Package ‘DCLEAR’

February 16, 2023

Version 1.0.12
Date 2023-2-16
Title Distance Based Cell Lineage Reconstruction
Author Il-Youp Kwak [aut, cre],
Wuming Gong [aut]
Maintainer Il-Youp Kwak <ikwak2@cau.ac.kr>
License GPL-3
VignetteBuilder knitr
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 7.1.2
Depends R (>= 4.1.0), tensorflow(>= 2.2.0)

biocViews
Encoding UTF-8
Imports BiocParallel, dplyr, Matrix, matrixStats, ape, phangorn, Rcpp,
igraph, methods, purrr, stringr, tidyr, rBayesianOptimization,
rlang, BiocGenerics
Suggests knitr, rmarkdown, markdown

Description R codes for distance based cell lineage reconstruction. Our methods won both sub-challenges 2 and 3 of the Allen Institute Cell Lineage Reconstruction DREAM Challenge in 2020.

URL https://github.com/ikwak2/DCLEAR

NeedsCompilation yes
Repository CRAN
Date/Publication 2023-02-16 16:00:07 UTC
R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>add_deletion</td>
<td>3</td>
</tr>
<tr>
<td>add_dropout</td>
<td>4</td>
</tr>
<tr>
<td>as_igraph</td>
<td>4</td>
</tr>
<tr>
<td>as_igraph.data.frame-method</td>
<td>5</td>
</tr>
<tr>
<td>as_igraph.phylo-method</td>
<td>5</td>
</tr>
<tr>
<td>as_lineage_tree</td>
<td>6</td>
</tr>
<tr>
<td>as_lineage_tree.phyDat.phylo.lineage_tree_config-method</td>
<td>6</td>
</tr>
<tr>
<td>as_phylo</td>
<td>7</td>
</tr>
<tr>
<td>as_phylo.igraph-method</td>
<td>7</td>
</tr>
<tr>
<td>DCLEAR</td>
<td>7</td>
</tr>
<tr>
<td>dist_kmer_replacement_inference</td>
<td>8</td>
</tr>
<tr>
<td>dist_replacement</td>
<td>8</td>
</tr>
<tr>
<td>dist_replacement.phyDat.kmer_summary.integer-method</td>
<td>9</td>
</tr>
<tr>
<td>dist_replacement.phyDat.missing.integer-method</td>
<td>9</td>
</tr>
<tr>
<td>dist_weighted_hamming</td>
<td>10</td>
</tr>
<tr>
<td>dist_weighted_hamming.phyDat.numeric-method</td>
<td>10</td>
</tr>
<tr>
<td>downsample</td>
<td>12</td>
</tr>
<tr>
<td>downsample.igraph-method</td>
<td>12</td>
</tr>
<tr>
<td>downsample.lineage_tree-method</td>
<td>13</td>
</tr>
<tr>
<td>get_distance_prior</td>
<td>13</td>
</tr>
<tr>
<td>get_leaves</td>
<td>14</td>
</tr>
<tr>
<td>get_leaves.lineage_tree-method</td>
<td>14</td>
</tr>
<tr>
<td>get_node_names</td>
<td>15</td>
</tr>
<tr>
<td>get_replacement_probability</td>
<td>15</td>
</tr>
<tr>
<td>get_sequence</td>
<td>16</td>
</tr>
<tr>
<td>get_transition_probability</td>
<td>16</td>
</tr>
<tr>
<td>lineages</td>
<td>17</td>
</tr>
<tr>
<td>positional_mutation_prob</td>
<td>17</td>
</tr>
<tr>
<td>process_sequence</td>
<td>18</td>
</tr>
<tr>
<td>process_sequence.phyDat-method</td>
<td>18</td>
</tr>
<tr>
<td>prune</td>
<td>19</td>
</tr>
<tr>
<td>prune.igraph-method</td>
<td>19</td>
</tr>
<tr>
<td>prune.lineage_tree-method</td>
<td>20</td>
</tr>
<tr>
<td>random_tree</td>
<td>20</td>
</tr>
<tr>
<td>rbind.phyDat-method</td>
<td>21</td>
</tr>
<tr>
<td>sample_mutation_outcome</td>
<td>21</td>
</tr>
<tr>
<td>sample_mutation_site</td>
<td>22</td>
</tr>
<tr>
<td>sample_outcome_prob</td>
<td>22</td>
</tr>
<tr>
<td>score_simulation</td>
<td>23</td>
</tr>
<tr>
<td>simulate</td>
<td>23</td>
</tr>
<tr>
<td>simulate.lineage_tree_config.missing-method</td>
<td>24</td>
</tr>
<tr>
<td>simulate.lineage_tree_config.phyDat-method</td>
<td>24</td>
</tr>
<tr>
<td>simulate_core</td>
<td>25</td>
</tr>
<tr>
<td>sim_seqdata</td>
<td>26</td>
</tr>
<tr>
<td>substr_kmer</td>
<td>27</td>
</tr>
<tr>
<td>substr_kmer.kmer_summary-method</td>
<td>28</td>
</tr>
</tbody>
</table>
Description

Add deletion

Usage

add_deletion(x, tree, mutation_site, config)

Arguments

x a character matrix
tree a matrix representing the lineage tree
mutation_site a binary matrix for mutation site
config a lineage_tree_config object

Value

a character matrix with deletions
add_dropout

Description

Add dropout events

Usage

```r
add_dropout(x, config)
```

Arguments

- `x` a character matrix
- `config` a lineage_tree_config object

Value

a character matrix with dropout events

as_igraph

Description

Generic function for as_igraph

Usage

```r
as_igraph(x, ...)
```

Arguments

- `x` a phylo object
- `...` additional parameters
as_igraph, data.frame-method

Description
Convert an phylo object to an igraph object, while keeping the weight (in contrast to igraph::as.igraph)

Usage
S4 method for signature 'data.frame'
as_igraph(x, config)

Arguments
x
a phylo object
config
a 'lineage_tree_config' object

Value
an igraph object

as_igraph, phylo-method

Description
Convert an phylo object to an igraph object, while keeping the weight (in contrast to igraph::as.igraph)

Usage
S4 method for signature 'phylo'
as_igraph(x)

Arguments
x
a phylo object

Value
an igraph object
as_lineage_tree, phyDat, phylo, lineage_tree_config-method

as_lineage_tree

Description

Generic function for as_lineage_tree

Usage

as_lineage_tree(x, y, config, ...)

Arguments

- **x**
 - a phyDat object
- **y**
 - a phylo object
- **config**
 - a lineage_tree_config object
- **...**
 - additional parameters

Value

a lineage_tree object
as_phylo

Description

Generic function for as_phylo

Usage

```r
as_phylo(x, ...)
```

Arguments

- `x`: a graph object
- `...`: additional parameters

DCLEAR

Description

DCLEAR: A package for DCLEAR: Distance based Cell LinEAgE Re-construction

Description

Distance based methods for inferring lineage trees from single cell data
dist_kmer Replacement Inference

Core function of computing kmer replacement distance

Description
Compute the sequence distance matrix using inferred kmer replacement matrix

Usage
```
dist_kmer Replacement Inference(x, kmer_summary, k = 2)
```

Arguments
- `x`: input data in phyDat format
- `kmer_summary`: a kmer_summary object
- `k`: k-mers (default k=2)

Value
a dist object

Author(s)
Wuming Gong (gongx030@umn.edu)

dist Replacement

Generic function for dist Replacement

Description
Generic function for dist Replacement

Usage
```
dist Replacement(x, kmer_summary, k, ...)
```

Arguments
- `x`: a sequence object
- `kmer_summary`: a kmer_summary object
- `k`: k-mer length
- `...`: additional parameters
dist_replacement,phyDat,kmer_summary,integer-method

Compute the kmer replacement distance

Description

Compute the kmer replacement distance between sequences

Usage

S4 method for signature 'phyDat,kmer_summary,integer'
dist_replacement(x, kmer_summary, k = 2, ...)

Arguments

- `x` input data in phyDat format
- `kmer_summary` a kmer_summary object
- `k` k-mer length
- `...` other arguments passed to substr_kmer

Value

- a dist object

Author(s)

Wuming Gong (gongx030@umn.edu)
Arguments

- **x**: input data in phyDat format
- **kmer_summary**: a kmer_summary object
- **k**: k-mer length
- **...**: other arguments passed to substr_kmer

Value

- a dist object

Author(s)

Wuming Gong (gongx030@umn.edu)

dist_weighted_hamming
Generic function for dist_weighted_hamming

Description

Generic function for dist_weighted_hamming

Usage

```r
dist_weighted_hamming(x, wVec, ...)
```

Arguments

- **x**: a sequence object
- **wVec**: weight vector
- **...**: additional parameters

dist_weighted_hamming,phyDat,numeric-method

dist_weighted_hamming

Description

implementation of weighted hamming algorithm

Usage

```r
## S4 method for signature 'phyDat,numeric'
dist_weighted_hamming(x, wVec, dropout = FALSE)
```
Arguments

<table>
<thead>
<tr>
<th>x</th>
<th>Sequence object of 'phyDat' type.</th>
</tr>
</thead>
<tbody>
<tr>
<td>wVec</td>
<td>Weight vector for the calculation of weighted hamming distance</td>
</tr>
<tr>
<td>dropout</td>
<td>Different weighting strategy is taken to consider interval dropout with dropout = 'TRUE'. Default is, dropout = 'FALSE'.</td>
</tr>
</tbody>
</table>

Value

Calculated distance matrix of input sequences. The result is a 'dist' class object.

Author(s)

Il-Youp Kwak

Examples

```r
library(DCLEAR)
library(phangorn)
library(ape)

set.seed(1)
mu_d1 = c(30, 20, 10, 5, 5, 1, 0.01, 0.001)
mu_d1 = mu_d1/sum(mu_d1)
simn = 10  # number of cell samples
m = 10  # number of targets
sD = sim_seqdata(sim_n = simn, m = m, mu_d = 0.03, d = 12, n_s = length(mu_d1), outcome_prob = mu_d1, p_d = 0.005)
## RF score with hamming distance
D_hm = dist.hamming(sD$seqs)
tree_hm = NJ(D_hm)
RF.dist(tree_hm, sD$tree, normalize = TRUE)
## RF score with weighted hamming
InfoW = -log(mu_d1)
InfoW[1:2] = 1
D_wh = dist_weighted_hamming(sD$seqs, InfoW, dropout = FALSE)
tree_wh = NJ(D_wh)
RF.dist(tree_wh, sD$tree, normalize = TRUE)
## RF score with weighted hamming, considering dropout situation
InfoW = -log(mu_d1)
InfoW[1] = 1
InfoW[2] = 12
InfoW[3:7] = 3
D_wh2 = dist_weighted_hamming(sD$seqs, InfoW, dropout = TRUE)
tree_wh2 = NJ(D_wh2)
RF.dist(tree_wh2, sD$tree, normalize = TRUE)
```
downsample

Generic function for downsample

Description

Generic function for downsample

Usage

```r
downsample(x, ...)
```

Arguments

- `x`: a data object
- `...`: additional parameters

downsample.igraph-method

downsample

Description

Sample a lineage tree

Usage

```r
## S4 method for signature 'igraph'
downsample(x, n = 10L, ...)
```

Arguments

- `x`: a igraph object
- `n`: number of leaves (tips) in the down-sampled tree
- `...`: additional parameters

Value

a phylo object
downsample, lineage_tree-method

Description
Sample a lineage tree

Usage
```r
## S4 method for signature 'lineage_tree'
downsample(x, n = 10L, ...)
```

Arguments
- `x`: a lineage_tree object
- `n`: number of leaves (tips) in the down-sampled tree
- `...`: additional parameters

Value
a lineage_tree object

get_distance_prior

Description
prior distribution of distance

Usage
```r
get_distance_prior(x)
```

Arguments
- `x`: a kmer_summary object

Value
a probabilistic vector of the distribution of nodal distances

Author(s)
Wuming Gong (gongx030@umn.edu)
get_leaves

Generic function for get_leaves

Description

Get the leaf sequences

Usage

S4 method for signature 'lineage_tree'
get_leaves(x, ...)

Arguments

x a lineage_tree object
...
additional parameters

Value

a phyDat object
get_node_names

Description

Convenient function for get node names

Usage

```r
get_node_names(x)
```

Arguments

- `x` node id

Value

node names

Author(s)

Wuming Gong (gongx030@umn.edu)

get_replacement_probability

Description

Compute \(p(A,B|d) \), the conditional probability of seeing a replacement of from kmer A to B or vice versa

Usage

```r
get_replacement_probability(x)
```

Arguments

- `x` a kmer_summary object

Value

an 3D probabilistic array (kmers by kmers by distances)

Author(s)

Wuming Gong (gongx030@umn.edu)
get_sequence

Description
Get sequence.

Usage
get_sequence(x, tree, outcome, config)

Arguments
- x: a character matrix
- tree: a matrix representing the lineage tree
- outcome: a character matrix
- config: a lineage_tree_config object

Value
a character matrix

get_transition_probability

Description
Compute \(p(A,X|B,Y,d) \), the conditional probability of seeing a replacement from \(A \) to \(B \) given the previous replacement \(B \) from \(Y \) at nodal distance \(d \).

Usage
get_transition_probability(x)

Arguments
- x: a kmer_summary object

Value
an 3D probabilistic array (kmers by kmers by distances)

Author(s)
Wuming Gong (gongx030@umn.edu)
lineages

Description
Lineage data

Usage
data(lineages)

Format
An object of class list of length 100.

Examples
data(lineages)

positional_mutation_prob

Description
Convenient function for get node names

Usage
positional_mutation_prob(x, config)

Arguments
x a phyDat object
config a lineage_tree_config object

Value
a positional mutation probability matrix
process_sequence Generic function for process_sequence

Description

Generic function for process_sequence

Usage

process_sequence(x, ...)

Arguments

x a sequence object
... additional parameters

process_sequence,phyDat-method
Process sequences

Description

Process sequences

Usage

S4 method for signature 'phyDat'
process_sequence(
 x,
 division = 16L,
 dropout_character = "*",
 default_character = "0",
 deletion_character = "-"
)

Arguments

x input data in phyDat format
division cell division
dropout_character Dropout character (default: '*')
default_character Default character (default: '0')
deletion_character Deletion character (default: '-')
prune

Value

a 'lineage_tree_config' object

Author(s)

Wuming Gong (gongx030@umn.edu)

prune

Generic function for prune

Description

Generic function for prune

Usage

prune(x, ...)

Arguments

x a lineage_tree object
...

Value

an igraph object

Description

Trim a full lineage tree into phylogenetic tree

Usage

S4 method for signature 'igraph'
prune(x, weighted = TRUE, ...)

Arguments

x an igraph object
weighted whether or not keep the edge weight (default: TRUE)
...

Value

an igraph object
Description
Trim a full lineage tree into phylogenetic tree

Usage

```r
## S4 method for signature 'lineage_tree'
prune(x, ...)
```

Arguments

- `x` a lineage_tree object
- `...` additional parameters passed to `as_phylo`

Value

a lineage_tree object

random_tree

Description
Simulate a random lineage tree

Usage

```r
random_tree(n_samples, division = 16L)
```

Arguments

- `n_samples` number of samples to simulate
- `division` number of cell division

Value

a data frame

Author(s)

Wuming Gong (gongx030@umn.edu)
Description

Concatenate multiple phyDat objects

Usage

```r
## S4 method for signature 'phyDat'
rbind(..., deparse.level = 1)
```

Arguments

- `...`: a list of phyDat objects
- `deparse.level`: see definition in generic rbind

Value

A phyDat object

sample_mutation_outcome

Description

Sample mutation outcome

Usage

```r
sample_mutation_outcome(x, mp = NULL, config)
```

Arguments

- `x`: an igraph object
- `mp`: a mutation site matrix
- `config`: a lineage_tree_config object

Value

A outcome matrix
sample_mutation_site

Description
Sample mutation site

Usage
```r
sample_mutation_site(tree, config)
```

Arguments
- `tree`: a data frame
- `config`: a lineage_tree_config object

Value
a mutation site matrix

sample_outcome_prob

Description
Sampling outcome probability based on a gamma distribution

Usage
```r
sample_outcome_prob(config, num_states = 20L, shape = 0.1, scale = 2)
```

Arguments
- `config`: a lineage_tree_config object
- `num_states`: number of states used in simulation.
- `shape`: shape parameter in gamma distribution
- `scale`: scale parameter in gamma distribution

Value
a probability vector for each alphabet

Author(s)
Wuming Gong (gongx030@umn.edu)
score_simulation

Description

Compare two sets of sequences

Usage

```
score_simulation(x, y, config)
```

Arguments

- `x`: a character matrix
- `y`: a character matrix
- `config`: a lineage_tree_config object

Value

numeric scores

simulate

Generic function for simulate

Description

Generic function for simulate

Usage

```
simulate(config, x, ...)
```

Arguments

- `config`: a lineage_tree_config object
- `x`: a sequence object
- `...`: additional parameters
Description

Simulate a cell lineage tree adopted from https://github.com/elifesciences-publications/CRISPR_recorders_sims/blob/master/MATLAB_sims/GESTALT_30hr_1x_simulation.m

Usage

```r
## S4 method for signature 'lineage_tree_config,missing'
simulate(config, x, n_samples = 200, ...)
```

Arguments

- `config`: simulation configuration; a lineage_tree_config object
- `x`: missing
- `n_samples`: number of samples to simulate
- `...`: additional parameters

Value

- a lineage_tree object

Author(s)

Wuming Gong (gongx030@umn.edu)

Description

Simulate a cell lineage tree based on a set of sequences

Usage

```r
## S4 method for signature 'lineage_tree_config,phyDat'
simulate(config, x, n_samples = 200L, k = 50, greedy = TRUE, ...)
```
simulate_core

Arguments

 config simulation configuration; a lineage_tree_config object
 x a sequence object
 n_samples number of samples to simulate
 k Number of trials
 greedy Whether ot not use a greedy search
 ... additional parameters

Value

 a lineage_tree object

Author(s)

 Wuming Gong (gongx030@umn.edu)

Description

 Simulate a cell lineage tree Adopted from https://github.com/elifesciences-publications/CRISPR_recorders_sims/blob/master/MATLAB_sims/GESTALT_30hr_1x_simulation.m

Usage

 simulate_core(config, tree, mutation_site, outcome)

Arguments

 config simulation configuration; a lineage_tree_config object
 tree a matrix representing the lineage tree
 mutation_site a binary matrix indicating the mutation sites
 outcome a character matrix

Value

 a ‘lineage_tree’ object
sim_seqdata

Description
Generate single cell barcode data set with tree shaped lineage information.

Usage
```
sim_seqdata(
    sim_n = 200,
    m = 200,
    mu_d = 0.03,
    d = 15,
    n_s = 23,
    outcome_prob = NULL,
    p_d = 0.003
)
```

Arguments
- `sim_n`: Number of cell samples to simulate.
- `m`: Number of targets.
- `mu_d`: Mutation rate. (a scalar or a vector)
- `d`: Number of cell divisions.
- `n_s`: Number of possible outcome states
- `outcome_prob`: Outcome probability vector (default is NULL)
- `p_d`: Dropout probability

Value
The result is a list containing two objects, 'seqs' and 'tree'. The 'seqs' is 'phyDat' object of 'sim_n' number of simulated barcodes corresponding to each cell, and The 'tree' is a 'phylo' object, a ground truth tree structure for the simulated data.

Author(s)
Il-Youp Kwak

Examples
```r
library(DCLEAR)
library(phangorn)
library(ape)
```
```r
set.seed(1)
mu_d1 = c(30, 20, 10, 5, 5, 1, 0.01, 0.001)
mu_d1 = mu_d1/sum(mu_d1)
simn = 10  # number of cell samples
m = 10  ## number of targets
sD = sim_seqdata(sim_n = simn, m = m, mu_d = 0.03, 
d = 12, n_s = length(mu_d1), outcome_prob = mu_d1, p_d = 0.005 )
## RF score with hamming distance
D_hm = dist.hamming(sD$seqs)
tree_hm = NJ(D_hm)
RF.dist(tree_hm, sD$tree, normalize = TRUE)

## RF score with weighted hamming
InfoW = -log(mu_d1)
InfoW[1:2] = 1
D_wh = dist_weighted_hamming(sD$seqs, InfoW, dropout=FALSE)
tree_wh = NJ(D_wh)
RF.dist(tree_wh, sD$tree, normalize = TRUE)

## RF score with weighted hamming, considering dropout situation
InfoW = -log(mu_d1)
InfoW[1] = 1
InfoW[2] = 12
InfoW[3:7] = 3
D_wh2 = dist_weighted_hamming(sD$seqs, InfoW, dropout = TRUE)
tree_wh2 = NJ(D_wh2)
RF.dist(tree_wh2, sD$tree, normalize = TRUE)
```

substr_kmer

Generic function for substr_kmer

Description

Generic function for substr_kmer

Usage

```r
substr_kmer(x, ...)
```

Arguments

- `x`: a kmer object
- `...`: additional parameters
substr_kmer, `kmer_summary-method**

Subsetting a kmer_summary object

Description

Summarize the short k-mer summary from the long k-mer summary

Usage

```r
## S4 method for signature 'kmer_summary'
substr_kmer(x, k = 2)
```

Arguments

- `x`: a `kmer_summary` object
- `k`: k-mer length (default: 2)

Value

A new `kmer_summary` object

Author(s)

Wuming Gong (gongx030@umn.edu)

subtract

Generic function for subtract

Description

Generic function for subtract

Usage

```r
subtract(x, y, ...)
```

Arguments

- `x`: a `lineage_tree` object
- `y`: a `lineage_tree` object
- `...`: additional parameters
Description

Subtract a subtree from a large tree

Usage

```r
## S4 method for signature 'lineage_tree,lineage_tree'
subtract(x, y, ...)
```

Arguments

- `x`: a lineage_tree object
- `y`: a lineage_tree object
- `...`: additional parameters

Value

a lineage_tree object

subtree

Generic function for subtree

Description

Generic function for subtree

Usage

```r
subtree(x, ...)
```

Arguments

- `x`: a lineage_tree object
- `...`: additional parameters
Description

Extract a subtree with specific leaves

Usage

```r
## S4 method for signature 'lineage_tree'
subtree(x, leaves = NULL, ...)
```

Arguments

- `x`: a lineage_tree object
- `leaves`: leaves of the extracted tree
- `...`: additional parameters

Value

a lineage_tree object

Description

Extract a subtree with specific leaves

Usage

```r
## S4 method for signature 'phylo'
subtree(x, leaves = NULL, ...)
```

Arguments

- `x`: a phylo object
- `leaves`: leaves of the extracted tree
- `...`: additional parameters

Value

a phylo object
summarize_kmer

Description

Generic function for summarize_kmer

Usage

```r
summarize_kmer(x, ...)
```

Arguments

- `x`: a sequence object
- `...`: additional parameters

summarize_kmer,phyDat-method

Description

Summarize kmer distributions with input sequences

Usage

```r
## S4 method for signature 'phyDat'
summarize_kmer(
  x,  
  division = 16L,  
  k = 2,  
  reps = 20L,  
  n_samples = 200L,  
  n_nodes = 100L,  
  n_targets
)
```

Arguments

- `x`: input data as a phyDat object
- `division`: number of cell division
- `k`: k-mer (default = 2)
- `reps`: number of simulated trees
- `n_samples`: number of samples to simulate
n_nodes number of nodes to sample (including both leaves and internal nodes)

n_targets sequence length. If this argument is missing, the length of the input sequences will be used.

Value

a kmer_summary object

Author(s)

Wuming Gong (gongx030@umn.edu)
Description

implementation of weighted hamming algorithm

Usage

\texttt{WH(x, InfoW, dropout = FALSE)}

Arguments

- \texttt{x} \hspace{1cm} Sequence object of 'phyDat' type.
- \texttt{InfoW} \hspace{1cm} Weight vector for the calculation of weighted hamming distance
- \texttt{dropout} \hspace{1cm} Different weighting strategy is taken to consider interval dropout with dropout = 'TRUE'. Default is, dropout = 'FALSE'.

Value

Calculated distance matrix of input sequences. The result is a 'dist' class object.

Author(s)

Il-Youp Kwak

Examples

```r
set.seed(1)
library(phangorn)
mu_d1 = c(30, 20, 10, 5, 5, 1, 0.01, 0.001)
mu_d1 = mu_d1/sum(mu_d1)
simn = 10 # number of cell samples
m = 10 ## number of targets
sD = sim_seqdata(sim_n = simn, m = m, mu_d = 0.03, 
\hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} d = 12, n_s = length(mu_d1), outcome_prob = mu_d1, p_d = 0.005 )

## RF score with hamming distance
D_h = dist.hamming(sD$seqs)
tree_h= NJ(D_h)
RF.dist(tree_h, sD$tree, normalize = TRUE)

## RF score with weighted hamming
InfoW = -log(mu_d1)
InfoW[1:2] = 1

D_wh = WH(sD$seqs, InfoW)
```
```r
# tree_wh = NJ(D_wh)
RF.dist(tree_wh, sD$tree, normalize = TRUE)

## RF score with weighted hamming, considering dropout situation

nfoW = -log(mu_d1)
InfoW[1] = 1
InfoW[2] = 12
InfoW[3:7] = 3

D_wh2 = WH(sD$seqs, InfoW, dropout=TRUE)
tree_wh2 = NJ(D_wh2)
RF.dist(tree_wh2, sD$tree, normalize = TRUE)
```

WH_train
Train weights for WH

Description

Train weights for WH and output weight vector

Usage

```r
WH_train(X, loc0 = 2, locDropout = 1, locMissing = FALSE)
```

Arguments

- **X**: a list of k number of input data, X[[1]] ... X[[k]]. The ith data have sequence information as phyDat format in X[[i]][[1]], and tree information in X[[i]][[2]] as phylo format.
- **loc0**: weight location of initial state
- **locDropout**: weight location of dropout state
- **locMissing**: weight location of missing state, FALSE if there is no missing values

Value

a weight vector

Author(s)

Il-Youp Kwak (ikwak2@cau.ac.kr)
WH_train_fit

Train weights for WH, and output distance object

Description

Train weights for WH using the given data, and fit the distance matrix for an input sequence.

Usage

WH_train_fit(x, X)

Arguments

x
input data in phyDat format

X
a list of k number of input data, X[[1]] ... X[[k]]. The ith data have sequence information as phyDat format in X[[i]][[1]], and tree information in X[[i]][[2]] as phylo format.

Value

a dist object

Author(s)

Il-Youp Kwak (ikwak2@cau.ac.kr)
Index

* datasets
 lineages, 17

add_deletion, 3
add_dropout, 4
as_igraph, 4
as_igraph,data.frame-method, 5
as_igraph,phylo-method, 5
as_lineage_tree, 6
as_lineage_tree,phyDat,phylo,lineage_tree_config-method, 6
as_phylo, 7
as_phylo,igraph-method, 7
DCLEAR, 7
dist_kmer_replacement_inference, 8
dist_replacement, 8
dist_replacement,phyDat,kmer_summary,integer-method, 9
dist_replacement,phyDat,missing,integer-method, 9
dist_weighted_hamming, 10
dist_weighted_hamming,phyDat,numeric-method, 10
downsample, 12
downsample,igraph-method, 12
downsample,lineage_tree-method, 13
get_distance_prior, 13
get_leaves, 14
get_leaves,lineage_tree-method, 14
get_node_names, 15
get_replacement_probability, 15
get_sequence, 16
get_transition_probability, 16
lineages, 17
positional_mutation_prob, 17
process_sequence, 18
process_sequence,phyDat-method, 18
prune, 19
prune,igraph-method, 19
prune,lineage_tree-method, 20
random_tree, 20
rbind,phyDat-method, 21
sample_mutation_outcome, 21
sample_mutation_site, 22
configmethod, 22
score_simulation, 23
sim_seqdata, 26
simulate, 23
simulate,lineage_tree_config,missing-method, 24
simulate,lineage_tree_config,phyDat-method, 24
summarize_kmer, 25
summarize_kmer,phyDat-method, 28
substr_kmer, 27
substr_kmer,kmer_summary-method, 28
subtract, 28
subtract,lineage_tree,lineage_tree-method, 29
subtree, 29
subtree,lineage_tree-method, 30
subtree,phylo-method, 30
summarize_kmer, 31
summarize_kmer,phyDat-method, 31
summarize_kmer_core, 32

WH, 33
WH_train, 34
WH_train_fit, 35

36