Package ‘DCLEAR’

September 14, 2023

Version 1.0.13
Date 2023-9-14
Title Distance Based Cell Lineage Reconstruction
Author Il-Youp Kwak [aut, cre], Wuming Gong [aut]
Maintainer Il-Youp Kwak <ikwak2@cau.ac.kr>
License GPL-3
VignetteBuilder knitr
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 7.2.3
Depends R (>= 4.1.0), tensorflow(>= 2.2.0)

biocViews
Encoding UTF-8
Imports BiocParallel, dplyr, Matrix, matrixStats, ape, phangorn, Rcpp, igraph, methods, purrr, stringr, tidyr, rBayesianOptimization, rlang, BiocGenerics
Suggests knitr, rmarkdown, markdown

URL https://github.com/ikwak2/DCLEAR

NeedsCompilation yes
Repository CRAN
Date/Publication 2023-09-14 07:32:35 UTC
R topics documented:

add_deletion .. 3
add_dropout .. 4
as_igraph .. 4
as_igraph.data.frame-method 5
as_igraph.phylo-method 5
as_lineage_tree ... 6
as_lineage_tree.phyDat,phylo,lineage_tree_config-method 6
as_phylo ... 7
as_phylo.igraph-method 7
DCLEAR ... 7
dist_kmer_replacement_inference 8
dist_replacement .. 8
dist_replacement.phyDat,kmer_summary.integer-method .. 9
dist_replacement.phyDat.missing.integer-method ... 9
dist_weighted_hamming 10
dist_weighted_hamming.phyDat.numeric-method ... 10
downsampling ... 12
downsampling.igraph-method 12
downsampling.lineage_tree-method 13
get_distance_prior ... 13
get_leaves .. 14
get_leaves.lineage_tree-method 14
get_node_names .. 15
get_replacement_probability 15
get_sequence ... 15
get_transition_probability 16
lineages ... 16
positional_mutation_prob 17
process_sequence ... 18
process_sequence.phyDat-method 18
prune ... 19
prune.igraph-method 19
prune.lineage_tree-method 20
random_tree .. 20
rbind.phyDat-method 21
sample_mutation_outcome 21
sample_mutation_site 22
sample_outcome_prob 22
score_simulation ... 23
simulate ... 23
simulate.lineage_tree_config.missing-method 24
simulate.lineage_tree_config.phyDat-method 24
simulate_core ... 25
sim_seqdata ... 26
substr_kmer .. 27
substr_kmer.kmer_summary-method 28
Description

Add deletion

Usage

add_deletion(x, tree, mutation_site, config)

Arguments

- `x`: a character matrix
- `tree`: a matrix representing the lineage tree
- `mutation_site`: a binary matrix for mutation site
- `config`: a lineage_tree_config object

Value

a character matrix with deletions
add_dropout

Description
Add dropout events

Usage
add_dropout(x, config)

Arguments
- x: a character matrix
- config: a lineage_tree_config object

Value
a character matrix with dropout events

as_igraph

Description
Generic function for as_igraph

Usage
as_igraph(x, ...)

Arguments
- x: a phylo object
- ...: additional parameters
Description

Convert an phylo object to an igraph object, while keeping the weight (in contrast to igraph::as.igraph)

Usage

```r
## S4 method for signature 'data.frame'
as_igraph(x, config)
```

Arguments

- `x`: a phylo object
- `config`: a 'lineage_tree_config' object

Value

an igraph object

Description

Convert an phylo object to an igraph object, while keeping the weight (in contrast to igraph::as.igraph)

Usage

```r
## S4 method for signature 'phylo'
as_igraph(x)
```

Arguments

- `x`: a phylo object

Value

an igraph object
as_lineage_tree

Generic function for as_lineage_tree

Description

Convert a phylo object and a phyDat object to a lineage_tree object

Usage

S4 method for signature 'phyDat,phylo,lineage_tree_config'
as_lineage_tree(x, y, config, ...)

Arguments

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>a phyDat object</td>
</tr>
<tr>
<td>y</td>
<td>a phylo object</td>
</tr>
<tr>
<td>config</td>
<td>a lineage_tree_config object</td>
</tr>
<tr>
<td>...</td>
<td>additional parameters</td>
</tr>
</tbody>
</table>

Value

a lineage_tree object
as_phylo

Description

Generic function for as_phylo

Usage

as_phylo(x, ...)

Arguments

x a graph object
...
additional parameters

Value

a phylo object or a igraph object

Description

Convert an igraph object to a phylo object

Usage

S4 method for signature 'igraph'
as_phylo(x)

Arguments

x an igraph object

Value

a phylo object or a igraph object

DCLEAR

DCLEAR: A package for DCLEAR: Distance based Cell LinEAge Re-construction

Description

Distance based methods for inferring lineage trees from single cell data
dist_kmer_replacement_inference

Core function of computing kmer replacement distance

Description
Compute the sequence distance matrix using inferred kmer replacement matrix

Usage
\[
\text{dist_kmer_replacement_inference}(x, \text{kmer}_\text{summary}, k = 2)
\]

Arguments
- \(x\) : input data in phyDat format
- \(\text{kmer}_\text{summary}\) : a kmer_summary object
- \(k\) : k-mers (default \(k=2\))

Value
a dist object

Author(s)
Wuming Gong (gongx030@umn.edu)

dist_replacement

Generic function for dist_replacement

Description
Generic function for dist_replacement

Usage
\[
\text{dist_replacement}(x, \text{kmer}_\text{summary}, k, \ldots)
\]

Arguments
- \(x\) : a sequence object
- \(\text{kmer}_\text{summary}\) : a kmer_summary object
- \(k\) : k-mer length
- \(\ldots\) : additional parameters
distreplacement,phyDat,kmer_summary,integer-method

Compute the kmer replacement distance

Description

Compute the kmer replacement distance between sequences

Usage

```r
## S4 method for signature 'phyDat,kmer_summary,integer'
distreplacement(x, kmer_summary, k = 2, ...)
```

Arguments

- `x`: input data in phyDat format
- `kmer_summary`: a kmer_summary object
- `k`: k-mer length
- `...`: other arguments passed to substr_kmer

Value

a dist object

Author(s)

Wuming Gong (gongx030@umn.edu)
Arguments

- **x**: input data in phyDat format
- **kmer_summary**: a kmer_summary object
- **k**: k-mer length
- **...**: other arguments passed to substr_kmer

Value

a dist object

Author(s)

Wuming Gong (gongx030@umn.edu)

dist_weighted_hamming

Generic function for dist_weighted_hamming

Usage

```r
dist_weighted_hamming(x, wVec, ...)  
```

Arguments

- **x**: a sequence object
- **wVec**: weight vector
- **...**: additional parameters

Description

implementation of weighted hamming algorithm

Usage

```r
### S4 method for signature 'phyDat,numeric'
dist_weighted_hamming(x, wVec, dropout = FALSE)
```
dist_weighted_hamming.phyDat.numeric-method

Arguments

x Sequence object of 'phyDat' type.
wVec Weight vector for the calculation of weighted hamming distance
dropout Different weighting strategy is taken to consider interval dropout with dropout = 'TRUE'. Default is, dropout = 'FALSE'.

Value

Calculated distance matrix of input sequences. The result is a 'dist' class object.

Author(s)

Il-Youp Kwak

Examples

library(DCLEAR)
library(phangorn)
library(ape)

set.seed(1)
mu_d1 = c(30, 20, 10, 5, 5, 1, 0.01, 0.001)
mu_d1 = mu_d1/sum(mu_d1)
simn = 10 # number of cell samples
m = 10 # number of targets
sD = sim_seqdata(sim_n = simn, m = m, mu_d = 0.03,
d = 12, n_s = length(mu_d1), outcome_prob = mu_d1, p_d = 0.005)
RF score with hamming distance
D_hm = dist.hamming(sD$seqs)
tree_hm = NJ(D_hm)
RF.dist(tree_hm, sD$tree, normalize = TRUE)

RF score with weighted hamming
InfoW = -log(mu_d1)
InfoW[1:2] = 1
D_wh = dist_weighted_hamming(sD$seqs, InfoW, dropout = FALSE)
tree_wh = NJ(D_wh)
RF.dist(tree_wh, sD$tree, normalize = TRUE)

RF score with weighted hamming, considering dropout situation
InfoW = -log(mu_d1)
InfoW[1] = 1
InfoW[2] = 12
InfoW[3:7] = 3
D_wh2 = dist_weighted_hamming(sD$seqs, InfoW, dropout = TRUE)
tree_wh2= NJ(D_wh2)
RF.dist(tree_wh2, sD$tree, normalize = TRUE)
downsample

Generic function for downsample

Usage

downsample(x, ...)

Arguments

x a data object
...

... additional parameters

downsample,igraph-method

downsample

Description

Sample a lineage tree

Usage

S4 method for signature 'igraph'

downsample(x, n = 10L, ...)

Arguments

x a igraph object
n number of leaves (tips) in the down-sampled tree
...

... additional parameters

Value

a phylo object
Description
Sample a lineage tree

Usage
```r
## S4 method for signature 'lineage_tree'
downsampling(x, n = 10L, ...)
```

Arguments
- `x` a lineage_tree object
- `n` number of leaves (tips) in the down-sampled tree
- `...` additional parameters

Value
a lineage_tree object

Description
prior distribution of distance

Usage
```r
generate_prior(x)
```

Arguments
- `x` a kmer_summary object

Value
a probabilistic vector of the distribution of nodal distances

Author(s)
Wuming Gong (gongx030@umn.edu)
get_leaves

Generic function for get_leaves

Description

Generic function for get_leaves

Usage

get_leaves(x, ...)

Arguments

x a lineage_tree object
...

Value

a phyDat object
get_node_names

Description

Convenient function for getting node names.

Usage

get_node_names(x)

Arguments

- **x**: node id

Value

node names

Author(s)

Wuming Gong (gongx030@umn.edu)

get_replacement_probability

Description

Compute \(p(A, B|d) \), the conditional probability of seeing a replacement of from kmer \(A \) to \(B \) or vice versa.

Usage

get_replacement_probability(x)

Arguments

- **x**: a kmer_summary object

Value

an 3D probabilistic array (kmers by kmers by distances)

Author(s)

Wuming Gong (gongx030@umn.edu)
get_sequence

Description

Get sequence.

Usage

```r
get_sequence(x, tree, outcome, config)
```

Arguments

- `x`: a character matrix
- `tree`: a matrix representing the lineage tree
- `outcome`: a character matrix
- `config`: a lineage_tree_config object

Value

a character matrix

get_transition_probability

Description

Compute $p(A,X|B,Y,d)$, the conditional probability of seeing a replacement from A to B given the previous replacement B from Y at nodal distance d.

Usage

```r
get_transition_probability(x)
```

Arguments

- `x`: a kmer_summary object

Value

an 3D probabilistic array (kmers by kmers by distances)

Author(s)

Wuming Gong (gongx030@umn.edu)
lineages

Lineage data

Description

Lineage data

Usage

```
data(lineages)
```

Format

An object of class `list` of length 100.

Examples

```
data(lineages)
```

positional_mutation_prob

positional_mutation_prob

Description

Convenient function for get node names

Usage

```
positionional_mutation_prob(x, config)
```

Arguments

- `x`: a phyDat object
- `config`: a lineage_tree_config object

Value

A positional mutation probability matrix
process_sequence Generic function for process_sequence

Description
Generic function for process_sequence

Usage
process_sequence(x, ...)

Arguments
- x: a sequence object
- ...: additional parameters

process_sequence,phyDat-method Process sequences

Description
Process sequences

Usage
S4 method for signature 'phyDat'
process_sequence(
 x,
 division = 16L,
 dropout_character = "*",
 default_character = "0",
 deletion_character = "-"
)

Arguments
- x: input data in phyDat format
- division: cell division
- dropout_character: Dropout character (default: '*')
- default_character: Default character (default: '0')
- deletion_character: Deletion character (default: '-')
prune

Value

a ‘lineage_tree_config’ object

Author(s)

Wuming Gong (gongx030@umn.edu)

prune Generic function for prune

Description

Generic function for prune

Usage

prune(x, ...)

Arguments

x a lineage_tree object
...

Value

an igraph object

prune,igraph-method prune

Description

Trim a full lineage tree into phylogenetic tree

Usage

S4 method for signature 'igraph'
prune(x, weighted = TRUE, ...)

Arguments

x an igraph object
weighted whether or not keep the edge weight (default: TRUE)
...

Value

an igraph object
prune, lineage_tree-method

Description
Trim a full lineage tree into phylogenetic tree

Usage
S4 method for signature 'lineage_tree'
prune(x, ...)

Arguments
x
a lineage_tree object
...
additional parameters passed to as.phylo()

Value
a lineage_tree object

random_tree

Description
Simulate a random lineage tree

Usage
random_tree(n_samples, division = 16L)

Arguments
n_samples
number of samples to simulate
division
number of cell division

Value
a data frame

Author(s)
Wuming Gong (gongx030@umn.edu)
Description
Concatenate multiple phyDat objects

Usage
S4 method for signature 'phyDat'
rbind(..., deparse.level = 1)

Arguments

... a list of phyDat objects
deparse.level see definition in generic rbind

Value
a phyDat object

Description
Sample mutation outcome

Usage
sample_mutation_outcome(x, mp = NULL, config)

Arguments

x an igraph object
mp a mutation site matrix
config a lineage_tree_config object

Value
a outcome matrix
Description

Sample mutation site

Usage

```r
sample_mutation_site(tree, config)
```

Arguments

- `tree`: a data frame
- `config`: a lineage_tree_config object

Value

a mutation site matrix

Description

Sampling outcome probability based on a gamma distribution

Usage

```r
sample_outcome_prob(config, num_states = 20L, shape = 0.1, scale = 2)
```

Arguments

- `config`: a lineage_tree_config object
- `num_states`: number of states used in simulation.
- `shape`: shape parameter in gamma distribution
- `scale`: scale parameter in gamma distribution

Value

a probability vector for each alphabet

Author(s)

Wuming Gong (gongx030@umn.edu)
score_simulation

Description

Compare two sets of sequences

Usage

```r
score_simulation(x, y, config)
```

Arguments

- `x`: a character matrix
- `y`: a character matrix
- `config`: a lineage_tree_config object

Value

numeric scores

simulate

Generic function for simulate

Description

Generic function for simulate

Usage

```r
simulate(config, x, ...)
```

Arguments

- `config`: a lineage_tree_config object
- `x`: a sequence object
- `...`: additional parameters
Description

Simulate a cell lineage tree adopted from https://github.com/elifesciences-publications/CRISPR_recorders_sims/blob/master/MATLAB_sims/GESTALT_30hr_1x_simulation.m

Usage

```r
## S4 method for signature 'lineage_tree_config,missing'
simulate(config, x, n_samples = 200, ...)
```

Arguments

- `config` : simulation configuration; a `lineage_tree_config` object
- `x` : missing
- `n_samples` : number of samples to simulate
- `...` : additional parameters

Value

- a `lineage_tree` object

Author(s)

- Wuming Gong (gongx030@umn.edu)

Description

Simulate a cell lineage tree based on a set of sequences

Usage

```r
## S4 method for signature 'lineage_tree_config,phyDat'
simulate(config, x, n_samples = 200L, k = 50, greedy = TRUE, ...)
```
simulate_core

Arguments

- **config**: simulation configuration; a lineage_tree_config object
- **x**: a sequence object
- **n_samples**: number of samples to simulate
- **k**: Number of trials
- **greedy**: Whether or not use a greedy search
- ... additional parameters

Value

- a lineage_tree object

Author(s)

- Wuming Gong (gongx030@umn.edu)

Description

Simulate a cell lineage tree Adopted from https://github.com/elifesciences-publications/CRISPR_recorders_sims/blob/master/MATLAB_sims/GESTALT_30hr_1x_simulation.m

Usage

\[
\text{simulate_core(config, tree, mutation_site, outcome)}
\]

Arguments

- **config**: simulation configuration; a lineage_tree_config object
- **tree**: a matrix representing the lineage tree
- **mutation_site**: a binary matrix indicating the mutation sites
- **outcome**: a character matrix

Value

- a ‘lineage_tree’ object
Description

Generate single cell barcode data set with tree shaped lineage information

Usage

```r
sim_seqdata(
    sim_n = 200,
    m = 200,
    mu_d = 0.03,
    d = 15,
    n_s = 23,
    outcome_prob = NULL,
    p_d = 0.003
)
```

Arguments

- `sim_n`: Number of cell samples to simulate.
- `m`: Number of targets.
- `mu_d`: Mutation rate. (a scalar or a vector)
- `d`: Number of cell divisions.
- `n_s`: Number of possible outcome states
- `outcome_prob`: Outcome probability vector (default is NULL)
- `p_d`: Dropout probability

Value

The result is a list containing two objects, 'seqs' and 'tree'. The 'seqs' is a `phyDat` object of `sim_n` number of simulated barcodes corresponding to each cell, and The 'tree' is a `phylo` object, a ground truth tree structure for the simulated data.

Author(s)

Il-Youp Kwak

Examples

```r
library(DCLEAR)
library(phangorn)
library(ape)
```
set.seed(1)
mu_d1 = c(30, 20, 10, 5, 5, 1, 0.01, 0.001)
mu_d1 = mu_d1/sum(mu_d1)
simn = 10 # number of cell samples
m = 10 ## number of targets
sD = sim_seqdata(sim_n = simn, m = m, mu_d = 0.03,
 d = 12, n_s = length(mu_d1), outcome_prob = mu_d1, p_d = 0.005)
RF score with hamming distance
D_hm = dist.hamming(sD$seqs)
tree_hm = NJ(D_hm)
RF.dist(tree_hm, sD$tree, normalize = TRUE)

RF score with weighted hamming
InfoW = -log(mu_d1)
InfoW[1:2] = 1
D_wh = dist_weighted_hamming(sD$seqs, InfoW, dropout=FALSE)
tree_wh = NJ(D_wh)
RF.dist(tree_wh, sD$tree, normalize = TRUE)

RF score with weighted hamming, considering dropout situation
InfoW = -log(mu_d1)
InfoW[1] = 1
InfoW[2] = 12
InfoW[3:7] = 3
D_wh2 = dist_weighted_hamming(sD$seqs, InfoW, dropout = TRUE)
tree_wh2 = NJ(D_wh2)
RF.dist(tree_wh2, sD$tree, normalize = TRUE)

substr_kmer

Generic function for substr_kmer

Description

Generic function for substr_kmer

Usage

`substr_kmer(x, ...)`

Arguments

- `x` a kmer object
- `...` additional parameters
substr_kmer, kmer_summary-method

Subsetting a kmer_summary object

Description
Summarize the short k-mer summary from the long k-mer summary

Usage
```r
## S4 method for signature 'kmer_summary'
substr_kmer(x, k = 2)
```

Arguments
- `x`: a kmer_summary object
- `k`: k-mer length (default: 2)

Value
a new kmer_summary object

Author(s)
Wuming Gong (gongx030@umn.edu)

subtract

Generic function for subtract

Description
Generic function for subtract

Usage
```r
subtract(x, y, ...)
```

Arguments
- `x`: a lineage_tree object
- `y`: a lineage_tree object
- `...`: additional parameters
Description

Subtract a subtree from a large tree

Usage

```r
## S4 method for signature 'lineage_tree,lineage_tree'
subtract(x, y, ...)
```

Arguments

- `x` a `lineage_tree` object
- `y` a `lineage_tree` object
- `...` additional parameters

Value

a `lineage_tree` object

Description

Generic function for subtree

Usage

```r
subtree(x, ...)
```

Arguments

- `x` a `lineage_tree` object
- `...` additional parameters
Description

Extract a subtree with specific leaves

Usage

```r
## S4 method for signature 'lineage_tree'
subtree(x, leaves = NULL, ...)
```

Arguments

- `x`: a lineage_tree object
- `leaves`: leaves of the extracted tree
- `...`: additional parameters

Value

a lineage_tree object

Description

Extract a subtree with specific leaves

Usage

```r
## S4 method for signature 'phylo'
subtree(x, leaves = NULL, ...)
```

Arguments

- `x`: a phylo object
- `leaves`: leaves of the extracted tree
- `...`: additional parameters

Value

a phylo object
summarize_kmer

summarize_kmer

Generic function for summarize_kmer

Usage

```
summarize_kmer(x, ...)
```

Arguments

- `x`
 a sequence object
- `...`
 additional parameters

summarize_kmer, phyDat-method

summarize_kmer

Description

Summarize kmer distributions with input sequences

Usage

```r
## S4 method for signature 'phyDat'
summarize_kmer(
  x,
  division = 16L,
  k = 2,
  reps = 20L,
  n_samples = 200L,
  n_nodes = 100L,
  n_targets
)
```

Arguments

- `x`
 input data as a phyDat object
- `division`
 number of cell division
- `k`
 k-mer (default = 2)
- `reps`
 number of simulated trees
- `n_samples`
 number of samples to simulate
analyze_kmer_core

n_nodes number of nodes to sample (including both leaves and internal nodes)
n_targets sequence length. If this argument is missing, the length of the input sequences will be used.

Value

a kmer_summary object

Author(s)

Wuming Gong (gongx030@umn.edu)

Usage

summarize_kmer_core(
 k = 2,
 reps = 20L,
 n_samples = 200L,
 n_nodes = 100L,
 config = NULL
)

Arguments

 k k-mer (default = 2)
 reps number of simulated trees
 n_samples number of samples to simulate
 n_nodes number of nodes to sample (including both leaves and internal nodes)
 config lineage tree configuration (a lineage_tree_config object)

Value

a kmer_summary object

Author(s)

Wuming Gong (gongx030@umn.edu)
Description

implementation of weighted hamming algorithm

Usage

WH(x, InfoW, dropout = FALSE)

Arguments

x Sequence object of 'phyDat' type.
InfoW Weight vector for the calculation of weighted hamming distance
dropout Different weighting strategy is taken to consider interval dropout with dropout = 'TRUE'. Default is, dropout = 'FALSE'.

Value

Calculated distance matrix of input sequences. The result is a 'dist' class object.

Author(s)

Il-Youp Kwak

Examples

set.seed(1)
library(phangorn)
mu_d1 = c(30, 20, 10, 5, 5, 1, 0.01, 0.001)
mu_d1 = mu_d1/sum(mu_d1)
simn = 10 # number of cell samples
m = 10 ## number of targets
sD = sim_seqdata(sim_n = simn, m = m, mu_d = 0.03,
d = 12, n_s = length(mu_d1), outcome_prob = mu_d1, p_d = 0.005)

RF score with hamming distance
D_h = dist.hamming(sD$seqs)
tree_h= NJ(D_h)
RF.dist(tree_h, sD$tree, normalize = TRUE)

RF score with weighted hamming
InfoW = -log(mu_d1)
InfoW[1:2] = 1

D_wh = WH(sD$seqs, InfoW)
tree_wh = NJ(D_wh)
RF.dist(tree_wh, sD$tree, normalize = TRUE)

RF score with weighted hamming, considering dropout situation
nfoW = -log(mu_d1)
Infow[1] = 1
Infow[2] = 12
Infow[3:7] = 3

D_wh2 = WH(sD$seqs, Infow, dropout=TRUE)
Tree_wh2 = NJ(D_wh2)
RF.dist(tree_wh2, sD$tree, normalize = TRUE)

WH_train

Train weights for WH

Description

Train weights for WH and output weight vector

Usage

WH_train(X, loc0 = 2, loc dropout = 1, loc missing = FALSE)

Arguments

X a list of k number of input data, X[[1]] ... X[[k]]. The ith data have sequence information as phyDat format in X[[i]][[1]], and tree information in X[[i]][[2]] as phylo format.
loc0 weight location of initial state
loc dropout weight location of dropout state
loc missing weight location of missing state, FALSE if there is no missing values

Value

a weight vector

Author(s)

Il-Youp Kwak (ikwak2@cau.ac.kr)
WH_train_fit

Train weights for WH, and output distance object

Description
Train weights for WH using the given data, and fit the distance matrix for a input sequence.

Usage

```r
WH_train_fit(x, X)
```

Arguments

- `x` input data in phyDat format
- `X` a list of k number of input data, X[[1]] ... X[[k]]. The ith data have sequence information as phyDat format in X[i][[1]], and tree information in X[i][[2]] as phylo format.

Value

a dist object

Author(s)

Il-Youp Kwak (ikwak2@cau.ac.kr)
Index

* datasets
 lineages, 17
 add_deletion, 3
 add_dropout, 4
 as_igraph, 4
 as_igraph, data.frame-method, 5
 as_igraph, phylo-method, 5
 as_lineage_tree, 6
 as_lineage_tree, phyDat, phylo, lineage_tree_config-method, 6
 as_phylo, 7
 as_phylo, igraph-method, 7
 DCLEAR, 7
 dist_kmer_replacement_inference, 8
 dist_replacement, 8
 dist_replacement, phyDat, kmer_summary, integer-method, 9
 dist_replacement, phyDat, missing, integer-method, 9
 dist_weighted_hamming, 10
 dist_weighted_hamming, phyDat, numeric-method, 10
 downsample, 12
 downsample, igraph-method, 12
 downsample, lineage_tree-method, 13
 get_distance_prior, 13
 get_leaves, 14
 get_leaves, lineage_tree-method, 14
 get_node_names, 15
 get_replacement_probability, 15
 get_sequence, 16
 get_transition_probability, 16
 lineages, 17
 positional_mutation_prob, 17
 process_sequence, 18
 process_sequence, phyDat-method, 18
 prune, 19
 prune, igraph-method, 19
 prune, lineage_tree-method, 20
 random_tree, 20
 rbind, phyDat-method, 21
 sample_mutation_outcome, 21
 sample_mutation_site, 22
 sample_mutation_site, lineage_tree_config-method, 22
 score_simulation, 23
 sim_seqdata, 25
 simulate, 23
 simulate, lineage_tree_config, missing-method, 24
 simulate, lineage_tree_config, phyDat-method, 24
 simulate, lineage_tree_config,phyDat-method, 25
 summarize_kmer_core, 25
 substr_kmer, 27
 substr_kmer, kmer_summary-method, 28
 subtract, 28
 subtract, lineage_tree, lineage_tree-method, 29
 subtree, 29
 subtree, lineage_tree-method, 30
 subtree, phylo-method, 30
 summarize_kmer, 31
 summarize_kmer, phyDat-method, 31
 summarize_kmer_core, 32
 WH, 33
 WH_train, 34
 WH_train_fit, 35

36