Package ‘DEM’

October 12, 2022

Title The Distributed EM Algorithms in Multivariate Gaussian Mixture Models
Version 0.0.0.2
Description The distributed expectation maximization algorithms are used to solve parameters of multivariate Gaussian mixture models. The philosophy of the package is described in Guo, G. (2022) <doi:10.1080/02664763.2022.2053949>.
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.1.2
Imports mvtnorm
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
NeedsCompilation no
Author Qian Wang [aut, cre], Guangbao Guo [aut], Guoqi Qian [aut]
Maintainer Qian Wang <waqian0715@163.com>
Depends R (>= 3.5.0)
Repository CRAN
Date/Publication 2022-05-14 07:30:06 UTC

R topics documented:

DEM1 ... 2
DEM2 ... 3
DMOEM ... 4
DOEM1 ... 5
DOEM2 ... 7
EM ... 8
HTRU ... 9
magic ... 10
Skin ... 11
Description

The DEM1 algorithm is a divide and conquer algorithm, which is used to solve the parameter estimation of multivariate Gaussian mixture model.

Usage

DEM1(y, M, seed, alpha0, mu0, sigma0, i, epsilon)

Arguments

- **y** is a data matrix
- **M** is the number of subsets
- **seed** is the recommended way to specify seeds
- **alpha0** is the initial value of the mixing weight
- **mu0** is the initial value of the mean
- **sigma0** is the initial value of the covariance
- **i** is the number of iterations
- **epsilon** is the threshold value

Value

DEM1alpha, DEM1mu, DEM1sigma, DEM1time

Examples

```r
library(mvtnorm)
alpha1 = rep(1/4, 4)
mul1 = matrix(0, nrow = 4, ncol = 4)
for (k in 1:4){
  mul1[4,] = c(runif(4, (k-1)*3, k*3))
}
sigma1 = list()
for (k in 1:4){
  sigma1[[k]] = diag(4) * 0.1
}
y = matrix(0, nrow = 200, ncol = 4)
for (k in 1:4){
y[(((k-1)*200/4+1):(k*200/4)), ] = rmvnorm(200/4, mul1[, k], sigma1[[k]])
}
M = 5
```
DEM2

The DEM2 algorithm is a one-step average algorithm in distributed manner, which is used to solve the parameter estimation of multivariate Gaussian mixture model.

Description

The DEM2 algorithm is a one-step average algorithm in distributed manner, which is used to solve the parameter estimation of multivariate Gaussian mixture model.

Usage

DEM2(y, M, seed, alpha0, mu0, sigma0, i, epsilon)

Arguments

y is a data matrix
M is the number of subsets
seed is the recommended way to specify seeds
alpha0 is the initial value of the mixing weight
mu0 is the initial value of the mean
sigma0 is the initial value of the covariance
i is the number of iterations
epsilon is the threshold value

Value

DEM2alpha, DEM2mu, DEM2sigma, DEM2time

Examples

library(mvtnorm)
alpah1= c(rep(1/4,4))
mu1=matrix(0,nrow=4,ncol=4)
for (k in 1:4){
 mu1[4,]=c(runif(4,(k-1)*3,k*3))
}
sigma1=list()
for (k in 1:4){
 sigma1
DMOEM

The DMOEM is an overrelaxation algorithm in distributed manner, which is used to solve the parameter estimation of multivariate Gaussian mixture model.

Description

The DMOEM is an overrelaxation algorithm in distributed manner, which is used to solve the parameter estimation of multivariate Gaussian mixture model.

Usage

```r
DMOEM(y, M, seed, alpha0, mu0, sigma0, i, epsilon)
```

Arguments

- `y` is a data matrix
- `M` is the number of subsets
- `seed` is the recommended way to specify seeds
- `alpha0` is the initial value of the mixing weight under the EM algorithm
mu0 is the initial value of the mean under the EM algorithm
sigma0 is the initial value of the covariance under the EM algorithm
MOEAlpha0 is the initial value of the mixing weight under the MOEM algorithm
MOEmu0 is the initial value of the mean under the MOEM algorithm
MOESigma0 is the initial value of the covariance under the MOEM algorithm
omega is the overrelaxation factor
i is the number of iterations
epsilon is the threshold value

Value
DMOEMalpha, DMOEMmu, DMOESigma, DMOEtime

Examples

library(mvtnorm)
alpha1 = c(rep(1/4, 4))
mu1 = matrix(0, nrow=4, ncol=4)
for (k in 1:4){
 mu1[4,] = c(runif(4, (k-1)*3, k*3))
}
sigma1 = list()
for (k in 1:4){
 sigma1[[k]] = diag(4)*0.1
}
y = matrix(0, nrow=200, ncol=4)
for (k in 1:4){
 y[c(((k-1)*200/4+1):(k*200/4)),] = rmvnorm(200/4, mu1[,], sigma1[[k]])
}
M = 5
seed = 123
alpha0 = alpha1
mu0 = mu1
sigma0 = sigma1
MOEAlpha0 = alpha1
MOEmu0 = mu1
MOESigma0 = sigma1
omega = 0.15
i = 10
epsilon = 0.005
DMOEM(y, M, seed, alpha0, mu0, sigma0, MOEAlpha0, MOEmu0, MOESigma0, omega, i, epsilon)

The DOEM1 algorithm is an online EM algorithm in distributed manner, which is used to solve the parameter estimation of multivariate Gaussian mixture model.
Description

The DOEM1 algorithm is an online EM algorithm in distributed manner, which is used to solve the parameter estimation of multivariate Gaussian mixture model.

Usage

DOEM1(y, M, seed, alpha0, mu0, sigma0, i, epsilon, a, b, c)

Arguments

- y is a data matrix
- M is the number of subsets
- seed is the recommended way to specify seeds
- alpha0 is the initial value of the mixing weight
- mu0 is the initial value of the mean
- sigma0 is the initial value of the covariance
- i is the number of iterations
- epsilon is the threshold value
- a represents the power of the reciprocal of the step size
- b indicates that the M-step is not implemented for the first b data points
- c represents online iteration starting at 1/c of the total sample size

Value

DOEM1alpha, DOEM1mu, DOEM1sigma, DOEM1time

Examples

library(mvtnorm)
alpaha1 = c(rep(1/4, 4))
mu1 = matrix(0, nrow=4, ncol=4)
for (k in 1:4){
 mu1[4,] = c(runif(4, (k-1)*3, k*3))
}
sigma1 = list()
for (k in 1:4){
 sigma1[[k]] = diag(4)*0.1
}
y = matrix(0, nrow=200, ncol=4)
for (k in 1:4){
y[c(((k-1)*200/4+1):(k*200/4))],] = rmvnorm(200/4, mu1[k,], sigma1[[k]])
}
M = 2
seed = 123
alpha0 = alpha1
mu0 = mu1
sigma0 = sigma1
DOEM2

The DOEM2 algorithm is an online EM algorithm in distributed manner, which is used to solve the parameter estimation of multivariate Gaussian mixture model.

Description

The DOEM2 algorithm is an online EM algorithm in distributed manner, which is used to solve the parameter estimation of multivariate Gaussian mixture model.

Usage

DOEM2(y, M, seed, alpha0, mu0, sigma0, a, b)

Arguments

- **y** is a data matrix
- **M** is the number of subsets
- **seed** is the recommended way to specify seeds
- **alpha0** is the initial value of the mixing weight
- **mu0** is the initial value of the mean
- **sigma0** is the initial value of the covariance
- **a** represents the power of the reciprocal of the step size
- **b** indicates that the M-step is not implemented for the first b data points

Value

DOEM2alpha, DOEM2mu, DOEM2sigma, DOEM2time

Examples

library(mvtnorm)
alpha1= c(rep(1/4,4))
mul1=matrix(0,nrow=4,ncol=4)
for (k in 1:4){
mul[4,]=c(runif(4,(k-1)*3,k*3))
}
sigma1=list()
for (k in 1:4){
sigma1[[k]]= diag(4)*0.1
The EM algorithm is used to solve the parameter estimation of multivariate Gaussian mixture model.

Description

The EM algorithm is used to solve the parameter estimation of multivariate Gaussian mixture model.

Usage

```r
EM(y, alpha0, mu0, sigma0, i, epsilon)
```

Arguments

- `y` is a data matrix
- `alpha0` is the initial value of the mixing weight
- `mu0` is the initial value of the mean
- `sigma0` is the initial value of the covariance
- `i` is the number of iterations
- `epsilon` is the threshold value

Value

- `EMalpha`, `EMmu`, `EMsigma`, `EMtime`

Examples

```r
c library(mvtnorm) 
c alpha1 = c(rep(1/4,4) 
c mu1 = matrix(0, nrow = 4, ncol = 4) 
c for (k in 1:4) { 
c mu1[4,k] = c(runif(4, (k-1)*3, k*3) 
c } 
c sigma1 = list()`
for (k in 1:4){
    sigma1[[k]] = diag(4)*0.1
}
y= matrix(0,nrow=200,ncol=4)
for(k in 1:4){
y[c(((k-1)*200/4+1):(k*200/4))],] = rmvnorm(200/4,mu1[k,],sigma1[[k]])
}
alpha0= alpha1
mu0=mu1
sigma0=sigma1
i=10
epsilon=0.005
EM(y,alpha0,mu0,sigma0,i,epsilon)

---

### Description

The HTRU2 data

### Usage

data("HTRU")

### Format

A data frame with 17898 observations on the following 9 variables.

- m1 a numeric vector
- m2 a numeric vector
- m3 a numeric vector
- m4 a numeric vector
- m5 a numeric vector
- m6 a numeric vector
- m7 a numeric vector
- m8 a numeric vector
- c a numeric vector

### Details

The HTRU2 data is mainly composed of several pulsar candidate samples, which contains 17898 data points, including the 9 variables.

### Source

The HTRU2 data set is from the UCI database.
**References**


**Examples**

```r
data(HTRU)
maybe str(HTRU) ; plot(HTRU) ...
```

---

### magic

**Magic**

**Description**

The magic data

**Usage**

```r
data("magic")
```

**Format**

A data frame with 19020 observations on the following 11 variables.

- `fLength` a numeric vector
- `fWidth` a numeric vector
- `fSize` a numeric vector
- `fConc` a numeric vector
- `fConc1` a numeric vector
- `fAsym` a numeric vector
- `fM3Long` a numeric vector
- `fM3Trans` a numeric vector
- `fAlpha` a numeric vector
- `fDist` a numeric vector
- `class` a character vector

**Details**

The magic data set is given by MAGIC project, and described by 11 features.

**Source**

The magic data set is from the UCI database.
References


Examples

data(magic)
## maybe str(magic) ; plot(magic) ...

Skin

Skin segmentation

Description

The skin segmentation data

Usage

data("Skin")

Format

A data frame with 245057 observations on the following 4 variables.

- B a numeric vector
- G a numeric vector
- R a numeric vector
- C a numeric vector

Details

The skin segmentation data is related to skin texture in face image. The total number of samples is 245057, and the feature number is 3.

Source

The skin segmentation data set is from the UCI database.

References


Examples

data(Skin)
## maybe str(Skin) ; plot(Skin) ...
Index

* datasets
  HTRU, 9
  magic, 10
  Skin, 11

DEM1, 2
DEM2, 3
DMOEM, 4
DOEM1, 5
DOEM2, 7

EM, 8
HTRU, 9

magic, 10
Skin, 11