Package ‘DCEM’

April 7, 2020

Type Package

Title Clustering for Multivariate and Univariate Data Using Expectation Maximization Algorithm

Version 2.0.2

Maintainer Sharma Parichit <parishar@iu.edu>

Description Implements the Improved Expectation Maximisation EM* and the traditional EM algorithm for clustering finite gaussian mixture models for both multivariate and univariate datasets. The initialization is done by randomly selecting the samples from the dataset as the mean (meu) of the Gaussian(s). This version implements the faster alternative EM* that avoids revisiting data by leveraging the heap structure. The algorithm returns a set of Gaussian parameters-posterior probabilities, mean (meu), co-variance matrices (multivariate)/standard-deviation (univariate) and priors. Reference: Hasan Kurban, Mark Jenne, Mehmet M. Dalkılıc (2016) <doi:10.1007/s41060-017-0062-1>. This work is partially supported by NCI Grant 1R01CA213466-01.

License GPL-3

Encoding UTF-8

LazyData true

Imports mvtnorm (>= 1.0.7), matrixcalc (>= 1.0.3), MASS (>= 7.3.49), Rcpp (>= 1.0.2)

LinkingTo Rcpp

RoxygenNote 7.1.0

Depends R(>= 3.2.0)

URL https://github.iu.edu/parishar/DCEM

BugReports https://github.iu.edu/parishar/DCEM/issues

Suggests knitr, rmarkdown

VignetteBuilder knitr
NeedsCompilation: yes

Author: Sharma Parichit [aut, cre, ctb],
 Kurban Hasan [aut, ctb],
 Jenne Mark [aut, ctb],
 Dalkilic Mehmet [aut]

Repository: CRAN

Date/Publication: 2020-04-07 04:10:02 UTC

R topics documented:

 - build_heap .. 3
 - DCEM .. 3
 - dceem_cluster_mv 5
 - dceem_cluster_uv 6
 - dceem_star_cluster_mv 7
 - dceem_star_cluster_uv 8
 - dceem_star_train 10
 - dceem_test 11
 - dceem_train 13
 - expectation_mv 14
 - expectation_uv 15
 - get_priors 16
 - insert_nodes 17
 - ionosphere_data 18
 - maximisation_mv 18
 - maximisation_uv 19
 - max_heapify 20
 - meu_mv ... 20
 - meu_mv_impr 21
 - meu_uv ... 22
 - meu_uv_impr 22
 - separate_data 23
 - sigma_mv .. 24
 - sigma_uv .. 24
 - trim_data 25
 - update_weights 26
 - validate_data 26

Index: 28
build_heap

build_heap: Part of DCEM package.

Description

Implements the creation of heap. Internally called by the dcem_star_train.

Usage

build_heap(data)

Arguments

data (NumericMatrix): The dataset provided by the user.

Value

A NumericMatrix with the max heap property.

Author(s)

Parichit Sharma <parishar@iu.edu>, Hasan Kurban, Mark Jenne, Mehmet Dalkilic
This work is partially supported by NCI Grant 1R01CA213466-01.

DCEM

DCEM: Data clustering through Expectation-Maximization algorithm.

Description

Implements the EM* (see list of references) and EM algorithm for clustering the univariate and multivariate Gaussian mixture data.

DCEM supports following initialization schemes

1. Random Initialization: Initializes the mean randomly. Refer meu_uv and meu_mv for initialization on univariate and multivariate data respectively.

3. Choice of initialization scheme can be specified as the seeding parameter during the training. See dcem_train for further details.
Demonstration and Testing

Cleaning the data: The data should be cleaned (redundant columns should be removed). For example columns containing the labels or redundant entries (such as a column of all 0’s or 1’s). See trim_data for details on cleaning the data. Refer: dcem_test for more details.

Understanding the output of dcem_test

The function dcem_test() returns a list of objects. This list contains the parameters associated with the Gaussian(s), posterior probabilities (prob), mean (meu), co-variance/standard-deviation(sigma), priors (prior) and cluster membership for data (membership).

Note: The routine dcem_test() is only for demonstration purpose. The function dcem_test calls the main routine dcem_train. See dcem_train for further details.

How to run on your dataset

See dcem_train and dcem_star_train for examples.

Package organization

The package is organized as a set of preprocessing functions and the core clustering modules. These functions are briefly described below.

1. trim_data: This is used to remove the columns from the dataset. The user should clean the dataset before calling the dcem_train routine. User can also clean the dataset themselves (without using trim_data) and then pass it to the dcem_train function

2. dcem_star_train and dcem_train: These are the primary interface to the EM and EM* algorithms respectively. These function accept the cleaned dataset and other parameters (number of iterations, convergence threshold etc.) and run the algorithm until:

 (a) The number of iterations is reached.
 (b) The convergence is achieved.

Author(s)

Parichit Sharma <parishar@iu.edu>, Hasan Kurban, Mark Jenne, Mehmet Dalkilic

This work is partially supported by NCI Grant 1R01CA213466-01.

External Packages: DCEM requires R packages 'mvtnorm'[1], 'matrixcalc'[2] 'RCPP'[3] and 'MASS'[4] for multivariate density calculation, checking matrix singularity, compiling routines written in C and simulating mixture of gaussians, respectively.

For improving the initialization, ideas published in [5] is used.

dcem_cluster_mv

References

Using data to build a better EM: EM* for big data.

dcem_cluster_mv (multivariate data): Part of DCEM package.

Description

Implements the Expectation Maximization algorithm for multivariate data. This function is called by the dcem_train routine.

Usage

dcem_cluster_mv(data, meu, sigma, prior, num_clusters, iteration_count, threshold, num_data)

Arguments

data A matrix: The dataset provided by the user.
meu (matrix): The matrix containing the initial meu(s).
sigma (list): A list containing the initial covariance matrices.
prior (vector): A vector containing the initial prior.
num_clusters (numeric): The number of clusters specified by the user. Default value is 2.
iteration_count (numeric): The number of iterations for which the algorithm should run, if the convergence is not achieved then the algorithm stops. Default: 200.
threshold (numeric): A small value to check for convergence (if the estimated meu are within this specified threshold then the algorithm stops and exit).

Note: Choosing a very small value (0.000001) for threshold can increase the runtime substantially and the algorithm may not converge. On the other hand, choosing a larger value (0.1) can lead to sub-optimal clustering. Default: 0.00001.

num_data (numeric): The total number of observations in the data.
dcem_cluster_uv

Value

A list of objects. This list contains parameters associated with the Gaussian(s) (posterior probabilities, meu, co-variance and prior)

2. (2) Meu: meu: It is a matrix of meu(s). Each row in the matrix corresponds to one meu.
3. (3) Sigma: Co-variance matrices: sigma
4. (4) prior: prior: A vector of prior.

Author(s)

Parichit Sharma <parishar@iu.edu>, Hasan Kurban, Mark Jenne, Mehmet Dalkilic
This work is partially supported by NCI Grant 1R01CA213466-01.

References

Using data to build a better EM: EM* for big data.

dcem_cluster_uv dcem_cluster_uv (univariate data): Part of DCEM package.

Description

Implements the Expectation Maximization algorithm for the univariate data. This function is internally called by the dcem_train routine.

Usage

dcem_cluster_uv(data, meu, sigma, prior, num_clusters, iteration_count, threshold, num_data, numcols)

Arguments

data (matrix): The dataset provided by the user (converted to matrix format).
meu (vector): The vector containing the initial meu.
sigma (vector): The vector containing the initial standard deviation.
prior (vector): The vector containing the initial prior.
num_clusters (numeric): The number of clusters specified by the user. Default is 2.
iteration_count (numeric): The number of iterations for which the algorithm should run. If the convergence is not achieved then the algorithm stops. Default: 200.
dcem_star_cluster_mv

threshold (numeric): A small value to check for convergence (if the estimated meu(s) are within the threshold then the algorithm stops).

Note: Choosing a very small value (0.000001) for threshold can increase the runtime substantially and the algorithm may not converge. On the other hand, choosing a larger value (0.1) can lead to sub-optimal clustering. Default: 0.00001.

num_data (numeric): The total number of observations in the data.

numcols (numeric): Number of columns in the dataset (After processing the missing values).

Value

A list of objects. This list contains parameters associated with the Gaussian(s) (posterior probabilities, meu, standard-deviation and prior)

2. (2) Meu(s): meu: It is a vector of meu. Each element of the vector corresponds to one meu.
3. (3) Sigma: Standard-deviation(s): sigma: A vector of standard deviation.
4. (4) prior: prior: A vector of prior.

Author(s)

Parichit Sharma <parishar@iu.edu>, Hasan Kurban, Mark Jenne, Mehmet Dalkilic

This work is partially supported by NCI Grant 1R01CA213466-01.

References

Description

Implements the EM* algorithm for multivariate data. This function is called by the dcem_star_train routine.

Usage

dcem_star_cluster_mv(data, meu, sigma, prior, num_clusters, iteration_count, num_data)
Arguments

- **data** (matrix): The dataset provided by the user.
- **meu** (matrix): The matrix containing the initial meu(s).
- **sigma** (list): A list containing the initial covariance matrices.
- **prior** (vector): A vector containing the initial priors.
- **num_clusters** (numeric): The number of clusters specified by the user. Default value is 2.
- **iteration_count** (numeric): The number of iterations for which the algorithm should run, if the convergence is not achieved then the algorithm stops and exits. Default: 200.
- **num_data** (numeric): Number of rows in the dataset.

Value

A list of objects. This list contains parameters associated with the Gaussian(s) (posterior probabilities, meu, co-variance and priors)

1. (1) Posterior Probabilities: prob A matrix of posterior-probabilities for the points in the dataset.
2. (2) Meu: meu A matrix of meu(s). Each row in the matrix corresponds to one meu.
3. (3) Sigma: Co-variance matrices: sigma List of co-variance matrices.
4. (4) Priors: prior A vector of prior.
5. (5) Membership: membership A vector of cluster membership for data.

Author(s)

Parichit Sharma <parishar@iu.edu>, Hasan Kurban, Mark Jenne, Mehmet Dalkilic

This work is supported by NCI Grant 1R01CA213466-01.

References

Using data to build a better EM: EM* for big data.

Description

Implements the EM* algorithm for the univariate data. This function is called by the dcem_star_train routine.
Usage

dcem_star_cluster_uv(data, meu, sigma, prior, num_clusters, num_data, iteration_count)

Arguments

data (matrix): The dataset provided by the user.
meu (vector): The vector containing the initial meu.
sigma (vector): The vector containing the initial standard deviation.
prior (vector): The vector containing the initial priors.
num_clusters (numeric): The number of clusters specified by the user. Default is 2.
num_data (numeric): number of rows in the dataset (After processing the missing values).
iteration_count (numeric): The number of iterations for which the algorithm should run. If the convergence is not achieved then the algorithm stops. Default is 100.

Value

A list of objects. This list contains parameters associated with the Gaussian(s) (posterior probabilities, meu, standard-deviation and priors)

1. (1) Posterior Probabilities: prob A matrix of posterior-probabilities
2. (2) Meu: meu It is a vector of meu. Each element of the vector corresponds to one meu.
3. (3) Sigma: Standard-deviation(s): sigma
 For univariate data: Vector of standard deviation.
5. (5) Membership: membership A vector of cluster membership for data.

Author(s)

Parichit Sharma <parishar@iu.edu>, Hasan Kurban, Mark Jenne, Mehmet Dalkilic

This work is partially supported by NCI Grant 1R01CA213466-01.

References

dcem_star_train

Description

Implements the improved EM* algorithm. EM* achieves faster convergence by avoiding revisiting the data during the iterations. For details on EM* see the ‘References’ section below. It calls the dcem_star_cluster_uv routine internally (univariate data) and dcem_star_cluster_mv for (multivariate data).

Usage

dcem_star_train(data, iteration_count, num_clusters, seed_meu, seeding)

Arguments

data (dataframe): The dataframe containing the data. See trim_data for cleaning the data.
iteration_count (numeric): The number of iterations for which the algorithm should run, if the convergence is not achieved then the algorithm stops and exit. Default: 200.
num_clusters (numeric): The number of clusters. Default: 2
seed_meu (matrix): The user specified set of meu to use as initial centroids. Default: None
seeding (string): The initialization scheme ('rand', 'improved'). Default: rand

Value

A list of objects. This list contains parameters associated with the Gaussian(s) (posterior probabilities, meu, sigma and priors). The parameters can be accessed as follows where sample_out is the list containing the output:

1. (1) Posterior Probabilities: sample_out$prob A matrix of posterior-probabilities.
2. (2) Meu(s): sample_out$meu
 For multivariate data: It is a matrix of meu(s). Each row in the matrix corresponds to one mean.
 For univariate data: It is a vector of meu(s). Each element of the vector corresponds to one meu.
3. (3) Co-variance matrices: sample_out$sigma
 For multivariate data: List of co-variance matrices.
 Standard-deviation: sample_out$sigma
 For univariate data: Vector of standard deviation.
4. (4) Priors: sample_out$prior A vector of priors.
5. (5) Membership: sample_out$membership A vector of cluster membership for data.
dcem_test

dcem_test

dcem_test: Part of DCEM package.

Description
For demonstrating the execution on the bundled dataset.

Usage

dcem_test()
Details

The `dcem_test` performs the following steps in order:

1. Read the data from the disk (from the file `data/ionosphere_data.csv`). The data folder is under the package installation folder.
2. The dataset details can be see by typing `ionosphere_data` in R-console or at http://archive.ics.uci.edu/ml/datasets/Ionosphere.
3. Clean the data (by removing the columns). The data should be cleaned before use. Refer `trim_data` to see what columns should be removed and how. The package provides the basic interface for removing columns.
4. Call the `dcem_star_train` on the cleaned data.

Accessing the output parameters

The function `dcem_test()` calls the `dcem_star_train`. It returns a list of objects as output. This list contains estimated parameters of the Gaussian (posterior probabilities, meu, sigma and prior). The parameters can be accessed as follows where `sample_out` is the list containing the output:

1. (1) Posterior Probabilities: `sample_out$prob` A matrix of posterior-probabilities
2. (2) Meu: `meu`
 For multivariate data: It is a matrix of meu(s). Each row in the matrix corresponds to one meu.
3. (3) Co-variance matrices: `sample_out$sigma`
 For multivariate data: List of co-variance matrices for the Gaussian(s).
 Standard-deviation: `sample_out$sigma`
 For univariate data: Vector of standard deviation for the Gaussian(s))
4. (4) Priors: `sample_out$prior` A vector of prior.
5. (5) Membership: `membership` A vector of cluster membership for data.

Author(s)

Parichit Sharma <parishar@iu.edu>, Hasan Kurban, Mark Jenne, Mehmet Dalkilic

This work is partially supported by NCI Grant 1R01CA213466-01.

References

Using data to build a better EM: EM* for big data.
Description

Implements the EM algorithm. It calls the relevant clustering routine internally `dcem_cluster_uv` (univariate data) and `dcem_cluster_mv` (multivariate data).

Usage

```
dcem_train(data, threshold, iteration_count, num_clusters, seed_meu, seeding)
```

Arguments

- **data** (dataframe): The dataframe containing the data. See `trim_data` for cleaning the data.
- **threshold** (decimal): A value to check for convergence (if the meu are within this value then the algorithm stops and exit). Default: 0.00001.
- **iteration_count** (numeric): The number of iterations for which the algorithm should run, if the convergence is not achieved within the specified count then the algorithm stops and exit. Default: 200.
- **num_clusters** (numeric): The number of clusters. Default: 2
- **seed_meu** (matrix): The user specified set of meu to use as initial centroids. Default: None
- **seeding** (string): The initialization scheme ('rand', 'improved'). Default: rand

Value

A list of objects. This list contains parameters associated with the Gaussian(s) (posterior probabilities, meu, sigma and priors). The parameters can be accessed as follows where `sample_out` is the list containing the output:

1. (1) Posterior Probabilities: `sample_out$prob`: A matrix of posterior-probabilities
2. (2) Meu: `sample_out$meu`
 - For multivariate data: It is a matrix of meu(s). Each row in the matrix corresponds to one meu.
 - For univariate data: It is a vector of meu(s). Each element of the vector corresponds to one meu.
3. (3) Sigma: `sample_out$sigma`
 - For multivariate data: List of co-variance matrices for the Gaussian(s).
 - For univariate data: Vector of standard deviation for the Gaussian(s)
Author(s)
Parichit Sharma <parishar@iu.edu>, Hasan Kurban, Mark Jenne, Mehmet Dalkilic
This work is partially supported by NCI Grant 1R01CA213466-01.

References
Using data to build a better EM: EM* for big data.

Examples
Simulating a mixture of univariate samples from three distributions
with meu as 20, 70 and 100 and standard deviation as 10, 100 and 40 respectively.
sample_uv_data = as.data.frame(c(rnorm(100, 20, 10), rnorm(70, 70, 100), rnorm(50, 100, 40)))

Randomly shuffle the samples.
sample_uv_data = as.data.frame(sample_uv_data[sample(nrow(sample_uv_data)),])

Calling the dcem_train() function on the simulated data with threshold of
0.000001, iteration count of 100 and random seeding respectively.
sample_uv_out = dcem_train(sample_uv_data, num_clusters = 3, iteration_count = 100,
threshold = 0.001)

Simulating a mixture of multivariate samples from 2 gaussian distributions.
sample_mv_data = as.data.frame(rbind(MASS::mvrnorm(n=100, rep(2,5), Sigma = diag(5)),
MASS::mvrnorm(n=50, rep(14,5), Sigma = diag(5))))

Calling the dcem_train() function on the simulated data with threshold of
0.00001, iteration count of 100 and random seeding method respectively.
sample_mv_out = dcem_train(sample_mv_data, threshold = 0.001, iteration_count = 100)

Access the output
print(sample_mv_out$meu)
priint(sample_mv_out$sigma)
print(sample_mv_out$prior)
print(sample_mv_out$prob)
print(sample_mv_out$membership)

expectation_mv

Description
Calculates the probabilistic weights for the multivariate data.
expectation_uv

Usage

expectation_mv(data, weights, meu, sigma, prior, num_clusters, tolerance)

Arguments

data (matrix): The input data.
weights (matrix): The probability weight matrix.
meu (matrix): The matrix of meu.
sigma (list): The list of sigma (co-variance matrices).
prior (vector): The vector of priors.
num_clusters (numeric): The number of clusters.
tolerance (numeric): The system epsilon value.

Value

Updated probability weight matrix.

Author(s)

Parichit Sharma <parishar@iu.edu>, Hasan Kurban, Mark Jenne, Mehmet Dalkilic

This work is partially supported by NCI Grant 1R01CA213466-01.

References

Using data to build a better EM: EM* for big data.

expectation_uv

expectation_uv: Part of DCEM package.

Description

Calculates the probabilistic weights for the univariate data.

Usage

expectation_uv(data, weights, meu, sigma, prior, num_clusters, tolerance)
Arguments

- **data** (matrix): The input data.
- **weights** (matrix): The probability weight matrix.
- **meu** (vector): The vector of meu.
- **sigma** (vector): The vector of sigma (standard-deviations).
- **prior** (vector): The vector of priors.
- **num_clusters** (numeric): The number of clusters.
- **tolerance** (numeric): The system epsilon value.

Value

Updated probability weight matrix.

Author(s)

Parichit Sharma <parishar@iu.edu>, Hasan Kurban, Mark Jenne, Mehmet Dalkilic

This work is partially supported by NCI Grant 1R01CA213466-01.

References

Using data to build a better EM: EM* for big data.

get_priors

get_priors: Part of DCEM package.

Description

Initialize the priors.

Usage

get_priors(num_priors)

Arguments

- **num_priors** (numeric): Number of priors one corresponding to each cluster.

Details

For example, if the user specify 2 priors then the vector will have 2 entries (one for each cluster) where each will be 1/2 or 0.5.
Value

A vector of uniformly initialized prior values (numeric).

Author(s)

Parichit Sharma <parishar@iu.edu>, Hasan Kurban, Mark Jenne, Mehmet Dalkilic

This work was partially supported by NCI Grant 1R01CA213466-01.

Description

Implements the node insertion into the heaps.

Usage

```r
insert_nodes(heap_list, heap_assn, data_probs, leaves_ind, num_clusters)
```

Arguments

- `heap_list` (list): The nested list containing the heaps. Each entry in the list is a list maintained in max-heap structure.
- `heap_assn` (numeric): The vector representing the heap assignments.
- `data_probs` (string): A vector containing the probability for data.
- `leaves_ind` (numeric): A vector containing the indices of leaves in heap.
- `num_clusters` (numeric): The number of clusters. Default: 2

Value

A nested list. Each entry in the list is a list maintained in the max-heap structure.

Author(s)

Parichit Sharma <parishar@iu.edu>, Hasan Kurban, Mark Jenne, Mehmet Dalkilic

This work is partially supported by NCI Grant 1R01CA213466-01.

References

Using data to build a better EM: EM* for big data.

ionosphere_data

Description

This dataset contains 351 entries (radar readings from a system in goose bay laboratory) and 35 columns. The 35th columns is the label columns identifying the entry as either good or bad. Additionally, the 2nd column only contains 0's.

Usage

ionosphere_data

Format

A file with 351 rows and 35 columns of multivariate data in a csv file. All values are numeric.

Source

maximisation_mv

Description

Calculates meu, sigma and prior based on the updated probability weight matrix.

Usage

maximisation_mv(data, weights, meu, sigma, prior, num_clusters, num_data)

Arguments

- **data** (matrix): The input data.
- **weights** (matrix): The probability weight matrix.
- **meu** (matrix): The matrix of meu.
- **sigma** (list): The list of sigma (co-variance matrices).
- **prior** (vector): The vector of priors.
- **num_clusters** (numeric): The number of clusters.
- **num_data** (numeric): The total number of observations in the data.
maximisation_uv

Value
Updated values for meu, sigma and prior.

Author(s)
Parichit Sharma <parishar@iu.edu>, Hasan Kurban, Mark Jenne, Mehmet Dalkilic
This work is partially supported by NCI Grant 1R01CA213466-01.

References
Using data to build a better EM: EM* for big data.

maximisation_uv maximisation_uv: Part of DCEM package.

Description
Calculates meu, sigma and prior based on the updated probability weight matrix.

Usage
maximisation_uv(data, weights, meu, sigma, prior, num_clusters, num_data)

Arguments
data (matrix): The input data.
weights (matrix): The probability weight matrix.
meu (vector): The vector of meu.
sigma (vector): The vector of sigma (standard-deviations).
prior (vector): The vector of priors.
num_clusters (numeric): The number of clusters.
num_data (numeric): The total number of observations in the data.

Value
Updated values for meu, sigma and prior.

Author(s)
Parichit Sharma <parishar@iu.edu>, Hasan Kurban, Mark Jenne, Mehmet Dalkilic
This work is partially supported by NCI Grant 1R01CA213466-01.
References

Using data to build a better EM: EM* for big data.

Description

Implements the creation of max heap. Internally called by the dcem_star_train.

Usage

max_heapify(data, index, num_data)

Arguments

data (NumericMatrix): The dataset provided by the user.
index (int): The index of the data point.
um_data (numeric): The total number of observations in the data.

Value

A NumericMatrix with the max heap property.

Author(s)

Parichit Sharma <parishar@iu.edu>, Hasan Kurban, Mark Jenne, Mehmet Dalkilic
This work is partially supported by NCI Grant 1R01CA213466-01.

Description

Initialize the meus(s) by randomly selecting the samples from the dataset. This is the default method for initializing the meu(s).

Usage

Randomly seeding the mean(s).
meu_mv(data, num_meu)
meu_mv_impr

Arguments

data (matrix): The dataset provided by the user.
num_meu (numeric): The number of meu.

Value

A matrix containing the selected samples from the dataset.

Author(s)

Parichit Sharma <parishar@iu.edu>, Hasan Kurban, Mark Jenne, Mehmet Dalkilic
This work was partially supported by NCI Grant 1R01CA213466-01.

Description

Usage

Randomly seeding the meu.
meu_mv_impr(data, num_meu)

Arguments

data (matrix): The dataset provided by the user.
num_meu (numeric): The number of meu.

Value

A matrix containing the selected samples from the dataset.

Author(s)

Parichit Sharma <parishar@iu.edu>, Hasan Kurban, Mark Jenne, Mehmet Dalkilic
This work was partially supported by NCI Grant 1R01CA213466-01.
meu_uv

meu_uv: Part of DCEM package.

Description
This function is internally called by the dcem_train to initialize the meu(s). It randomly selects the meu(s) from the range min(data):max(data).

Usage
Randomly seeding the meu.
meu_uv(data, num_meu)

Arguments
- data (matrix): The dataset provided by the user.
- num_meu (number): The number of meu.

Value
A vector containing the selected samples from the dataset.

Author(s)
Parichit Sharma <parishar@iu.edu>, Hasan Kurban, Mark Jenne, Mehmet Dalkilic
This work is partially supported by NCI Grant 1R01CA213466-01.

meu_uv_impr

meu_uv_impr: Part of DCEM package.

Description
This function is internally called by the dcem_train to initialize the meu(s). It uses the proposed implementation from K-means++: The Advantages of Careful Seeding, David Arthur and Sergei Vassilvitskii. URL http://ilpubs.stanford.edu:8090/778/1/2006-13.pdf.

Usage
Seeding the meu using the K-means++ implementation.
meu_uv_impr(data, num_meu)

Arguments
- data (matrix): The dataset provided by the user.
- num_meu (number): The number of meu.
separate_data

Value
A vector containing the selected samples from the dataset.

Author(s)
Parichit Sharma <parishar@iu.edu>, Hasan Kurban, Mark Jenne, Mehmet Dalkilic
This work is partially supported by NCI Grant 1R01CA213466-01.

separate_data *separate_data: Part of DCEM package.*

Description
Separate leaf nodes from the heaps.

Usage
```r
separate_data(heap_list, num_clusters)
```

Arguments
- `heap_list` (list): The nested list containing the heaps. Each entry in the list is a list maintained in max-heap structure.
- `num_clusters` (numeric): The number of clusters. Default: 2

Value
A nested list where,
- First entry is the list of heaps with leaves removed.
- Second entry is the list of leaves.

Author(s)
Parichit Sharma <parishar@iu.edu>, Hasan Kurban, Mark Jenne, Mehmet Dalkilic
This work is partially supported by NCI Grant 1R01CA213466-01.

References
Using data to build a better EM: EM* for big data.
sigma_mv

Description

Initializes the co-variance matrices as the identity matrices.

Usage

```
sigma_mv(num_sigma, numcol)
```

Arguments

- `num_sigma` (numeric): Number of covariance matrices.
- `numcol` (numeric): The number of columns in the dataset.

Value

A list of identity matrices. The number of entries in the list is equal to the input parameter (num_cov).

Author(s)

Parichit Sharma <parishar@iu.edu>, Hasan Kurban, Mark Jenne, Mehmet Dalkilic

This work is partially supported by NCI Grant 1R01CA213466-01.

sigma_uv

Description

Initializes the standard deviation for the Gaussian(s).

Usage

```
sigma_uv(data, num_sigma)
```

Arguments

- `data` (matrix): The dataset provided by the user.
- `num_sigma` (number): Number of sigma (standard_deviations).

Value

A vector of standard deviation value(s).
trim_data

Author(s)

Parichit Sharma <parishar@iu.edu>, Hasan Kurban, Mark Jenne, Mehmet Dalkilic

This work was partially supported by NCI Grant 1R01CA213466-01.

Description

Removes the specified column(s) from the dataset.

Usage

```r
trim_data(columns, data)
```

Arguments

- `columns` (string): A comma separated list of column(s) that needs to be removed from the dataset. Default: ""
- `data` (dataframe): Dataframe containing the input data.

Value

A dataframe with the specified column(s) removed from it.

Author(s)

Parichit Sharma <parishar@iu.edu>, Hasan Kurban, Mark Jenne, Mehmet Dalkilic This work is partially supported by NCI Grant 1R01CA213466-01.

References

Using data to build a better EM: EM* for big data.

update_weights

Description
Update the probability values for specific data points that change between the heaps.

Usage
update_weights(temp_weights, weights, index_list, num_clusters)

Arguments
- temp_weights (matrix): A matrix of probabilistic weights for leaf data.
- weights (matrix): A matrix of probabilistic weights for all data.
- index_list (vector): A vector of indices.
- num_clusters (numeric): The number of clusters.

Value
Updated probabilistic weights matrix.

Author(s)
Parichit Sharma <parishar@iu.edu>, Hasan Kurban, Mark Jenne, Mehmet Dalkilic
This work is partially supported by NCI Grant 1R01CA213466-01.

References
Using data to build a better EM: EM* for big data.

validate_data

validate_data: Part of DCEM package. Used internally in the package.

Description
Implements sanity check for the input data. This function is for internal use and is called by the dcem_train.

Usage
validate_data(columns, numcols)
validate_data

Arguments

columns (string): A comma separated list of columns that needs to be removed from the dataset. Default:

numcols (numeric): Number of columns in the dataset.

Details

An example would be to check if the column to be removed exist or not? trim_data internally calls this function before removing the column(s).

Value

boolean: TRUE if the columns exists otherwise FALSE.

Author(s)

Parichit Sharma <parishar@iu.edu>, Hasan Kurban, Mark Jenne, Mehmet Dalkilic This work is partially supported by NCI Grant 1R01CA213466-01.

References

Using data to build a better EM: EM* for big data.
Index

*Topic datasets

ionosphere_data, 18

build_heap, 3

DCEM, 3
dcem_cluster_mv, 5, 13
dcem_cluster_uv, 6, 13
dcem_star_cluster_mv, 7, 10
dcem_star_cluster_uv, 8, 10
dcem_star_train, 4, 10, 12
dcem_test, 4, 11
dcem_train, 3, 4, 13, 26

expectation_mv, 14
effectation_uv, 15

g get priors, 16

insert_nodes, 17

ionosphere_data, 12, 18

max_heapify, 20

maximisation_mv, 18

maximisation_uv, 19

meu_mv, 3, 20

meu_mv_impr, 3, 21

meu_uv, 3, 22

meu_uv_impr, 3, 22

separate_data, 23

sigma_mv, 24

sigma_uv, 24

trim_data, 4, 10, 12, 13, 25, 27

update_weights, 26

validate_data, 26