Package ‘DCLEAR’

November 30, 2022

Version 1.0.11
Date 2022-11-30
Title Distance Based Cell Lineage Reconstruction
Author Il-Youp Kwak [aut, cre],
 Wuming Gong [aut]
Maintainer Il-Youp Kwak <ikwak2@cau.ac.kr>
License GPL-3
VignetteBuilder knitr
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 7.1.2
Depends R (>= 4.1.0), tensorflow(>= 2.2.0)

biocViews
Encoding UTF-8
Imports BiocParallel, dplyr, Matrix, matrixStats, ape, phangorn, Rcpp,
 igraph, methods, purrr, stringr, tidyr, tidyverse,
 rBayesianOptimization, rlang, BiocGenerics
Suggests knitr, rmarkdown, markdown

Description R codes for distance based cell lineage reconstruction. Our methods won both sub-
challenges 2 and 3 of the Allen Institute Cell Lineage Reconstruction DREAM Challenge in 2020.
References: Gong et al. (2021) <doi:10.1016/j.cels.2021.05.008>, Gong et al. (2022) <doi:10.1186/s12859-
022-04633-x>.

URL https://github.com/ikwak2/DCLEAR

NeedsCompilation yes
Repository CRAN
Date/Publication 2022-11-30 11:00:06 UTC
topics documented:

- add_deletion .. 3
- add_dropout .. 4
- as_igraph ... 4
- as_igraph.data.frame-method 5
- as_igraph.phylo-method 5
- as_lineage_tree ... 6
- as_lineage_tree.phyDat.phylo,lineage_tree_config-method ... 6
- as_phylo .. 7
- as_phylo.igraph-method 7
- DCLEAR ... 7
- dist_kmer_replacement_inference 8
- dist_replacement ... 8
- dist_replacement.phyDat.kmer_summary.integer-method .. 9
- dist_replacement.phyDat.missing.integer-method ... 9
- dist_weighted_hamming 10
- dist_weighted_hamming.phyDat.numeric-method 10
- downsample .. 12
- downsample.igraph-method 12
- downsample.lineage_tree-method 13
- get_distance_prior .. 13
- get_leaves ... 14
- get_leaves.lineage_tree-method 14
- get_node_names .. 15
- get_replacement_probability 15
- get_sequence .. 16
- get_transition_probability 16
- lineages ... 17
- positional_mutation_prob 17
- process_sequence .. 18
- process_sequence.phyDat-method 18
- prune .. 19
- prune.igraph-method 19
- prune.lineage_tree-method 20
- random_tree .. 20
- rbind.phyDat-method .. 21
- sample_mutation_outcome 21
- sample_mutation_site 22
- sample_outcome_prob 22
- score_simulation .. 23
- simulate ... 23
- simulate.lineage_tree_config.missing-method 24
- simulate.lineage_tree_config.phyDat-method 24
- simulate_core ... 25
- sim_seqdata .. 26
- substr_kmer .. 27
- substr_kmer.kmer_summary-method 28
Description

Add deletion

Usage

add_deletion(x, tree, mutation_site, config)

Arguments

x a character matrix

tree a matrix representing the lineage tree

mutation_site a binary matrix for mutation site

config a lineage_tree_config object

Value

a character matrix with deletions
Description
Add dropout events

Usage
\texttt{add_dropout(x, config)}

Arguments
- \texttt{x} a character matrix
- \texttt{config} a lineage_tree_config object

Value
a character matrix with dropout events

\texttt{as_igraph}

Generic function for \texttt{as_igraph}

Description
Generic function for \texttt{as_igraph}

Usage
\texttt{as_igraph(x, \ldots)}

Arguments
- \texttt{x} a phylo object
- \texttt{\ldots} additional parameters
Description

Convert an `phylo` object to an igraph object, while keeping the weight (in contrast to `igraph::as.igraph`)

Usage

```r
## S4 method for signature 'data.frame'
as_igraph(x, config)
```

Arguments

- `x`: a `phylo` object
- `config`: a `lineage_tree_config` object

Value

an igraph object

Description

Convert an `phylo` object to an igraph object, while keeping the weight (in contrast to `igraph::as.igraph`)

Usage

```r
## S4 method for signature 'phylo'
as_igraph(x)
```

Arguments

- `x`: a `phylo` object

Value

an igraph object
as_lineage_tree

Generic function for as_lineage_tree

Description

Generic function for as_lineage_tree

Usage

as_lineage_tree(x, y, config, ...)

Arguments

x
a phyDat object

y
a phylo object

config
a lineage_tree_config object

...
additional parameters

Value

a lineage_tree object
as_phylo

Description

Generic function for as_phylo

Usage

```r
as_phylo(x, ...)
```

Arguments

- `x`: a graph object
- `...`: additional parameters

Value

A phylo object or a igraph object

as_phylo,igraph-method

Description

Convert an igraph object to a phylo object

Usage

```r
## S4 method for signature 'igraph'
as_phylo(x)
```

Arguments

- `x`: an igraph object

Value

A phylo object or a igraph object

DCLEAR

Description

Distance based methods for inferring lineage trees from single cell data
dist_kmer_replacement_inference

Core function of computing kmer replacement distance

Description
Compute the sequence distance matrix using inferred kmer replacement matrix

Usage
dist_kmer_replacement_inference(x, kmer_summary, k = 2)

Arguments
- x: input data in phyDat format
- kmer_summary: a kmer_summary object
- k: k-mers (default k=2)

Value
a dist object

Author(s)
Wuming Gong (gongx030@umn.edu)

dist_replacement

Generic function for dist_replacement

Description
Generic function for dist_replacement

Usage
dist_replacement(x, kmer_summary, k, ...)

Arguments
- x: a sequence object
- kmer_summary: a kmer_summary object
- k: k-mer length
- ...: additional parameters
dist_replacement,phyDat,kmer_summary,integer-method

Compute the kmer replacement distance

Description

Compute the kmer replacement distance between sequences

Usage

S4 method for signature 'phyDat,kmer_summary,integer'
dist_replacement(x, kmer_summary, k = 2L, ...)

Arguments

- `x`: input data in phyDat format
- `kmer_summary`: a kmer_summary object
- `k`: k-mer length
- `...`: other arguments passed to substr_kmer

Value

a dist object

Author(s)

Wuming Gong (gongx030@umn.edu)
Arguments

x input data in phyDat format
kmer_summary a kmer_summary object
k k-mer length
... other arguments passed to substr_kmer

Value

a dist object

Author(s)

Wuming Gong (gongx030@umn.edu)

dist_weighted_hamming Generic function for dist_weighted_hamming

description

Generic function for dist_weighted_hamming

Usage

dist_weighted_hamming(x, wVec, ...)

Arguments

x a sequence object
wVec weight vector
... additional parameters

dist_weighted_hamming,phyDat,numeric-method

dist_weighted_hamming

Description

implementation of weighted hamming algorithm

Usage

S4 method for signature 'phyDat,numeric'
dist_weighted_hamming(x, wVec, dropout = FALSE)
Arguments

- **x**: Sequence object of 'phyDat' type.
- **wVec**: Weight vector for the calculation of weighted hamming distance.
- **dropout**: Different weighting strategy is taken to consider interval dropout with dropout = 'TRUE'. Default is, dropout = 'FALSE'.

Value

Calculated distance matrix of input sequences. The result is a 'dist' class object.

Author(s)

Il-Youp Kwak

Examples

```r
library(DCLEAR)
library(phangorn)
library(ape)

set.seed(1)
mu_d1 = c(30, 20, 10, 5, 5, 1, 0.01, 0.001)
mu_d1 = mu_d1/sum(mu_d1)
simm = 10  # number of cell samples
m = 10  # number of targets
sD = sim_seqdata(sim_n = simm, m = m, mu_d = 0.03,
d = 12, n_s = length(mu_d1), outcome_prob = mu_d1, p_d = 0.005)
## RF score with hamming distance
D_hm = dist.hamming(sD$seqs)
tree_hm = NJ(D_hm)
RF.dist(tree_hm, sD$tree, normalize = TRUE)

## RF score with weighted hamming
InfoW = -log(mu_d1)
InfoW[1:2] = 1
D_wh = dist_weighted_hamming(sD$seqs, InfoW, dropout = FALSE)
tree_wh = NJ(D_wh)
RF.dist(tree_wh, sD$tree, normalize = TRUE)

## RF score with weighted hamming, considering dropout situation
infoW = -log(mu_d1)
infoW[1] = 1
infoW[2] = 12
infoW[3:7] = 3
D_wh2 = dist_weighted_hamming(sD$seqs, infoW, dropout = TRUE)
tree_wh2 = NJ(D_wh2)
RF.dist(tree_wh2, sD$tree, normalize = TRUE)
```
downsample

Generic function for downsample

Usage

downsample(x, ...)

Arguments

x a data object
...
... additional parameters

downsample,igraph-method

Description

Sample a lineage tree

Usage

S4 method for signature 'igraph'
downsample(x, n = 10L, ...)

Arguments

x a igraph object
n number of leaves (tips) in the down-sampled tree
...
... additional parameters

Value

a phylo object
downsample, lineage_tree-method

downsample

Description

Sample a lineage tree

Usage

```r
## S4 method for signature 'lineage_tree'
downsample(x, n = 10L, ...)
```

Arguments

- `x` a lineage_tree object
- `n` number of leaves (tips) in the down-sampled tree
- `...` additional parameters

Value

a lineage_tree object

get_distance_prior

Description

prior distribution of distance

Usage

`get_distance_prior(x)`

Arguments

- `x` a kmer_summary object

Value

a probabilistic vector of the distribution of nodal distances

Author(s)

Wuming Gong (gongx030@umn.edu)
get_leaves
Generic function for get_leaves

Description
Generic function for get_leaves

Usage
```r
get_leaves(x, ...)
```

Arguments
- `x` a lineage_tree object
- `...` additional parameters

Value
a phyDat object
get_node_names

Description
Convenient function for get node names

Usage
```
get_node_names(x)
```

Arguments
- `x`: node id

Value
node names

Author(s)
Wuming Gong (gongx030@umn.edu)

get_replacement_probability

Description
Compute $p(A, B|d)$, the conditional probability of seeing a replacement of from kmer A to B or vice versa

Usage
```
get_replacement_probability(x)
```

Arguments
- `x`: a kmer_summary object

Value
an 3D probabilistic array (kmers by kmers by distances)

Author(s)
Wuming Gong (gongx030@umn.edu)
get_sequence

Description
Get sequences

Usage
get_sequence(x, tree, outcome, config)

Arguments
- x: a character matrix
- tree: a matrix representing the lineage tree
- outcome: a character matrix
- config: a lineage_tree_config object

Value
a character matrix

get_transition_probability

Description
Compute \(p(A,X|B,Y,d) \), the conditional probability of seeing a replacement from A to B given the previous replacement B from Y at nodal distance d

Usage
get_transition_probability(x)

Arguments
- x: a kmer_summary object

Value
an 3D probabilistic array (kmers by kmers by distances)

Author(s)
Wuming Gong (gongx030@umn.edu)
lineages

lineages

Lineage data

Description

Lineage data

Usage

data(lineages)

Format

An object of class `list` of length 100.

Examples

data(lineages)

positional_mutation_prob

positional_mutation_prob

Description

Convenient function for get node names

Usage

`positional_mutation_prob(x, config)`

Arguments

- `x` a phyDat object
- `config` a lineage_tree_config object

Value

a positional mutation probability matrix
process_sequence

Generic function for process_sequence

Usage

process_sequence(x, ...)

Arguments

x a sequence object
...

Additional parameters

process_sequence.phyDat-method

Process sequences

Description

Process sequences

Usage

S4 method for signature 'phyDat'
process_sequence(
 x,
 division = 16L,
 dropout_character = '*',
 default_character = '0',
 deletion_character = '-'
)

Arguments

x input data in phyDat format
division cell division
dropout_character Dropout character (default: '*')
default_character Default character (default: '0')
deletion_character Deletion character (default: '-')
Value

a 'lineage_tree_config' object

Author(s)

Wuming Gong (gongx030@umn.edu)

prune

Generic function for prune

Description

Generic function for prune

Usage

`prune(x, ...)`

Arguments

- `x`: a lineage_tree object
- `...`: additional parameters

prune,igraph-method

prune

Description

Trim a full lineage tree into phylogenetic tree

Usage

```
## S4 method for signature 'igraph'
prune(x, weighted = TRUE, ...)
```

Arguments

- `x`: an igraph object
- `weighted`: whether or not keep the edge weight (default: TRUE)
- `...`: additional parameters

Value

an igraph object
Description

Trim a full lineage tree into phylogenetic tree

Usage

```r
## S4 method for signature 'lineage_tree'
prune(x, ...)
```

Arguments

- `x` a lineage_tree object
- `...` additional parameters passed to as_phylo()

Value

a lineage_tree object

Description

Simulate a random lineage tree

Usage

```r
random_tree(n_samples, division = 16L)
```

Arguments

- `n_samples` number of samples to simulate
- `division` number of cell division

Value

a data frame

Author(s)

Wuming Gong (gongx030@umn.edu)
rbind,phyDat-method

Description
Concatenate multiple phyDat objects

Usage
S4 method for signature 'phyDat'
rbind(..., deparse.level = 1)

Arguments
... a list of phyDat objects
deparse.level see definition in generic rbind

Value
a phyDat object

sample_mutation_outcome

Description
Sample mutation outcome

Usage
sample_mutation_outcome(x, mp = NULL, config)

Arguments
x an igraph object
mp a mutation site matrix
config a lineage_tree_config object

Value
a outcome matrix
sample_mutation_site

Description
Sample mutation site

Usage
sample_mutation_site(tree, config)

Arguments
- tree: a data frame
- config: a lineage_tree_config object

Value
a mutation site matrix

sample_outcome_prob

Description
Sampling outcome probability based on a gamma distribution

Usage
sample_outcome_prob(config, num_states = 20L, shape = 0.1, scale = 2)

Arguments
- config: a lineage_tree_config object
- num_states: number of states used in simulation.
- shape: shape parameter in gamma distribution
- scale: scale parameter in gamma distribution

Value
a probability vector for each alphabet

Author(s)
Wuming Gong (gongx030@umn.edu)
score_simulation

Description

Compare two sets of sequences

Usage

```r
score_simulation(x, y, config)
```

Arguments

- `x`
 a character matrix
- `y`
 a character matrix
- `config`
 a lineage_tree_config object

Value

numeric scores

simulate

Description

Generic function for simulate

Usage

```r
simulate(config, x, ...)
```

Arguments

- `config`
 a lineage_tree_config object
- `x`
 a sequence object
- `...`
 additional parameters
Description

Simulate a cell lineage tree adopted from https://github.com/elifesciences-publications/CRISPR_recorders_sims/blob/master/MATLAB_sims/GESTALT_30hr_1x_simulation.m

Usage

S4 method for signature 'lineage_tree_config,missing'
simulate(config, x, n_samples = 200, ...)

Arguments

- **config**: simulation configuration; a lineage_tree_config object
- **x**: missing
- **n_samples**: number of samples to simulate
- **...**: additional parameters

Value

a lineage_tree object

Author(s)

Wuming Gong (gongx030@umn.edu)
simulate_core

Arguments

- `config`: simulation configuration; a lineage_tree_config object
- `x`: a sequence object
- `n_samples`: number of samples to simulate
- `k`: Number of trials
- `greedy`: Whether ot not use a greedy search
- `...`: additional parameters

Value

a lineage_tree object

Author(s)

Wuming Gong (gongx030@umn.edu)

Description

Simulate a cell lineage tree Adopted from https://github.com/elifesciences-publications/CRISPR_recorders_sims/blob/master/MATLAB_sims/GESTALT_30hr_1x_simulation.m

Usage

`simulate_core(config, tree, mutation_site, outcome)`

Arguments

- `config`: simulation configuration; a lineage_tree_config object
- `tree`: a matrix representing the lineage tree
- `mutation_site`: a binary matrix indicating the mutation sites
- `outcome`: a character matrix

Value

a ‘lineage_tree’ object
sim_seqdata

Description

Generate single cell barcode data set with tree shaped lineage information

Usage

```r
sim_seqdata(
  sim_n = 200,
  m = 200,
  mu_d = 0.03,
  d = 15,
  n_s = 23,
  outcome_prob = NULL,
  p_d = 0.003
)
```

Arguments

- `sim_n` Number of cell samples to simulate.
- `m` Number of targets.
- `mu_d` Mutation rate. (a scalar or a vector)
- `d` Number of cell divisions.
- `n_s` Number of possible outcome states
- `outcome_prob` Outcome probability vector (default is NULL)
- `p_d` Dropout probability

Value

The result is a list containing two objects, 'seqs' and 'tree'. The 'seqs' is 'phyDat' object of 'sim_n' number of simulated barcodes corresponding to each cell, and The 'tree' is a 'phylo' object, a ground truth tree structure for the simulated data.

Author(s)

Il-Youp Kwak

Examples

```r
library(DCLEAR)
library(phangorn)
library(ape)
```
set.seed(1)
mu_d1 = c(30, 20, 10, 5, 5, 1, 0.01, 0.001)
mu_d1 = mu_d1/sum(mu_d1)
simn = 10 # number of cell samples
m = 10 # number of targets
sD = sim_seqdata(sim_n = simn, m = m, mu_d = 0.03,
d = 12, n_s = length(mu_d1), outcome_prob = mu_d1, p_d = 0.005)
RF score with hamming distance
D_hm = dist.hamming(sD$seqs)
tree_hm = NJ(D_hm)
RF.dist(tree_hm, sD$tree, normalize = TRUE)

RF score with weighted hamming
InfoW = -log(mu_d1)
InfoW[1:2] = 1
D_wh = dist_weighted_hamming(sD$seqs, InfoW, dropout=FALSE)
tree_wh = NJ(D_wh)
RF.dist(tree_wh, sD$tree, normalize = TRUE)

RF score with weighted hamming, considering dropout situation
InfoW = -log(mu_d1)
InfoW[1] = 1
InfoW[2] = 12
InfoW[3:7] = 3
D_wh2 = dist_weighted_hamming(sD$seqs, InfoW, dropout = TRUE)
tree_wh2 = NJ(D_wh2)
RF.dist(tree_wh2, sD$tree, normalize = TRUE)

substr_kmer

Generic function for substr_kmer

Description

Generic function for substr_kmer

Usage

substr_kmer(x, ...)

Arguments

- **x**: a kmer object
- **...**: additional parameters
substr_kmer, kmer_summary-method

Subsetting a kmer_summary object

Description

Summarize the short k-mer summary from the long k-mer summary

Usage

```r
## S4 method for signature 'kmer_summary'
substr_kmer(x, k = 2)
```

Arguments

- `x`: a `kmer_summary` object
- `k`: k-mer length (default: 2)

Value

a new `kmer_summary` object

Author(s)

Wuming Gong (gongx030@umn.edu)

subtract

Generic function for subtract

Description

Generic function for subtract

Usage

```r
subtract(x, y, ...)
```

Arguments

- `x`: a `lineage_tree` object
- `y`: a `lineage_tree` object
- `...`: additional parameters
Description

Subtract a subtree from a large tree

Usage

```r
## S4 method for signature 'lineage_tree, lineage_tree'
subtract(x, y, ...)
```

Arguments

- `x`: a `lineage_tree` object
- `y`: a `lineage_tree` object
- `...`: additional parameters

Value

A `lineage_tree` object

subtree

Generic function for subtree

Description

Generic function for subtree

Usage

```
subtree(x, ...)
```

Arguments

- `x`: a `lineage_tree` object
- `...`: additional parameters
subtree, lineage_tree-method

subtree

Description

Extract a subtree with specific leaves

Usage

S4 method for signature 'lineage_tree'
subtree(x, leaves = NULL, ...)

Arguments

- `x` a lineage_tree object
- `leaves` leaves of the extracted tree
- `...` additional parameters

Value

a lineage_tree object

subtree, phylo-method

subtree

Description

Extract a subtree with specific leaves

Usage

S4 method for signature 'phylo'
subtree(x, leaves = NULL, ...)

Arguments

- `x` a phylo object
- `leaves` leaves of the extracted tree
- `...` additional parameters

Value

a phylo object
summarize_kmer

Generic function for summarize_kmer

Description

Generic function for summarize_kmer

Usage

summarize_kmer(x, ...)

Arguments

x a sequence object ...

summarize_kmer,phyDat-method

summarize_kmer

Description

Summarize kmer distributions with input sequences

Usage

S4 method for signature 'phyDat'
summarize_kmer(
 x,
 division = 16L,
 k = 2,
 reps = 20L,
 n_samples = 200L,
 n_nodes = 100L,
 n_targets
)

Arguments

x input data as a phyDat object
division number of cell division
k k-mer (default = 2)
reps number of simulated trees
n_samples number of samples to simulate
Description

Summarize kmer distributions (core function)

Usage

```r
summarize_kmer_core(
  k = 2,
  reps = 20L,
  n_samples = 200L,
  n_nodes = 100L,
  config = NULL
)
```

Arguments

- `k`: k-mer (default = 2)
- `reps`: number of simulated trees
- `n_samples`: number of samples to simulate
- `n_nodes`: number of nodes to sample (including both leaves and internal nodes)
- `config`: lineage tree configuration (a lineage_tree_config object)

Value

a kmer_summary object

Author(s)

Wuming Gong (gongx030@umn.edu)
Description

implementation of weighted hamming algorithm

Usage

```r
WH(x, InfoW, dropout = FALSE)
```

Arguments

- `x` Sequence object of `phyDat` type.
- `InfoW` Weight vector for the calculation of weighted hamming distance.
- `dropout` Different weighting strategy is taken to consider interval dropout with `dropout = 'TRUE'`. Default is, `dropout = 'FALSE'`.

Value

Calculated distance matrix of input sequences. The result is a `dist` class object.

Author(s)

Il-Youp Kwak

Examples

```r
set.seed(1)
library(phangorn)
mu_d1 = c(30, 20, 10, 5, 5, 1, 0.01, 0.001)
mu_d1 = mu_d1/sum(mu_d1)
simn = 10 # number of cell samples
m = 10  ## number of targets
sD = sim_seqdata(sim_n = simn, m = m, mu_d = 0.03,
                 d = 12, n_s = length(mu_d1), outcome_prob = mu_d1, p_d = 0.005 )

## RF score with hamming distance
D_h = dist.hamming(sD$seqs)
tree_h = NJ(D_h)
RF.dist(tree_h, sD$tree, normalize = TRUE)

## RF score with weighted hamming
InfoW = -log(mu_d1)
InfoW[1:2] = 1

D_wh = WH(sD$seqs, InfoW)
```
tree_wh = NJ(D_wh)
RF.dist(tree_wh, sD$tree, normalize = TRUE)

RF score with weighted hamming, considering dropout situation
nfoW = -log(mu_d1)
InfoW[1] = 1
InfoW[2] = 12
InfoW[3:7] = 3

D_wh2 = WH(sD$seqs, InfoW, dropout=TRUE)
tree_wh2= NJ(D_wh2)
RF.dist(tree_wh2, sD$tree, normalize = TRUE)

WH_train

Train weights for WH

Description

Train weights for WH and output weight vector

Usage

```
WH_train(X, loc0 = 2, locDropout = 1, locMissing = FALSE)
```

Arguments

- **X**
 - a list of k number of input data, X[1] ... X[k]. The ith data have sequence information as phyDat format in X[i][1], and tree information in X[i][2] as phylo format.
- **loc0**
 - weight location of initial state
- **locDropout**
 - weight location of dropout state
- **locMissing**
 - weight location of missing state, FALSE if there is no missing values

Value

- a weight vector

Author(s)

Il-Youp Kwak (ikwak2@cau.ac.kr)
WH_train_fit

Train weights for WH, and output distance object

Description

Train weights for WH using the given data, and fit the distance matrix for a input sequence.

Usage

```
WH_train_fit(x, X)
```

Arguments

- **x**: input data in phyDat format
- **X**: a list of k number of input data, X[[1]] ... X[[k]]. The ith data have sequence information as phyDat format in X[i][[1]], and tree information in X[i][[2]] as phylo format.

Value

a dist object

Author(s)

Il-Youp Kwak (ikwak2@cau.ac.kr)
Index

* datasets
 lineages, 17
 positional_mutation_prob, 17
 process_sequence, 18
 process_sequence,phyDat-method, 18
 prune, 19
 prune,igraph-method, 19
 prune,lineage_tree-method, 20
 random_tree, 20
 rbind,phyDat-method, 21
 sample_mutation_outcome, 21
 sample_mutation_site, 22
 simulate, 23
 simulate,lineage_tree_config,missing-method, 24
 simulate,lineage_tree_config,phyDat-method, 24
 simulate_core, 25
 substring, 27
 substring,phyDat-method, 28
 subtract, 28
 subtract,lineage_tree,lineage_tree-method, 29
 subtree, 29
 subtree,lineage_tree-method, 30
 subtree,phylo-method, 30
 summarize_kmer, 31
 summarize_kmer,phyDat-method, 31
 summarize_kmer_core, 32
 WH, 33
 WH_train, 34
 WH_train_fit, 35

DCLEAR, 7
dist_kmer_replacement_inference, 8
dist_replacement, 8
dist_replacement,phyDat,kmer_summary,integer-method, 9
dist_replacement,phyDat,missing,integer-method, 9
dist_weighted_hamming, 10
dist_weighted_hamming,phyDat,numeric-method, 10
downsampe, 12
downsampe,igraph-method, 12
downsampe,lineage_tree-method, 13
get_distance_prior, 13
get_leaves, 14
get_leaves,lineage_tree-method, 14
get_node_names, 15
get_replacement_probability, 15
get_sequence, 16
get_transition_probability, 16