explainer is created.
colorize if TRUE (default) then WARNINGS, ERRORS and NOTES are colorized. Will work
 only in the R console.
model_info a named list (package, version, type) containing information about model. If
 NULL, DALEX will seek for information on its own.
type type of a model, either classification or regression. If not specified then
 type will be extracted from model_info.

Value

explainer object (explain) ready to work with DALEX

Examples

library("DALEXtra")
titanic_test <- read.csv(system.file("extdata", "titanic_test.csv", package = "DALEXtra"))
titanic_train <- read.csv(system.file("extdata", "titanic_train.csv", package = "DALEXtra"))
h2o::h2o.init()
```
```r
h2o::h2o.no_progress()
titanic_h2o <- h2o::as.h2o(titanic_train)
titanic_h2o["survived"] <- h2o::as.factor(titanic_h2o["survived"])
titanic_test_h2o <- h2o::as.h2o(titanic_test)
model <- h2o::h2o.gbm(
 training_frame = titanic_h2o,
 y = "survived",
 distribution = "bernoulli",
 ntrees = 500,
 max_depth = 4,
 min_rows = 12,
 learn_rate = 0.001
)
explain_h2o(model, titanic_test[,1:17], titanic_test[,18])
h2o::h2o.shutdown(prompt = FALSE)
```

---

### explain_keras

Wrapper for Python Keras Models

---

#### Description

Keras models may be loaded into R environment like any other Python object. This function helps to inspect performance of Python model and compare it with other models, using R tools like DALEX. This function creates an object that is easily accessible R version of Keras model exported from Python via pickle file.

#### Usage

```r
explain_keras(
 path,
 yml = NULL,
 condaenv = NULL,
 env = NULL,
 data = NULL,
 y = NULL,
 weights = NULL,
 predict_function = NULL,
 residual_function = NULL,
 ...
)
```
Arguments

path  a path to the pickle file. Can be used without other arguments if you are sure that active Python version match pickle version.

yml  a path to the yml file. Conda virtual env will be recreated from this file. If OS is Windows conda has to be added to the PATH first

condaenv  If yml param is provided, a path to the main conda folder. If yml is null, a name of existing conda environment.

e  A path to python virtual environment.

data  test data set that will be passed to explain.

y  vector that will be passed to explain.

weights  numeric vector with sampling weights. By default it’s NULL. If provided then it shall have the same length as data

predict_function  predict function that will be passed into explain. If NULL, default will be used.

residual_function  residual function that will be passed into explain. If NULL, default will be used.

...  other parameters

label  label that will be passed into explain. If NULL, default will be used.

verbose  bool that will be passed into explain. If NULL, default will be used.

precalculate  if TRUE (default) then 'predicted_values' and 'residuals' are calculated when explainer is created.

colorize  if TRUE (default) then WARNINGS, ERRORS and NOTES are colorized. Will work only in the R console.

model_info  a named list (package, version, type) containing information about model. If NULL, DALEX will seek for information on it’s own.

type  type of a model, either classification or regression. If not specified then type will be extracted from model_info.

Value

An object of the class ’explainer’.

Example of Python code available at documentation explain_scikitlearn

Errors use case

Here is shortened version of solution for specific errors

There already exists environment with a name specified by given .yml file
If you provide .yml file that in its header contains name exact to name of environment that already exists, existing will be set active without changing it.
You have two ways of solving that issue. Both connected with anaconda prompt. First is removing conda env with command:
conda env remove --name myenv
And execute function once again. Second is updating env via:
conda env create -f environment.yml

Conda cannot find specified packages at channels you have provided.
That error may be caused by a lot of things. One of those is that specified version is too old to be available from official conda repo. Edit Your .yml file and add link to proper repository at channels section.

Issue may be also connected with the platform. If model was created on the platform with different OS you may need to remove specific version from .yml file.
- numpy=1.16.4=py36h19fb1c0_0
- numpy-base=1.16.4=py36hc3f5095_0
In the example above You have to remove =py36h19fb1c0_0 and =py36hc3f5095_0
If some packages are not available for anaconda at all, use pip statement

If .yml file seems not to work, virtual env can be created manually using anaconda promt.
conda create -n name_of_env python=3.4
conda install -n name_of_env name_of_package=0.20

Author(s)
Szymon Maksymiuk

Examples

library("DALEXtra")

# Explainer build (Keep in mind that 9th column is target)
test_data <-
read.csv(
  sep = ",")
# Keep in mind that when pickle is being built and loaded,
# not only Python version but libraries versions has to match aswell
explainer <- explain_keras(system.file("extdata", "keras.pkl", package = "DALEXtra"),
  conda = "myenv",
data = test_data[,1:8], y = test_data[,9])
plot(model_performance(explainer))

# Predictions with newdata
predict(explainer, test_data[1:10,1:8])

explain_mlr Create explainer from your mlr model
Description

DALEX is designed to work with various black-box models like tree ensembles, linear models, neural networks etc. Unfortunately R packages that create such models are very inconsistent. Different tools use different interfaces to train, validate and use models. One of those tools, which is one of the most popular one is mlr package. We would like to present dedicated explain function for it.

Usage

explain_mlr(
    model,
    data = NULL,
    y = NULL,
    weights = NULL,
    predict_function = NULL,
    residual_function = NULL,
    ...,
    label = NULL,
    verbose = TRUE,
    precalculate = TRUE,
    colorize = TRUE,
    model_info = NULL,
    type = NULL
)

Arguments

model          object - a model to be explained
data           data.frame or matrix - data that was used for fitting. If not provided then will be extracted from the model. Data should be passed without target column (this shall be provided as the y argument). NOTE: If target variable is present in the data, some of the functionalities my not work properly.
y             numeric vector with outputs / scores. If provided then it shall have the same size as data.
weights         numeric vector with sampling weights. By default it’s NULL. If provided then it shall have the same length as data
predict_function function that takes two arguments: model and new data and returns numeric vector with predictions
residual_function function that takes three arguments: model, data and response vector y. It should return a numeric vector with model residuals for given data. If not provided, response residuals ($y - \hat{y}$) are calculated.
...            other parameters
label          character - the name of the model. By default it’s extracted from the ‘class’ attribute of the model
verbose            if TRUE (default) then diagnostic messages will be printed
precalculate
if TRUE (default) then 'predicted_values' and 'residuals' are calculated when explainer is created.

colorize
if TRUE (default) then WARNINGS, ERRORS and NOTES are colorized. Will work only in the R console.

model_info
a named list (package, version, type) containing information about model. If NULL, DALEX will seek for information on its own.

type
type of a model, either classification or regression. If not specified then type will be extracted from model_info.

Value
explainer object (explain) ready to work with DALEX

Examples
library("DALEXtra")
titanic_test <- read.csv(system.file("extdata", "titanic_test.csv", package = "DALEXtra"))
titanic_train <- read.csv(system.file("extdata", "titanic_train.csv", package = "DALEXtra"))
library("mlr")
task <- mlr::makeClassifTask(
id = "R",
data = titanic_train,
target = "survived"
)
learner <- mlr::makeLearner(
"classif.gbm",
par.vals = list(
  distribution = "bernoulli",
n.trees = 500,
  interaction.depth = 4,
n.minobsinnode = 12,
  shrinkage = 0.001,
  bag.fraction = 0.5,
  train.fraction = 1
),
predict.type = "prob"
)
bgm <- mlr::train(learner, task)
explain_mlr(bgm, titanic_test[,1:17], titanic_test[,18])

explain_mlr3
Create explainer from your mlr model

Description
DALEX is designed to work with various black-box models like tree ensembles, linear models, neural networks etc. Unfortunately R packages that create such models are very inconsistent. Different tools use different interfaces to train, validate and use models. One of those tools, which is one of the most popular ones is mlr3 package. We would like to present dedicated explain function for it.
Usage

explain_mlr3(
  model,
  data = NULL,
  y = NULL,
  weights = NULL,
  predict_function = NULL,
  residual_function = NULL,
  ...
  label = NULL,
  verbose = TRUE,
  precalculate = TRUE,
  colorize = TRUE,
  model_info = NULL,
  type = NULL
)

Arguments

model  object - a fitted learned created with mlr3.
data  data.frame or matrix - data that was used for fitting. If not provided then will be extracted from the model. Data should be passed without target column (this shall be provided as the y argument). NOTE: If target variable is present in the data, some of the functionalities my not work properly.
y  numeric vector with outputs / scores. If provided then it shall have the same size as data
weights  numeric vector with sampling weights. By default it’s NULL. If provided then it shall have the same length as data
predict_function  function that takes two arguments: model and new data and returns numeric vector with predictions
residual_function  function that takes three arguments: model, data and response vector y. It should return a numeric vector with model residuals for given data. If not provided, response residuals \( y - \hat{y} \) are calculated.
...  other parameters
label  character - the name of the model. By default it’s extracted from the 'class' attribute of the model
verbose  if TRUE (default) then diagnostic messages will be printed.
precalculate  if TRUE (default) then 'predicted_values' and 'residuals' are calculated when explainer is created.
colorize  if TRUE (default) then WARNINGS, ERRORS and NOTES are colorized. Will work only in the R console.
model_info  a named list (package, version, type) containg information about model. If NULL, DALEX will seek for information on it’s own.
explain_scikitlearn

Wrapper for Python Scikit-Learn Models

Description

scikit-learn models may be loaded into R environment like any other Python object. This function helps to inspect performance of Python model and compare it with other models, using R tools like DALEX. This function creates an object that is easily accessible R version of scikit-learn model exported from Python via pickle file.

Usage

explain_scikitlearn(path,
        yml = NULL,
        condaenv = NULL,
        env = NULL,
        data = NULL,
        y = NULL,
        weights = NULL,
        predict_function = NULL,
        residual_function = NULL,
        ...,
        label = NULL,
```r
explain_scikitlearn =

 verbose = TRUE,
 precalculate = TRUE,
 colorize = TRUE,
 model_info = NULL,
 type = NULL

Arguments

path a path to the pickle file. Can be used without other arguments if you are sure that active Python version match pickle version.

yml a path to the yml file. Conda virtual env will be recreated from this file. If OS is Windows conda has to be added to the PATH first

condaenv If yml param is provided, a path to the main conda folder. If yml is null, a name of existing conda environment.

eenv A path to python virtual environment.

data test data set that will be passed to `explain`.

y vector that will be passed to `explain`.

weights numeric vector with sampling weights. By default it’s NULL. If provided then it shall have the same length as data

predict_function predict function that will be passed into `explain`. If NULL, default will be used.

residual_function residual function that will be passed into `explain`. If NULL, default will be used.

... other parameters

label label that will be passed into `explain`. If NULL, default will be used.

verbose bool that will be passed into `explain`. If NULL, default will be used.

precalculate if TRUE (default) then 'predicted_values' and 'residuals' are calculated when explainer is created.

colorize if TRUE (default) then WARNINGS, ERRORS and NOTES are colorized. Will work only in the R console.

model_info a named list (package, version, type) containg information about model. If NULL, DALEX will seek for information on it’s own.

type type of a model, either classification or regression. If not specified then type will be extracted from model_info.

Value

An object of the class ‘explainer’. It has additional field param_set when user can check parameters of scikitlearn model.

Example of Python code
```
from pandas import DataFrame, read_csv
import pandas as pd
import pickle
import sklearn.ensemble
model = sklearn.ensemble.GradientBoostingClassifier()
model = model.fit(titanic_train_X, titanic_train_Y)
pickle.dump(model, open("gbm.pkl", "wb"), protocol = 2)

In order to export environment into .yml, activating virtual env via activate name_of_the_env and execution of the following shell command is necessary
conda env export > environment.yml

Errors use case
Here is shortened version of solution for specific errors

There already exists environment with a name specified by given .yml file
If you provide .yml file that in its header containens name exact to name of environment that already exists, existing will be set active without changing it.
You have two ways of solving that issue. Both connected with anaconda prompt. First is removing conda env with command:
conda env remove --name myenv
And execute function once again. Second is updating env via:
conda env create -f environment.yml

Conda cannot find specified packages at channels you have provided.
That error may be caused by a lot of things. One of those is that specified version is too old to be avaialble from official conda repo. Edit Your .yml file and add link to proper repository at channels section.

Issue may be also connected with the platform. If model was created on the platform with different OS yo may need to remove specific version from .yml file.
~numpy=1.16.4=py36h19fb1c0_0
~numpy-base=1.16.4=py36hc3f5095_0
In the example above You have to remove =py36h19fb1c0_0 and =py36hc3f5095_0
If some packages are not availbe for anaconda at all, use pip statement

If .yml file seems not to work, virtual env can be created manually using anaconda promt.
conda create -n name_of_env python=3.4
conda install -n name_of_env name_of_package=0.20

Author(s)

Szymon Maksymiuq
funnel_measure

Caluculate difference in performance in models across different categories

Description

Function funnel_measure allows users to compare two models based on their explainers. It partitions dataset on which models were builded and creates categories according to quantiles of columns in partition data. nbins parameter determinates number of qunatiles. For each category difference in provided measure is being calculated. Positive value of that difference means that Champion model has better performance in specified category, while negative value means that one of the Challengers was better. Function allows to compare multiple Challengers at once.

Usage

funnel_measure(
    champion,
    challengers,
    measure_function = DALEX::loss_root_mean_square,
    nbins = 5,
    partition_data = champion$data,
    cutoff = 0.01,
    cutoff_name = "Other",
    factor_conversion_threshold = 7,
    show_info = TRUE,
    categories = NULL
)
funnel_measure

Arguments

- **champion** - explainer of champion model.
- **challengers** - explainer of challenger model or list of explainers.
- **measure_function** - measure function that calculates performance of model based on true observation and prediction. Order of parameters is important and should be (y, y_hat). The measure calculated by the function should have the property that lower score value indicates better model. By default it is RMSE.
- **nbins** - Number of quantiles (partition points) for numeric columns. In case when more than one quantile have the same value, there will be less partition points.
- **partition_data** - Data by which test dataset will be partitioned for computation. Can be either data.frame or character vector. When second is passed, it has to indicate names of columns that will be extracted from test data. By default full test data. If data.frame, number of rows has to be equal to number of rows in test data.
- **cutoff** - Threshold for categorical data. Entries less frequent than specified value will be merged into one category.
- **cutoff_name** - Name for new category that arised after merging entries less frequent than cutoff
- **factor_conversion_threshold** - Numeric columns with lower number of unique values than value of this parameter will be treated as factors
- **show_info** - Logical value indicating if progress bar should be shown.
- **categories** - a named list of variable names that will be plotted in a different colour. By deafault it is partitioned on Explanatory, External and Target.

Value

An object of the class funnel_measure

It is a named list containing following fields:

- **data** data.frame that consists of columns:
  - **Variable** Variable according to which partitions were made
  - **Measure** Difference in measures. Positive value indicates that champion was better, while negative that challenger.
  - **Label** String that defines subset of **Variable** values (partition rule).
  - **Challenger** Label of challenger explainer that was used in **Measure**
  - **Category** a category of the variable passed to function
- **models_info** data.frame containing information about models used in analysis

Examples

```r
library("mlr")
library("DALEXtra")
task <- mlr::makeRegrTask(
```
get_sample

Function for getting binary matrix

Description
Function creates binary matrix, to be used in aspect_importance method. It starts with a zero matrix. Then it replaces some zeros with ones. It either randomly replaces one or two zeros per row. Or replace random number of zeros per row - average number of replaced zeros can be controled by parameter f. Function doesn’t allow the returned matrix to have rows with only zeros.

Usage
get_sample(n, p, sample_method = c("default", "binom"), f = 2)

Arguments
- n: number of rows
- p: number of columns
- sample_method: sampling method
- f: frequency for binomial sampling
group_variables

Value

a binary matrix

Examples

## Not run:
get_sample(100,6,"binom",3)

## End(Not run)

group_variables

Groups numeric features into aspects

Description

Divides correlated features into groups, called aspects. Division is based on correlation cutoff level.

Usage

group_variables(
  x,
  p = 0.5,
  clust_method = "complete",
  draw_tree = FALSE,
  draw_abline = TRUE
)

Arguments

x dataframe with only numeric columns
p correlation value for cut-off level
clust_method the agglomeration method to be used, see hclust methods
draw_tree if TRUE, function plots tree that illustrates grouping
draw_abline if TRUE, function plots vertical line at cut-off level

Value

list of aspects

Examples

library("DALEX")
dragons_data <- dragons[,c(2,3,4,7,8)]
group_variables(dragons_data, p = 0.7, clust_method = "complete")
This generic function lets user extract base information about a model. The function returns a named list of class `model_info` that contains information about the package of the model, version, and task type. For wrappers like `mlr` or `caret`, both package and wrapper information are stored.

### Usage

```r
S3 method for class 'WrappedModel'
model_info(model, ...)
S3 method for class 'H2ORegressionModel'
model_info(model, ...)
S3 method for class 'H2OBinomialModel'
model_info(model, ...)
S3 method for class 'scikitlearn_model'
model_info(model, ...)
S3 method for class 'keras'
model_info(model, ...)
S3 method for class 'LearnerRegr'
model_info(model, ...)
S3 method for class 'LearnerClassif'
model_info(model, ...)
```

### Arguments

- `model` - model object
- `...` - another arguments

Currently supported packages are:

- `mlr` models created with `mlr` package
- `h2o` models created with `h2o` package
- `scikit-learn` models created with `scikit-learn` Python library and accessed via `reticulate`
- `keras` models created with `keras` Python library and accessed via `reticulate`
- `mlr3` models created with `mlr3` package
Value

A named list of class model_info

overall_comparison

Compare champion with challengers globally

Description

The function creates objects that present global model performance using various measures. Those data can be easily plotted with plot function. It uses auditor package to create model_performance of all passed explainers. Keep in mind that type of task has to be specified.

Usage

overall_comparison(champion, challengers, type)

Arguments

champion - explainer of champion model.
challengers - explainer of challenger model or list of explainers.
type - type of the task. Either classification or regression

Value

An object of the class overall_comparison

It is a named list containing following fields:

- radar list of model_performance objects and other parameters that will be passed to generic plot function
- accordance data.frame object of champion responses and challenger’s corresponding to them. Used to plot accordance.
- models_info data.frame containig information about models used in analysis.

Examples

library("DALEXtra")
library("mlr")
task <- mlr::makeRegrTask(
  id = "R",
  data = apartments,
  target = "m2.price"
)
learner_lm <- mlr::makeLearner("regr.lm")
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner(
    "regr.randomForest"
)
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner(
    "regr.gbm"
)
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "gbm")

data <- overall_comparison(explainer_lm, list(explainer_gbm, explainer_rf), type = "regression")
plot(data)

---

plot.aspect_importance

*Function for plotting aspect_importance results*

**Description**

This function plots the results of aspect_importance.

**Usage**

```r
S3 method for class 'aspect_importance'
plot(
 x,
 ...,
 bar_width = 10,
 aspects_on_axis = TRUE,
 add_importance = FALSE,
 digits_to_round = 2,
 text_size = 3
)
```

**Arguments**

- `x`  
  object of aspect_importance class
- `...`  
  other parameters
- `bar_width`  
  bar width
- `aspects_on_axis`  
  if TRUE, labels on axis Y show aspect names, otherwise they show features names
- `add_importance`  
  if TRUE, plot is annotated with values of aspects importance
plot.funnel_measure

digits_to_round
integer indicating the number of decimal places used for rounding values of aspects importance shown on the plot

text_size
size of labels annotating values of aspects importance, if applicable

Value
a ggplot2 object

Examples
library("DALEX")

model_titanic_glm <- glm(survived == 1 ~
            class+gender+age+sibsp+parch+fare+embarked,
            data = titanic_imputed,
            family = "binomial")

explain_titanic_glm <- explain(model_titanic_glm,
            data = titanic_imputed[, -8],
            y = titanic_imputed$survived == 1,
            verbose = FALSE)

aspects <- list(wealth = c("class", "fare"),
            family = c("sibsp", "parch"),
            personal = c("gender", "age"),
            embarked = "embarked")

plot(aspect_importance(explain_titanic_glm,
            new_observation = titanic_imputed[1,],
            aspects = aspects))
Arguments

- `x` - funnel_measure object created with `funnel_measure` function.
- `...` - other parameters
- `dot_size` - size of the dot on plots. Passed to `geom_point`.

Value

ggplot object

Examples

```r
library("mlr")
library("DALEXtra")
task <- mlr::makeRegrTask(
 id = "R",
 data = apartments,
 target = "m2.price"
)
learner_lm <- mlr::makeLearner(
 "regr.lm"
)
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner(
 "regr.randomForest"
)
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner(
 "regr.gbm"
)
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "GBM")

plot_data <- funnel_measure(explainer_lm, list(explainer_rf, explainer_gbm),
 nbins = 5, measure_function = DALEX::loss_root_mean_square)
plot(plot_data)
```
The function plots data created with `overall_comparison`. For radar plot it uses auditor's `plot_radar`. Keep in mind that the function creates two plots returned as list.

### Usage

```r
S3 method for class 'overall_comparison'
plot(x, ...)
```

### Arguments

- `x` - data created with `overall_comparison`
- `...` - other parameters

### Value

A named list of ggplot objects. It consists of:

- `radar_plot` plot created with `plot_radar`
- `accordance_plot` accordance plot of responses. OX axis stand for champion response, while OY for one of challengers responses. Colour indicates on challenger.

### Examples

```r
library("DALEXtra")
library("mlr")
task <- mlr::makeRegrTask(
 id = "R",
 data = apartments,
 target = "m2.price"
)
learner_lm <- mlr::makeLearner(
 "regr.lm"
)
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner(
 "regr.randomForest"
)
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner(
 "regr.gbm"
)
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "GBM")
```
data <- overall_comparison(explainer_lm, list(explainer_gbm, explainer_rf), type = "regression")
plot(data)

plot.training_test_comparison

Plot and compare performance of model between training and test set

Description

Function plot.training_test_comparison plots dependency between model performance on test and training dataset based on training_test_comparison object. Green line indicates y = x line.

Usage

## S3 method for class 'training_test_comparison'
plot(x, ...)

Arguments

x - object created with training_test_comparison function.
...

Value

ggplot object

Examples

library(DALEXtra)
titanic_train <- read.csv(system.file("extdata", "titanic_train.csv", package = "DALEXtra"))
titanic_test <- read.csv(system.file("extdata", "titanic_test.csv", package = "DALEXtra"))
h2o::h2o.init()
h2o::h2o.no_progress()
titanic_h2o <- h2o::as.h2o(titanic_train)
titanic_h2o["survived"] <- h2o::as.factor(titanic_h2o["survived"])
titanic_test_h2o <- h2o::as.h2o(titanic_test)
model <- h2o::h2o.gbm(
  training_frame = titanic_h2o,
  y = "survived",
  distribution = "bernoulli",
  ntrees = 500,
  max_depth = 4,
  min_rows = 12,
  learn_rate = 0.001
)
explainer_h2o <- explain_h2o(model, titanic_test[,1:17], titanic_test[,18])
plot_aspects_importance_grouping

Function plots tree with aspect importance values

Description

This function plots tree that shows order of feature grouping and aspect importance values of every newly created aspect.

Usage

plot_aspects_importance_grouping(

```r
explainer_scikit <- explain_scikitlearn(system.file("extdata",
 "scikitlearn.pkl",
 package = "DALEXtra"),
yml = system.file("extdata",
 "testing_environment.yml",
 package = "DALEXtra"),
data = titanic_test[,1:17],
y = titanic_test$survived)

library("mlr")
task <- mlr::makeClassifTask(
 id = "R",
data = titanic_train,
target = "survived"
)
learner <- mlr::makeLearner(
 "classif.gbm",
 par.vals = list(
 distribution = "bernoulli",
n.trees = 500,
 interaction.depth = 4,
n.minobsinnode = 12,
 shrinkage = 0.001,
 bag.fraction = 0.5,
 train.fraction = 1
),
predict.type = "prob"
)
gbm <- mlr::train(learner, task)
explainer_mlr <- explain_mlr(gbm, titanic_test[,1:17], titanic_test[,18])
data <- training_test_comparison(explainer_scikit, list(explainer_h2o, explainer_mlr),
 training_data = titanic_train[,-18],
 training_y = titanic_train[,18])
plot(data)
```

---

```
plot_aspects_importance_grouping

Function plots tree with aspect importance values

Description

This function plots tree that shows order of feature grouping and aspect importance values of every newly created aspect.

Usage

plot_aspects_importance_grouping()
plot_aspects_importance_grouping

x,
data,
predict_function = predict,
new_observation,
N = 100,
clust_method = "complete",
absolute_value = FALSE,
cumulative_max = FALSE,
show_labels = TRUE,
axis_lab_size = 10,
text_size = 3
)

Arguments

- **x**: a model to be explained
- **data**: dataset, should be without target variable
- **predict_function**: predict function
- **new_observation**: selected observation with columns that corresponds to variables used in the model, should be without target variable
- **N**: number of observations to be sampled (with replacement) from data
- **clust_method**: the agglomeration method to be used, see `hclust` methods
- **absolute_value**: if TRUE, aspect importance values will be drawn as absolute values
- **cumulative_max**: if TRUE, aspect importance shown on tree will be max value of children and node aspect importance values
- **show_labels**: if TRUE, plot will have annotated axis Y
- **axis_lab_size**: size of labels on axis Y, if applicable
- **text_size**: size of labels annotating values of aspects importance

Value

`ggplot`

Examples

```r
library(DALEX)
apartments_num <- apartments[,unlist(lapply(apartments, is.numeric))]
apartments_num_lm_model <- lm(m2.price ~ ., data = apartments_num)
apartments_num_new_observation <- apartments_num[2,-1]
apartments_num_mod <- apartments_num[,1]
plot_aspects_importance_grouping(x = apartments_num_lm_model,  
data = apartments_num_mod, new_observation = apartments_num_new_observation)
```
Description

Plots tree that illustrates the results of group_variables function.

Usage

```r
plot_group_variables(
  x,
  p,
  show_labels = TRUE,
  draw_abline = TRUE,
  axis_lab_size = 10,
  text_size = 3
)
```

Arguments

- `x` : hclust object
- `p` : correlation value for cutoff level
- `show_labels` : if TRUE, plot will have annotated axis Y
- `draw_abline` : if TRUE, cutoff line will be drawn
- `axis_lab_size` : size of labels on axis Y, if applicable
- `text_size` : size of labels annotating values of correlations

Value

tree plot

Examples

```r
library("DALEX")
dragons_data <- dragons[,c(2,3,4,7,8)]
group_variables(dragons_data, p = 0.7, clust_method = "complete",
                 draw_tree = TRUE)
```
print.funnel_measure

Print funnel_measure object

Description
Print funnel_measure object

Usage
S3 method for class 'funnel_measure'
print(x, ...)

Arguments
x an object of class funnel_measure
... other parameters

Examples

library("DALEXtra")
library("mlr")
task <- mlr::makeRegrTask(
 id = "R",
 data = apartments,
 target = "m2.price"
)
learner_lm <- mlr::makeLearner("regr.lm")
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner("regr.randomForest")
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner("regr.gbm")
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "GBM")

plot_data <- funnel_measure(explainer_lm, list(explainer_rf, explainer_gbm),
 nbins = 5, measure_function = DALEX::loss_root_mean_square)
print(plot_data)
print.overall_comparison

Print overall_comparison object

Description

Print overall_comparison object

Usage

S3 method for class 'overall_comparison'
print(x, ...)

Arguments

x an object of class overall_comparison

... other parameters

Examples

library("DALEXtra")
library("mlr")
task <- mlr::makeRegrTask(
 id = "R",
 data = apartments,
 target = "m2.price"
)
learner_lm <- mlr::makeLearner("regr.lm")
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner("regr.randomForest")
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner("regr.gbm")
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "gbm")
data <- overall_comparison(explainer_lm, list(explainer_gbm, explainer_rf), type = "regression")
print(data)
print.scikitlearn_set Prints scikitlearn_set class

Description
Prints scikitlearn_set class

Usage
S3 method for class 'scikitlearn_set'
print(x, ...)

Arguments
x a list from explainer created with explain_scikitlearn
... other arguments

print.training_test_comparison Print funnel_measure object

Description
Print funnel_measure object

Usage
S3 method for class 'training_test_comparison'
print(x, ...)

Arguments
x an object of class funnel_measure
... other parameters

Examples

library(DALEXtra)
titanic_train <- read.csv(system.file("extdata", "titanic_train.csv", package = "DALEXtra"))
titanic_test <- read.csv(system.file("extdata", "titanic_test.csv", package = "DALEXtra"))
h2o::h2o.init()
h2o::h2o.no_progress()
titanic_h2o <- h2o::as.h2o(titanic_train)
titanic_h2o["survived"] <- h2o::as.factor(titanic_h2o["survived"])
titanic_test_h2o <- h2o::as.h2o(titanic_test)
model <- h2o::h2o.gbm(
 training_frame = titanic_h2o,
 y = "survived",
 distribution = "bernoulli",
 ntree = 500,
 max_depth = 4,
 min_rows = 12,
 learn_rate = 0.001
)
explainer_h2o <- explain_h2o(model, titanic_test[,1:17], titanic_test[,18])

explainer_scikit <- explain_scikitlearn(system.file("extdata", "scikitlearn.pkl", package = "DALEXtra"),
 yml = system.file("extdata", "testing_environment.yml", package = "DALEXtra"),
 data = titanic_test[,1:17],
 y = titanic_test$survived)

library("mlr")
task <- mlr::makeClassifTask(
 id = "R",
 data = titanic_train,
 target = "survived"
)
learner <- mlr::makeLearner(
 "classif.gbm",
 par.vals = list(
 distribution = "bernoulli",
 n.trees = 500,
 interaction.depth = 4,
 n.minobsinnode = 12,
 shrinkage = 0.001,
 bag.fraction = 0.5,
 train.fraction = 1
),
 predict.type = "prob"
)
gbm <- mlr::train(learner, task)
explainer_mlr <- explain_mlr(gbm, titanic_test[,1:17], titanic_test[,18])
data <- training_test_comparison(explainer_scikit, list(explainer_h2o, explainer_mlr),
 training_data = titanic_train[,-18],
 training_y = titanic_train[,18])
print(data)
training_test_comparison

Description
Function training_test_comparison calculates performance of the provided model based on specified measure function. Response of the model is calculated based on test data, extracted from the explainer and training data, provided by the user. Output can be easily shown with print or plot function.

Usage

training_test_comparison(
 champion,
 challengers,
 training_data,
 training_y,
 measure_function = DALEX::loss_root_mean_square
)

Arguments

champion - explainer of champion model.
challengers - explainer of challenger model or list of explainers.
training_data - data without target column that will be passed to predict function and then to measure function. Keep in mind that they have to differ from data passed to an explainer.
training_y - target column for training_data
measure_function - measure function that calculates performance of model based on true observation and prediction. Order of parameters is important and should be (y, y_hat). By default it is RMSE.

Value
An object of the class training_test_comparison.
It is a named list containing:

• data data.frame with following columns
 – measure_test performance on test set
 – measure_train performance on training set
 – label label of explainer
 – type flag that indicates if explainer was passed as champion or as challenger.
• models_info data.frame containing information about models used in analysis

Examples

library(DALEXtra)
titanic_train <- read.csv(system.file("extdata", "titanic_train.csv", package = "DALEXtra"))
titanic_test <- read.csv(system.file("extdata", "titanic_test.csv", package = "DALEXtra"))
h2o::h2o.init()
h2o::h2o.no_progress()
titanic_h2o <- h2o::as.h2o(titanic_train)
titanic_h2o["survived"] <- h2o::as.factor(titanic_h2o["survived"])
titanic_test_h2o <- h2o::as.h2o(titanic_test)
model <- h2o::h2o.gbm(
training_frame = titanic_h2o,
y = "survived",
distribution = "bernoulli",
ntrees = 500,
max_depth = 4,
min_rows = 12,
learn_rate = 0.001
)
explainer_h2o <- explain_h2o(model, titanic_test[,1:17], titanic_test[,18])

explainer_scikit <- explain_scikitlearn(system.file("extdata",
 "scikitlearn.pkl",
 package = "DALEXtra"),
yml = system.file("extdata",
 "testing_environment.yml",
 package = "DALEXtra"),
data = titanic_test[,1:17],
y = titanic_test$survived)

library("mlr")
task <- mlr::makeClassifTask(
id = "R",
data = titanic_train,
target = "survived"
)
learner <- mlr::makeLearner(
 "classif.gbm",
 par.vals = list(
 distribution = "bernoulli",
n.trees = 500,
 interaction.depth = 4,
n.minobsinnode = 12,
 shrinkage = 0.001,
 bag.fraction = 0.5,
 train.fraction = 1
),
predict.type = "prob"
)
gbm <- mlr::train(learner, task)
explainer_mlr <- explain_mlr(gbm, titanic_test[,1:17], titanic_test[,18])

data <- training_test_comparison(explainer_scikit, list(explainer_h2o, explainer_mlr),
 training_data = titanic_train[,-18],
 training_y = titanic_train[,18])
plot(data)
Description

This function shows:

- plot for aspect.importance with single aspect
- tree that shows aspect.importance for every newly expanded aspect
- clustering tree.

Usage

triplot(x, ...)

S3 method for class 'explainer'
triplot(
 x,
 new_observation,
 N = 500,
 clust_method = "complete",
 absolute_value = FALSE,
 cumulative_max = FALSE,
 add_importance_labels = TRUE,
 show_axis_y_duplicated_labels = FALSE,
 axis_lab_size = 10,
 text_size = 3,
 ...
)

Default S3 method:
triplot(
 x,
 data,
 predict_function = predict,
 new_observation,
 N = 500,
 clust_method = "complete",
 absolute_value = FALSE,
 cumulative_max = FALSE,
 add_importance_labels = TRUE,
 show_axis_y_duplicated_labels = FALSE,
 abbrev_labels = 0,
 axis_lab_size = 10,
 text_size = 3,
 ...
)
Arguments

x an explainer created with the DALEX::explain() function or a model to be explained.

... other parameters

new_observation selected observation with columns that corresponds to variables used in the model, should be without target variable

N number of rows to be sampled from data

clust_method the agglomeration method to be used, see hclust methods

absolute_value if TRUE, aspect importance values will be drawn as absolute values

cumulative_max if TRUE, aspect importance shown on tree will be max value of children and node aspect importance values

add_importance_labels if TRUE, first plot is annotated with values of aspects importance

show_axis_y_duplicated_labels if TRUE, every plot will have annotated axis Y

axis_lab_size size of labels on axis

text_size size of labels annotating values of aspects importance and correlations

data dataset, it will be extracted from x if it's an explainer NOTE: Target variable shouldn't be present in the data

predict_function predict function, it will be extracted from x if it's an explainer

abbrev_labels if greater than 0, labels for axis Y in single aspect importance plot will be abbreviated according to this parameter

Examples

library(DALEX)
apartments_num <- apartments[,unlist(lapply(apartments, is.numeric))]
apartments_num_lm_model <- lm(m2.price ~ ., data = apartments_num)
apartments_num_new_observation <- apartments_num[30,-1]
apartments_num_mod <- apartments_num[,-1]
triplot(x = apartments_num_lm_model,
data = apartments_num_mod,
new_observation = apartments_num_new_observation,
add_importance_labels = FALSE)
Description

These functions are default predict functions. Each function returns a single numeric score for each new observation. Those functions are very important since informations from many models have to be extracted with various techniques.

Usage

```r
## S3 method for class 'WrappedModel'
yhat(X.model, newdata, ...)

## S3 method for class 'H2ORegressionModel'
yhat(X.model, newdata, ...)

## S3 method for class 'H2OBinomialModel'
yhat(X.model, newdata, ...)

## S3 method for class 'H2OMultinomialModel'
yhat(X.model, newdata, ...)

## S3 method for class 'scikitlearn_model'
yhat(X.model, newdata, ...)

## S3 method for class 'keras'
yhat(X.model, newdata, ...)

## S3 method for class 'LearnerRegr'
yhat(X.model, newdata, ...)

## S3 method for class 'LearnerClassif'
yhat(X.model, newdata, ...)
```

Arguments

- `X.model` object - a model to be explained
- `newdata` data.frame or matrix - observations for prediction
- `...` other parameters that will be passed to the predict function

Details

Currently supported packages are:

- mlr see more in `explain_mlr`
- h2o see more in `explain_h2o`
yhat.WrappedModel

- scikit-learn see more in explain_scikitlearn
- keras see more in explain_keras
- mlr3 see more in explain_mlr3

Value

An numeric vector of predictions
Index

aspect_importance, 3
aspect_importance_single, 5

champion_challenger, 7
create_env, 8

explain, 10, 12, 15, 17, 18
explain_h2o, 9, 42
explain_keras, 11, 43
explain_mlr, 13, 42
explain_mlr3, 15, 43
explain_scikitlearn, 12, 17, 36, 43

funnel_measure, 7, 20, 28

geom_point, 28
get_sample, 4, 6, 22
group_variables, 23

hclust, 23, 32, 41

lime (aspect_importance), 3

model_info.H2OBinomialModel
(model_info.WrappedModel), 24
model_info.H2ORegressionModel
(model_info.WrappedModel), 24
model_info.keras
(model_info.WrappedModel), 24
model_info.LearnerClassif
(model_info.WrappedModel), 24
model_info.LearnerRegr
(model_info.WrappedModel), 24
model_info.scikitlearn_model
(model_info.WrappedModel), 24
model_info.WrappedModel, 24
model_performance, 25

overall_comparison, 7, 25, 29

plot.aspect_importance, 26

plot.funnel_measure, 7, 27
plot.overall_comparison, 28
plot.training_test_comparison, 30
plot_aspects_importance_grouping, 31
plot_group_variables, 33
plot_radar, 29
print.funnel_measure, 34
print.overall_comparison, 35
print.scikitlearn_set, 36
print.training_test_comparison, 36

training_test_comparison, 7, 30, 37
triplot, 40

yhat.H2OBinomialModel
(yhat.WrappedModel), 42
yhat.H2OMultinomialModel
(yhat.WrappedModel), 42
yhat.H2ORegressionModel
(yhat.WrappedModel), 42
yhat.keras (yhat.WrappedModel), 42
yhat.LearnerClassif
(yhat.WrappedModel), 42
yhat.LearnerRegr (yhat.WrappedModel), 42
yhat.scikitlearn_model
(yhat.WrappedModel), 42
yhat.WrappedModel, 42