Package ‘DHARMa’

March 6, 2019

Description The 'DHARMa' package uses a simulation-based approach to create readily interpretable scaled (quantile) residuals for fitted (generalized) linear mixed models. Currently supported are linear and generalized linear (mixed) models from 'lme4' (classes 'lmerMod', 'glmerMod'), 'glmmTMB' and 'spaMM', generalized additive models ('gam' from 'mgcv'), 'glm' (including 'negbin' from 'MASS', but excluding quasi-distributions) and 'lm' model classes. Moreover, externally created simulations, e.g. posterior predictive simulations from Bayesian software such as 'JAGS', 'STAN', or 'BUGS' can be processed as well. The resulting residuals are standardized to values between 0 and 1 and can be interpreted as intuitively as residuals from a linear regression. The package also provides a number of plot and test functions for typical model misspecification problems, such as over/underdispersion, zero-inflation, and residual spatial and temporal autocorrelation.

Depends R (>= 3.0.2)
Imports stats, graphics, utils, grDevices, parallel, doParallel, foreach, gap, qnn, lmltem, ape, sfsmisc, MASS, lme4, mgcv, glmmTMB (>= 0.2.1), spaMM (>= 2.6.0)
Suggests knitr, testthat
License GPL (>= 3)
URL http://florianhartig.github.io/DHARMa/
BugReports https://github.com/florianhartig/DHARMa/issues
LazyData true
RoxygenNote 6.1.1
VignetteBuilder knitr
NeedsCompilation no
Author Florian Hartig [aut, cre] (Theoretical Ecology, University of Regensburg, Regensburg, Germany)
Maintainer Florian Hartig <florian.hartig@biologie.uni-regensburg.de>
Repository CRAN
Date/Publication 2019-03-06 08:30:03 UTC

R topics documented:

createData ... 3
createDHARMa ... 4
DHARMa ... 7
fitted.gam ... 8
getRandomState .. 8
getResponse .. 10
getSimulations ... 10
hist.DHARMa ... 11
plot.DHARMa ... 12
plotConventionalResiduals ... 14
plotQQunif .. 14
plotResiduals ... 16
plotSimulatedResiduals ... 18
print.DHARMa ... 18
recalculateResiduals .. 19
refit.glmmTMB ... 20
refit.lm ... 21
residuals.DHARMa .. 22
runBenchmarks .. 23
simulateResiduals ... 24
testDispersion ... 27
testGeneric .. 29
testModel .. 31
testOutliers .. 31
testOverdispersion .. 32
testOverdispersionParametric 33
testPDistribution ... 33
testResiduals .. 34
testSimulatedResiduals ... 34
testSpatialAutocorrelation ... 35
testTemporalAutocorrelation 37
testUniformity ... 38
testZeroInflation ... 39

Index 41
createData

Simulate test data

Description

This function creates synthetic dataset with various problems such as overdispersion, zero-inflation, etc.

Usage

createData(samplesize = 100, intercept = 0, fixedEffects = 1,
 quadraticfixedEffects = NULL, numGroups = 10,
 randomEffectVariance = 1, overdispersion = 0, family = poisson(),
 scale = 1, cor = 0, roundPoissonVariance = NULL,
 pZeroInflation = 0, binomialTrials = 1,
 temporalAutocorrelation = 0, spatialAutocorrelation = 0,
 factorResponse = F, replicates = 1)

Arguments

samplesize sample size of the dataset
intercept intercept (linear scale)
fixedEffects vector of fixed effects (linear scale)
quadraticFixedEffects vector of quadratic fixed effects (linear scale)
umGroups number of groups for the random effect
randomEffectVariance variance of the random effect (intercept)
overdispersion if this is a numeric value, it will be used as the sd of a random normal variate
 that is added to the linear predictor. Alternatively, a random function can be
 provided that takes as input the linear predictor.
family family
scale scale if the distribution has a scale (e.g. sd for the Gaussian)
cor correlation between predictors
roundPoissonVariance if set, this creates a uniform noise on the poisson response. The aim of this is to
 create heteroscedasticity
pZeroInflation probability to set any data point to zero
binomialTrials Number of trials for the binomial. Only active if family == binomial
temporalAutocorrelation strength of temporalAutocorrelation
spatialAutocorrelation strength of spatial Autocorrelation
factorResponse should the response be transformed to a factor (intended to be used for 0/1 data)
replicates number of datasets to create
Examples

testData = createData(sampleSize = 500, intercept = 2, fixedEffects = c(1),
 overdispersion = 0, family = poisson(), quadraticFixedEffects = c(-3),
 randomEffectVariance = 0)

par(mfrow = c(1,2))
plot(testData$Environment1, testData$observedResponse)
hist(testData$observedResponse)

with zero-inflation

testData = createData(sampleSize = 500, intercept = 2, fixedEffects = c(1),
 overdispersion = 0, family = poisson(), quadraticFixedEffects = c(-3),
 randomEffectVariance = 0, pZeroInflation = 0.6)

par(mfrow = c(1,2))
plot(testData$Environment1, testData$observedResponse)
hist(testData$observedResponse)

binomial with multiple trials

testData = createData(sampleSize = 40, intercept = 2, fixedEffects = c(1),
 overdispersion = 0, family = binomial(), quadraticFixedEffects = c(-3),
 randomEffectVariance = 0, binomialTrials = 20)

plot(observeResponse1 / observeResponse0 ~ Environment1, data = testData, ylab = "Proportion 1")

spatial / temporal correlation

testData = createData(sampleSize = 100, family = poisson(), spatialAutocorrelation = 3,
 temporalAutocorrelation = 3)

plot(log(observeResponse) ~ time, data = testData)
plot(log(observeResponse) ~ x, data = testData)

createDHARMa

Convert simulated residuals or posterior predictive simulations to a DHARMa object

Description

Convert simulated residuals or posterior predictive simulations to a DHARMa object

Usage

createDHARMa(simulatedResponse, observedResponse,
 fittedPredictedResponse = NULL, integerResponse = F)
Arguments

simulatedResponse
matrix of observations simulated from the fitted model - row index for observations and column index for simulations

observedResponse
true observations

fittedPredictedResponse
fitted predicted response. Optional, but will be necessary for some plots. If scaled residuals are Bayesian p-values, using the median posterior prediction as fittedPredictedResponse is recommended.

integerResponse
if T, noise will be added at to the residuals to maintain a uniform expectations for integer responses (such as Poisson or Binomial). Unlike in simulateResiduals, the nature of the data is not automatically detected, so this MUST be set by the user appropriately

Details

The use of this function is to convert simulated residuals (e.g. from a point estimate, or Bayesian p-values) to a DHARMa object, to make use of the plotting / test functions in DHARMa

Note

Either scaled residuals or (simulatedResponse AND observed response) have to be provided

Examples

```r
## READING IN HAND-CODED SIMULATIONS

testData = createData(sampleSize = 50, randomEffectVariance = 0)
fittedModel <- glm(observedResponse ~ Environment1, data = testData, family = "poisson")

# in DHARMa, using the simulate.glm function of glm
sims = simulateResiduals(fittedModel)
plot(sims, quantreg = FALSE)

# Doing the same with a handcode simulate function. # of course this code will only work with a 1-par glm model
simulateMyfit <- function(n=10, fittedModel){
  int = coef(fittedModel)[1]
  slo = coef(fittedModel)[2]
  pred = exp(int + slo * testData$Environment1)
  predSim = replicate(n, rpois(length(pred), pred))
  return(predSim)
}

sims = simulateMyfit(250, fittedModel)
dharmaRes <- createDHARMa(simulatedResponse = sims,
                          observedResponse = testData$observedResponse,
                          integerResponse = TRUE)
```

createDHARMa

fittedPredictedResponse = predict(fittedModel, type = "response"),
 integer = TRUE)
plot(dharmaRes, quantreg = FALSE)

A BAYESIAN EXAMPLE

Not run:

This example shows how to check the residuals for a
Bayesian fit of a process-based vegetation model, using
The BayesianTools package

library(BayesianTools)

Create input data for the model
PAR <- VSEMcreatePAR(1:1000)
plotTimeSeries(observed = PAR)

load reference parameter definition (upper, lower prior)
refPars <- VSEMgetDefaults()
this adds one additional parameter for the likelihood standard deviation (see below)
refPars[12,] <- c(2, 0.1, 4)
rownames(refPars)[12] <- "error-sd"

create some simulated test data
generally recommended to start with simulated data before moving to real data
referenceData <- VSEM(refPars$best[1:11], PAR) # model predictions with reference parameters
referenceData[,1] = 1000 * referenceData[,1]
this adds the error - needs to conform to the error definition in the likelihood
obs <- referenceData + rnorm(length(referenceData), sd = refPars$best[12])
parSel = c(1:6, 12) # parameters to calibrate

here is the likelihood
likelihood <- function(par, sum = TRUE){
 # set parameters that are not calibrated on default values
 x = refPars$best
 x[parSel] = par
 predicted <- VSEM(x[1:11], PAR) # replace here VSEM with your model
 predicted[,1] = 1000 * predicted[,1] # this is just rescaling
 diff <- c(predicted[,1:4] - obs[,1:4]) # difference between observed and predicted
 # univariate normal likelihood. Note that there is a parameter involved here that is fit
 llValues <- dnorm(diff, sd = x[12], log = TRUE)
 if (sum == FALSE) return(llValues)
 else return(sum(llValues))
}

optional, you can also directly provide lower, upper in the createBayesianSetup, see help
prior <- createUniformPrior(lower = refPars$lower[parSel],
 upper = refPars$upper[parSel],
 best = refPars$best[parSel])

bayesianSetup <- createBayesianSetup(likelihood, prior, names = rownames(refPars)[parSel])
settings for the sampler, iterations should be increased for real application
settings <- list(iterations = 100000, nrChains = 2)

out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "DEzs", settings = settings)

plot(out)
summary(out)
gelmanDiagnostics(out) # should be below 1.05 for all parameters to demonstrate convergence

Posterior predictive simulations

Create a function to create posterior predictive simulations
createPredictions <- function(par){
 # set the parameters that are not calibrated on default values
 x = refPars$best
 x[parSel] = par
 predicted <- VSEM(x[1:11], PAR) * 1000
 out = rnorm(length(predicted), mean = predicted, sd = par[7])
 return(out)
}

posteriorSample = getSample(out, numSamples = 1000)
posteriorPredictiveSims = apply(posteriorSample, 1, createPredictions)

dim(posteriorPredictiveSims)
library(DHARMa)
x = createDHARMA(t(posteriorPredictiveSims))
plot(x)

End(Not run)

DHARMa - Residual Diagnostics for Hierarchical (Multi-level / Mixed) Regression Models

Description

The 'DHARMa' package uses a simulation-based approach to create readily interpretable scaled (quantile) residuals for fitted (generalized) linear mixed models. Currently supported are linear and generalized linear (mixed) models from 'lme4' (classes 'lmerMod', 'glmerMod'), 'glmmTMB' and 'spaMM', generalized additive models ('gam' from 'mgcv'), 'glm' (including 'negbin' from 'MASS', but excluding quasi-distributions) and 'lm' model classes. Moreover, externally created simulations, e.g. posterior predictive simulations from Bayesian software such as 'JAGS', 'STAN', or 'BUGS' can be processed as well. The resulting residuals are standardized to values between 0 and 1 and can be interpreted as intuitively as residuals from a linear regression. The package also provides a number of plot and test functions for typical model misspecification problems, such as over/underdispersion, zero-inflation, and residual spatial and temporal autocorrelation.
Details
See index / vignette for details

See Also
simulateResiduals

Examples
vignette("DHARMa", package="DHARMa")

fitted.gam

This function overwrites the standard fitted function for GAM

Description
This function overwrites the standard fitted function for GAM

Usage
S3 method for class 'gam'
fitted(object, ...)

Arguments
object fitted model
... arguments to be passed on to stats::fitted

Note
See explanation at

getRandomState

Record and restore a random state

Description
The aim of this function is to record, manipulate and restore a random state

Usage
getAddress(seed = NULL)

Arguments
seed seed argument to set.seed(). NULL = no seed, but random state will be restored. F = random state will not be restored
getRandomState

Details

This function is intended for two (not mutually exclusive tasks)

a) record the current random state

b) change the current random state in a way that the previous state can be restored

Value

a list with various infos about the random state that after function execution, as well as a function to restore the previous state before the function execution

Author(s)

Florian Hartig

Examples

testing the function in standard settings
set.seed(13)
runif(1)
x = getRandomState(123)
runif(1)
x$restoreCurrent()
runif(1)

values outside set /restore are identical to
set.seed(13)
runif(2)

if no seed is set, this will also be restored
rm(.Random.seed)

x = getRandomState(123)
runif(1)
x$restoreCurrent()
exists(".Random.seed")

with false
rm(.Random.seed)
x = getRandomState(seed = FALSE)
exists(".Random.seed")
runif(1)
x$restoreCurrent()
exists(".Random.seed")
getResponse

Get model response

Description

Extract the response of a fitted model

Usage

getResponse(object, ...)

Arguments

- **object**: a fitted model
- **...**: additional parameters

Details

The purpose of this function is to safely extract the response (dependent variable) of the fitted model classes

Author(s)

Florian Hartig

getSimulations

Get model simulations

Description

Wrapper to simulate from a fitted model

Usage

getSimulations(object, ...)

Arguments

- **object**: a fitted model
- **...**: additional parameters to be passed on, usually to the simulate function of the respective model class

Details

The purpose of this wrapper for the simulate function is to standardize the simulations from a model in a standardized way
hist.DHARMa

Author(s)
Florian Hartig

hist.DHARMa Histogram of DHARMa residuals

Description
The function produces a histogram from a DHARMa output

Usage
S3 method for class 'DHARMa'
hist(x, ...)

Arguments
x a DHARMa simulation output (class DHARMa)
... arguments to be passed on to hist. Breaks and col are fixed.

See Also
plotSimulatedResiduals, plotResiduals

Examples
testData = createData(sampleSize = 200, family = poisson(),
 randomEffectVariance = 1, numGroups = 5)
fittedModel <- glm(observedResponse ~ Environment1,
 family = "poisson", data = testData)
simulationOutput <- simulateResiduals(fittedModel = fittedModel)

########## main plotting function ###########

for all functions, quantreg = T will be more
informative, but slower
plot(simulationOutput, quantreg = FALSE)

########### Distribution ####################
plotQQunif(simulationOutput = simulationOutput)

hist(simulationOutput)

########### residual plots ###################

rank transformation, using a simulationOutput
plotResiduals(simulationOutput, rank = TRUE, quantreg = FALSE)
residual vs predictors, using explicit values for pred, residual
plotResiduals(pred = testData$Environment1,
 residuals = simulationOutput$scaledResiduals, quantreg = FALSE)

if pred is a factor, or asFactor = T, will produce a boxplot
plotResiduals(pred = testData$group, residuals = simulationOutput$scaledResiduals,
 quantreg = FALSE, asFactor = TRUE)

All these options can also be provided to the main plotting function
plot(simulationOutput, quantreg = FALSE, rank = FALSE)

If you want to plot summaries per group, use
simulationOutput = recalculateResiduals(simulationOutput, group = testData$group)
plot(simulationOutput, asFactor = TRUE) # we see one residual point per RE

Description

This function creates standard plots for the simulated residuals

Usage

```r
## S3 method for class 'DHARMa'
plot(x, rank = TRUE, ...)
```

Arguments

- `x` an object with simulated residuals created by `simulateResiduals`
- `rank` if `T` (default), the values of `pred` will be rank transformed. This will usually make patterns easier to spot visually, especially if the distribution of the predictor is skewed.
- `...` further options for `plotResiduals`. Consider in particular parameters `quantreg`, `rank` and `asFactor`. `xlab`, `ylab` and `main` cannot be changed when using `plotSimulatedResiduals`, but can be changed when using `plotResiduals`.

Details

The function creates two plots. To the left, a qq-uniform plot to detect deviations from overall uniformity of the residuals (calling `plotQQunif`), and to the right, a plot of residuals against predicted values (calling `plotResiduals`). Outliers are highlighted in red (for more on outliers, see `testOutliers`). For a correctly specified model, we would expect

1. a straight 1-1 line in the uniform qq-plot -> evidence for an overall uniform (flat) distribution of the residuals
b) uniformity of residuals in the vertical direction in the res against predictor plot
Deviations of this can be interpreted as for a linear regression. See the vignette for detailed examples.
To provide a visual aid in detecting deviations from uniformity in y-direction, the plot of the residuals against the predicted values also performs an (optional) quantile regression, which provides 0.25, 0.5 and 0.75 quantile lines across the plots. These lines should be straight, horizontal, and at y-values of 0.25, 0.5 and 0.75. Note, however, that some deviations from this are to be expected by chance, even for a perfect model, especially if the sample size is small. See further comments on this plot, and options, in `plotResiduals`

The quantile regression can take some time to calculate, especially for larger datasets. For that reason, `quantreg = F` can be set to produce a smooth spline instead. This is default for \(n > 2000 \).

See Also
- `plotResiduals`, `plotQQunif`

Examples
```r
testdata = createData(sampleSize = 200, family = poisson(),
                      randomEffectVariance = 1, numGroups = 5)
fittedModel <- glm(observedResponse ~ Environment1,
                   family = "poisson", data = testData)
simulationOutput <- simulateResiduals(fittedModel = fittedModel)

# main plotting function
plot(simulationOutput, quantreg = FALSE)

# Distribution
plotQQunif(simulationOutput = simulationOutput)

# residual plots
plotResiduals(simulationOutput, rank = TRUE, quantreg = FALSE)

# residual vs predictors
plotResiduals(pred = testData$Environment1,
              residuals = simulationOutput$scaledResiduals, quantreg = FALSE)

# if pred is a factor, or asFactor = T, will produce a boxplot
plotResiduals(pred = testData$group, residuals = simulationOutput$scaledResiduals,
              quantreg = FALSE, asFactor = TRUE)

# All these options can also be provided to the main plotting function
```
plot(simulationOutput, quantreg = FALSE, rank = FALSE)

If you want to plot summaries per group, use
simulationOutput = recalculateResiduals(simulationOutput, group = testData$group)
plot(simulationOutput, asFactor = TRUE) # we see one residual point per RE

plotConventionalResiduals

Conventional residual plot

Description
Convenience function to draw conventional residual plots

Usage

plotConventionalResiduals(fittedModel)

Arguments

- fittedModel a fitted model object

plotQQunif

Quantile-quantile plot for a uniform distribution

Description

The function produces a uniform quantile-quantile plot from a DHARMa output

Usage

plotQQunif(simulationOutput, testUniformity = T, testOutliers = T, ...)

Arguments

- simulationOutput a DHARMa simulation output (class DHARMa)
- testUniformity if T, the function testUniformity will be called and the result will be added to the plot
- testOutliers if T, the function testOutliers will be called and the result will be added to the plot
- ... arguments to be passed on to qqunif
"plotQQunif"

Details

the function calls qunif from the R package gap to create a quantile-quantile plot for a uniform distribution.

See Also

plotSimulatedResiduals, plotResiduals

Examples

testData = createData(sampleSize = 200, family = poisson(),
 randomEffectVariance = 1, numGroups = 5)
fittedModel <- glm(observedResponse ~ Environment1,
 family = "poisson", data = testData)
simulationOutput <- simulateResiduals(fittedModel = fittedModel)

######### main plotting function #########
for all functions, quantreg = T will be more
informative, but slower
plot(simulationOutput, quantreg = FALSE)

########### Distribution ##############
plotQQunif(simulationOutput = simulationOutput)
hist(simulationOutput)

############ residual plots #############
rank transformation, using a simulationOutput
plotResiduals(simulationOutput, rank = TRUE, quantreg = FALSE)

residual vs predictors, using explicit values for pred, residual
plotResiduals(pred = testData$Environment1,
 residuals = simulationOutput$scaledResiduals, quantreg = FALSE)

if pred is a factor, or asFactor = T, will produce a boxplot
plotResiduals(pred = testData$group, residuals = simulationOutput$scaledResiduals,
 quantreg = FALSE, asFactor = TRUE)

All these options can also be provided to the main plotting function
plot(simulationOutput, quantreg = FALSE, rank = FALSE)

If you want to plot summaries per group, use
simulationOutput = recalculateResiduals(simulationOutput, group = testData$group)
plot(simulationOutput, asFactor = TRUE) # we see one residual point per RE
plotResiduals

Generic residual plot with either spline or quantile regression

Description

The function creates a generic residual plot with either spline or quantile regression

Usage

plotResiduals(pred, residuals = NULL, quantreg = NULL, rank = F,
 asFactor = NULL, ...)

Arguments

- **pred**: either the predictor variable against which the residuals should be plotted, or a DHARMa object
- **residuals**: residuals values. Leave empty if pred is a DHARMa object
- **quantreg**: whether to perform a quantile regression on 0.25, 0.5, 0.75 on the residuals. If F, a spline will be created instead. Default NULL chooses T for nObs < 2000, and F otherwise.
- **rank**: if T, the values of pred will be rank transformed. This will usually make patterns easier to spot visually, especially if the distribution of the predictor is skewed. If pred is a factor, this has no effect.
- **asFactor**: should the predictor variable be treated as a factor. Default is to choose this for <10 unique predictions, as long as enough predictions are available to draw a boxplot.
- **...**: additional arguments to plot / boxplot.

Details

Plots residuals against a predictor. Outliers are highlighted in red (for more on outliers, see `testOutliers`). For a correctly specified model, we would expect uniformity in y direction when plotting against any predictor.

To provide a visual aid in detecting deviations from uniformity in y-direction, the plot of the residuals against the predicted values also performs an (optional) quantile regression, which provides 0.25, 0.5 and 0.75 quantile lines across the plots. These lines should be straight, horizontal, and at y-values of 0.25, 0.5 and 0.75. Note, however, that some deviations from this are to be expected by chance, even for a perfect model, especially if the sample size is small.

The quantile regression can take some time to calculate, especially for larger datasets. For that reason, quantreg = F can be set to produce a smooth spline instead.
plotResiduals

Note

if `pred` is a factor, a boxplot will be plotted instead of a scatter plot. The distribution for each factor level should be uniformly distributed, so the box should go from 0.25 to 0.75, with the median line at 0.5. Again, chance deviations from this will increases when the sample size is smaller. You can run null simulations to test if the deviations you see exceed what you would expect from random variation. If you want to create box plots for categorical predictors (e.g. because you only have a small number of unique numeric predictor values), you can convert your predictor with `as.factor(pred)`

See Also

`plotSimulatedResiduals, plotQQunif`

Examples

```r
testdata = createData(sampleSize = 200, family = poisson(), randomEffectVariance = 1, numGroups = 5)
fittedModel <- glm(observableResponse ~ Environment1, family = "poisson", data = testData)
simulationOutput <- simulateResiduals(fittedModel = fittedModel)

################################ main plotting function #############################
# for all functions, quantreg = T will be more
# informative, but slower
plot(simulationOutput, quantreg = FALSE)

################################ Distribution ########################################
plotQQunif(simulationOutput = simulationOutput)
hist(simulationOutput )

################################ residual plots ####################################
# rank transformation, using a simulationOutput
plotResiduals(simulationOutput, rank = TRUE, quantreg = FALSE)
# residual vs predictors, using explicit values for pred, residual
plotResiduals(pred = testData$Environment1,
residuals = simulationOutput$scaledResiduals, quantreg = FALSE)
# if pred is a factor, or asFactor = T, will produce a boxplot
plotResiduals(pred = testData$group, residuals = simulationOutput$scaledResiduals,
quantreg = FALSE, asFactor = TRUE)
# All these options can also be provided to the main plotting function
plot(simulationOutput, quantreg = FALSE, rank = FALSE)
# If you want to plot summaries per group, use
```
plotSimulatedResiduals

DHARMa standard residual plots

Description

DEPRECATED, use plot() instead

Usage

plotSimulatedResiduals(simulationOutput, ...)

Arguments

- `simulationOutput`: an object with simulated residuals created by `simulateResiduals`
- `...`: further options for `plotResiduals`. Consider in particular parameters quantreg, rank and asFactor. xlab, ylab and main cannot be changed when using `plotSimulatedResiduals`, but can be changed when using `plotResiduals`.

Note

This function is deprecated. Use `plot.DHARMa`

See Also

`plotResiduals`, `plotQQunif`

print.DHARMa

Print simulated residuals

Description

Print simulated residuals

Usage

```r
## S3 method for class 'DHARMa'
print(x, ...)
```
recalculateResiduals

Arguments

- **x**: an object with simulated residuals created by `simulateResiduals`
- **...**: optional arguments for compatibility with the generic function, no function implemented

recalculateResiduals: Recalculate residuals with grouping

Description

The purpose of this function is to recalculate scaled residuals per group, based on the simulations done by `simulateResiduals`

Usage

```
recalculateResiduals(simulationOutput, group = NULL, aggregateBy = sum)
```

Arguments

- **simulationOutput**: an object with simulated residuals created by `simulateResiduals`
- **group**: group of each data point
- **aggregateBy**: function for the aggregation. Default is sum. This should only be changed if you know what you are doing. Note in particular that the expected residual distribution might not be flat any more if you choose general functions, such as sd etc.

Value

an object of class DHARMa, similar to what is returned by `simulateResiduals`, but with additional outputs for the new grouped calculations. Note that the relevant outputs are 2x in the object, the first is the grouped calculations (which is returned by $name access), and later another time, under identical name, the original output. Moreover, there is a function `aggregateByGroup`, which can be used to aggregate predictor variables in the same way as the variables calculated here

Examples

```
library(lme4)

testData = createData(sampleSize = 200, overdispersion = 0.5, family = poisson())
fittedModel <- glmer( observedResponse ~ Environment1 + (1|group),
  family = "poisson", data = testData,
  control=glmerControl(optCtrl=list(maxfun=20000) ))

simulationOutput <- simulateResiduals(fittedModel = fittedModel)

# plot residuals, quantreg = T is better but costs more time
```
refit.glmmTMB

Refit a Model with a Different Response

Description
Refit a Model with a Different Response

Usage
S3 method for class 'glmmTMB'
refit(object, newresp, ...)

Arguments

object a fitted model
newresp a new response
... further arguments, no effect implemented for this S3 class

Examples
testData = createData(sampleSize = 200, family = poisson())

examples of refit with different model classes
library(lme4)
library(mgcv)
library(glmmTMB)

fittedModel <- lm(observedResponse ~ Environment1, data = testData)
newResponse = simulate(fittedModel)
refit(fittedModel[,1])

fittedModel <- glm(observableResponse ~ Environment, data = testData, family = "poisson")
newResponse = simulate(fittedModel)
refit(fittedModel, newResponse[,1])

fittedModel <- mgcv::gam(observableResponse ~ s(Environment), data = testData, family = "poisson")
newResponse = simulate(fittedModel)
refit(fittedModel, newResponse[,1])

fittedModel <- lme4::lmer(observableResponse ~ Environment + (1|group), data = testData)
newResponse = simulate(fittedModel)
refit(fittedModel, newResponse[,1])

fittedModel <- lme4::glmer(observableResponse ~ Environment + (1|group), data = testData,
family = "poisson")
newResponse = simulate(fittedModel)
refit(fittedModel, newResponse[,1])

fittedModel <- glmmTMB::glmmTMB(observableResponse ~ Environment + (1|group), data = testData)
newResponse = simulate(fittedModel)
refit(fittedModel, newResponse[,1])

refit.lm

Refit a Model with a Different Response

Description

Refit a Model with a Different Response

Usage

```r
## S3 method for class 'lm'
refit(object, newresp, ...)
```

Arguments

- `object`: a fitted model
- `newresp`: a new response
- `...`: further arguments, no effect implemented for this S3 class

Examples

```r
testData = createData(sampleSize = 200, family = poisson())

# examples of refit with different model classes
library(lme4)
library(mgcv)
library(glmmTMB)
```
fittedModel <- lm(observedResponse ~ Environment, data = testData)
newResponse = simulate(fittedModel)
refit(fittedModel, newResponse[,1])

fittedModel <- glm(observedResponse ~ Environment, data = testData, family = "poisson")
newResponse = simulate(fittedModel)
refit(fittedModel, newResponse[,1])

fittedModel <- mgcv::gam(observedResponse ~ s(Environment), data = testData, family = "poisson")
newResponse = simulate(fittedModel)
refit(fittedModel, newResponse[,1])

fittedModel <- lme4::lmer(observedResponse ~ Environment + (1|group), data = testData)
newResponse = simulate(fittedModel)
refit(fittedModel, newResponse[,1])

fittedModel <- lme4::glmer(observedResponse ~ Environment + (1|group), data = testData, family = "poisson")
newResponse = simulate(fittedModel)
refit(fittedModel, newResponse[,1])

fittedModel <- glmmTMB::glmmTMB(observedResponse ~ Environment + (1|group), data = testData)
newResponse = simulate(fittedModel)
refit(fittedModel, newResponse[,1])

residuals.DHARMa

Return residuals of a DHARMa simulation

Description

Return residuals of a DHARMa simulation

Usage

S3 method for class 'DHARMa'
residuals(object, ...)

Arguments

object an object with simulated residuals created by `simulateResiduals`

... optional arguments for compatibility with the generic function, no function implemented

Details

the function accesses the slot `scaledResiduals` in a fitted DHARMa object
Examples

```r
library(lme4)

testData = createData(sampleSize = 200, overdispersion = 0.5, family = poisson())
fittedModel <- glmer( observedResponse ~ Environment1 + (1|group),
                      family = "poisson", data = testData,
                      control=glmerControl(optCtrl=list(maxfun=20000)))

simulationOutput <- simulateResiduals(fittedModel = fittedModel)

# plot residuals, quantreg = T is better but costs more time
plot(simulationOutput, quantreg = FALSE)

# the calculated residuals can be accessed via
residuals(simulationOutput)
simulationOutput$scaledResiduals

# calculating summaries per group
simulationOutput = recalculateResiduals(simulationOutput, group = testData$group)
plot(simulationOutput, quantreg = FALSE)

# create simulations with refitting, n=5 is very low, set higher when using this
simulationOutput <- simulateResiduals(fittedModel = fittedModel, n = 10, refit = TRUE)
plot(simulationOutput, quantreg = FALSE)

# grouping per random effect group works as above
simulationOutput = recalculateResiduals(simulationOutput, group = testData$group)
plot(simulationOutput, quantreg = FALSE)
```

Description

This function runs statistical benchmarks, including Power / Type I error simulations for an arbitrary test with a control parameter.

Usage

```r
runBenchmarks(calculateStatistics, controlValues = NULL, nRep = 10,
              alpha = 0.05, parallel = F, ...)
```

Arguments

calculateStatistics

the statistics to be benchmarked. Should return one value, or a vector of values.
If controlValues are given, must accept a parameter control
simulateResiduals

The function creates scaled residuals by simulating from the fitted model

Usage

simulateResiduals(fittedModel, n = 250, refit = F,
 integerResponse = NULL, plot = F, seed = 123, ...)

Arguments

fittedModel a fitted model of a class supported by DHARMa
n number of simulations. Default is 100. A more save value would be 250 or even
1000. The smaller the number, the higher the stochastic error on the residuals.
Also, for very small n, discretization artefacts can influence the tests.

refit if F, new data will be simulated and scaled residuals will be created by comparing
observed data with new data. If T, the model will be refit on the simulated
data (parametric bootstrap), and scaled residuals will be created by comparing
observed with refitted residuals.

integerResponse if T, noise will be added at to the residuals to maintain a uniform expectations
for integer responses (such as Poisson or Binomial). Usually, the model will
automatically detect the appropriate setting, so there is no need to adjust this
setting.

plot if T, plotSimulatedResiduals will be directly run after the simulations have
terminated

controlValues a vector with a control parameter (e.g. to vary the strength of a problem the test
should be specific to)

nRep number of replicates per level of the controlValues

alpha significance level

parallel whether to use parallel computations. Possible values are F, T (sets the cores
automatically to number of available cores -1), or an integer number for the
number of cores that should be used for the cluster

... additional parameters to calculateStatistics

Note

The benchmark function in DHARMa are intended for development purposes, and for users that
want to test / confirm the properties of functions in DHARMa. If you are running an applied data
analysis, they are probably of little use.
simulateResiduals

seed

the random seed. The default setting, recommended for any type of data analysis, is to reset the random number generator each time the function is run, meaning that you will always get the same result when running the same code. NULL = no new seed is set, but previous random state will be restored after simulation. F = no seed is set, and random state will not be restored. The latter two options are only recommended for simulation experiments. See vignette for details.

... parameters to pass to the simulate function of the model object. An important use of this is to specify whether simulations should be conditional on the current random effect estimates. See also details

Details

There are a number of important considerations when simulating from a more complex (hierarchical) model:

Re-simulating random effects / hierarchical structure: the first is that in a hierarchical model, several layers of stochasticity are aligned on top of each other. Specifically, in a GLMM, we have a lower level stochastic process (random effect), whose result enters into a higher level (e.g. Poisson distribution). For other hierarchical models such as state-space models, similar considerations apply. When simulating, we have to decide if we want to re-simulate all stochastic levels, or only a subset of those. For example, in a GLMM, it is common to only simulate the last stochastic level (e.g. Poisson) conditional on the fitted random effects.

For controlling how many levels should be re-simulated, the simulateResidual function allows to pass on parameters to the simulate function of the fitted model object. Please refer to the help of the different simulate functions (e.g. ?simulate.merMod) for details. For merMod (lme4) model objects, the relevant parameters are parameters are use.u and re.form

If the model is correctly specified, the simulated residuals should be flat regardless how many hierarchical levels we re-simulate. The most thorough procedure would therefore be to test all possible options. If testing only one option, I would recommend to re-simulate all levels, because this essentially tests the model structure as a whole. This is the default setting in the DHARMa package.

A potential drawback is that re-simulating the lower-level random effects creates more variability, which may reduce power for detecting problems in the upper-level stochastic processes.

Integer responses: a second complication is the treatment of integer responses. Imagining we have observed a 0, and we predict 30% zeros - what is the quantile that we should display for the residual? To deal with this problem and maintain a uniform response, the option integerResponse adds a uniform noise from -0.5 to 0.5 on the simulated and observed response, which creates a uniform distribution - you can see this via hist(ecdf(runif(10000))(runif(10000))).

DHARMa will try to automatically if the fitted model has an integer or discrete distribution via the family argument. However, in some cases the family does not allow to uniquely identify the distribution type. For example, a tweedie distribution can be inter or continuous. Therefore, DHARMa will additionally check the simulation results for repeated values, and will change the distribution type if repeated values are found (a message is displayed in this case).

Refitting or not: a third issue is how residuals are calculated. simulateResiduals has two options that are controlled by the refit parameter:

1. if refit = F (default), new data is simulated from the fitted model, and residuals are calculated by comparing the observed data to the new data
2. if refit = T, a parametric bootstrap is performed, meaning that the model is refit on the new data, and residuals are created by comparing observed residuals against refitted residuals.

The second option is much slower, and only important for running tests that rely on comparing observed to simulated residuals, e.g. the `testOverdispersion` function.

Residuals per group: In many situations, it can be useful to look at residuals per group, e.g. to see how much the model over/underpredicts per plot, year or subject. To do this, use `recalculateResiduals`, together with a grouping variable (see also help).

Value

An S3 class of type "DHARMa", essentially a list with various elements. Implemented S3 functions include plot, print and `residuals.DHARMa`. Residuals returns the calculated scaled residuals, which can also be accessed via `$scaledResiduals`. The returned object additionally contains an element 'scaledResidualsNormal', which contains the scaled residuals transformed to a normal distribution (for stability reasons not recommended).

Note

See `testResiduals` for an overview of residual tests, `plot.DHARMa` for an overview of available plots.

See Also

`testResiduals, plot.DHARMa, print.DHARMa, residuals.DHARMa, recalculateResiduals`

Examples

```r
library(lme4)

testData = createData(sampleSize = 200, overdispersion = 0.5, family = poisson())
fittedModel <- glmer(observedResponse ~ Environment1 + (1|group),
    family = "poisson", data = testData,
    control=glmerControl(optCtrl=list(maxfun=20000) ))
simulationOutput <- simulateResiduals(fittedModel = fittedModel)

# plot residuals, quantreg = T is better but costs more time
plot(simulationOutput, quantreg = FALSE)

# the calculated residuals can be accessed via
residuals(simulationOutput)
simulationOutput$scaledResiduals

# calculating summaries per group
simulationOutput = recalculateResiduals(simulationOutput, group = testData$group)
plot(simulationOutput, quantreg = FALSE)

# create simulations with refitting, n=5 is very low, set higher when using this
simulationOutput <- simulateResiduals(fittedModel = fittedModel,
    n = 10, refit = TRUE)
plot(simulationOutput, quantreg = FALSE)
```

testDispersion

grouping per random effect group works as above
simulationOutput = recalculateResiduals(simulationOutput, group = testData$group)
plot(simulationOutput, quantreg = FALSE)

testDispersion

DHARMa dispersion tests

Description

This function performs a simulation-based test for over/underdispersion

Usage

testDispersion(simulationOutput, alternative = c("two.sided", "greater", "less"), plot = T, ...)

Arguments

simulationOutput
a DHARMa object with simulated residuals created with simulateResiduals
alternative
a character string specifying whether the test should test if observations are "greater", "less" or "two.sided" compared to the simulated null hypothesis. Greater corresponds to overdispersion.
plot
whether to plot output
...
arguments to pass on to testGeneric

Details

The function implements two tests, depending on whether it is applied on a simulation with refit = F, or refit = T.

If refit = F, the function tests the sd of the data against the sd of the simulated data.

If refit = T, the function compares the approximate deviance (via squared pearson residuals) with the same quantity from the models refitted with simulated data. Applying this is much slower than the previous alternative, but simulations show that it is slightly more powerful as well. However, given the computational cost, I would suggest that most users will be satisfied with the standard dispersion test.

Author(s)

Florian Hartig

See Also

testResiduals, testUniformity, testOutliers, testZeroInflation, testGeneric, testTemporalAutocorrelation, testSpatialAutocorrelation
Examples

creating test data

testData = createData(sampleSize = 200, overdispersion = 0.5, randomEffectVariance = 0)
fittedModel <- glm(observations ~ Environment1, family = "poisson", data = testData)
simulationOutput <- simulateResiduals(fittedModel = fittedModel)

plot(simulationOutput, quantreg = FALSE)

Distribution tests
testUniformity(simulationOutput)

Dispersion tests
testDispersion(simulationOutput, alternative = "less") # underdispersion

Both together###################
testResiduals(simulationOutput)

Special tests

testing zero inflation
testZeroInflation(simulationOutput)

testing generic summaries
countOnes <- function(x) sum(x == 1) # testing for number of 1s
testGeneric(simulationOutput, summary = countOnes) # 1-inflation
testGeneric(simulationOutput, summary = countOnes, alternative = "less") # 1-deficit

means <- function(x) mean(x) # testing if mean prediction fits
testGeneric(simulationOutput, summary = means)

spread <- function(x) sd(x) # testing if mean sd fits
testGeneric(simulationOutput, summary = spread)

Refitted

if model is refitted, a different test will be called

simulationOutput <- simulateResiduals(fittedModel = fittedModel, refit = TRUE, seed = 12)
testDispersion(simulationOutput)

Test per group

simulationOutput = recalculateResiduals(simulationOutput, group = testData$group)
testDispersion(simulationOutput)
Description

This function tests if a user-defined summary differs when applied to simulated / observed data.

Usage

```r
testGeneric(simulationOutput, summary, alternative = c("two.sided", "greater", "less"), plot = T, methodName = "DHARMa generic simulation test")
```

Arguments

- `simulationOutput`: a DHARMa object with simulated residuals created with `simulateResiduals`
- `summary`: a function that can be applied to simulated / observed data. See examples below
- `alternative`: a character string specifying whether the test should test if observations are "greater", "less" or "two.sided" compared to the simulated null hypothesis
- `plot`: whether to plot the simulated summary
- `methodName`: name of the test (will be used in plot)

Details

This function tests if a user-defined summary differs when applied to simulated / observed data. the function can easily be remodeled to apply summaries on the residuals, by simply defining `f = function(x) summary(x - predictions)`, as done in `testDispersion`

Note

The function that you supply is applied on the data as it is represented in your fitted model, which may not always correspond to how you think. This is important in particular when you use k/n binomial data, and want to test for 1-inflation. As an example, if have k/20 observations, and you provide your data via cbind (y, y-20), you have to test for 20-inflation (because this is how the data is represented in the model). However, if you provide data via y/20, and weights = 20, you should test for 1-inflation. In doubt, check how the data is internally represented in model.frame(model), or via simulate(model)

Author(s)

Florian Hartig

See Also

- `testResiduals`, `testUniformity`, `testOutliers`, `testDispersion`, `testZeroInflation`, `testTemporalAutocorrelation`, `testSpatialAutocorrelation`
Examples

creating test data

testData = createData(sampleSize = 200, overdispersion = 0.5, randomEffectVariance = 0)
fittedModel <- glm(observations ~ Environment1, family = "poisson", data = testData)
simulationOutput <- simulateResiduals(fittedModel = fittedModel)

plot(simulationOutput, quantreg = FALSE)

Distribution tests

testUniformity(simulationOutput)

Dispersion tests

testDispersion(simulationOutput, alternative = "less") # underdispersion

Both together############

testResiduals(simulationOutput)

Special tests

testing zero inflation

testZeroInflation(simulationOutput)

testing generic summaries

countOnes <- function(x) sum(x == 1) # testing for number of 1s

testGeneric(simulationOutput, summary = countOnes) # 1-inflation

testGeneric(simulationOutput, summary = countOnes, alternative = "less") # 1-deficit

means <- function(x) mean(x) # testing if mean prediction fits

testGeneric(simulationOutput, summary = means)

spread <- function(x) sd(x) # testing if mean sd fits

testGeneric(simulationOutput, summary = spread)

Refitted

if model is refitted, a different test will be called

simulationOutput <- simulateResiduals(fittedModel = fittedModel, refit = TRUE, seed = 12)
testDispersion(simulationOutput)

Test per group

simulationOutput = recalculateResiduals(simulationOutput, group = testData$group)
testDispersion(simulationOutput)
testModel

Test DHARMa compatibility

Description

This helper function tests the compatibility of a model with DHARMa by trying to run various functions that are needed.

Usage

testModel(fittedModel)

Arguments

fittedModel the fitted model

Author(s)

Florian Hartig

testOutliers

Test for outliers

Description

This function tests if the number of observations that are strictly greater / smaller than all simulations are larger than expected.

Usage

testOutliers(simulationOutput, alternative = c("two.sided", "greater", "less"), plot = T)

Arguments

simulationOutput a DHARMa object with simulated residuals created with simulateResiduals
alternative a character string specifying whether the test should test if observations are "greater", "less" or "two.sided" compared to the simulated null hypothesis
plot if T, the function will create an additional plot
testOverdispersion

Details

DHARMa residuals are created by simulating from the fitted model, and comparing the simulated values to the observed data. It can occur that all simulated values are higher or smaller than the observed data, in which case they get the residual value of 0 and 1, respectively. I refer to these values as simulation outliers, or simply outliers.

Because no data was simulated in the range of the observed value, we actually don’t know "how much" these values deviate from the model expectation, so the term “outlier” should be used with a grain of salt - it’s not a judgement about the probability of a deviation from an expectation, but denotes that we are outside the simulated range. The number of outliers would usually decrease if the number of DHARMa simulations is increased.

The probability of an outlier depends on the number of simulations (in fact, it is 1/(nSim +1) for each side), so whether the existence of outliers is a reason for concern depends also on the number of simulations. The expected number of outliers is therefore binomially distributed, and we can calculate a p-value from that.

Author(s)

Florian Hartig

See Also

testResiduals, testUniformity, testDispersion, testZeroInflation, testGeneric, testTemporalAutocorrelation, testSpatialAutocorrelation

testOverdispersion

Simulated overdisperstion tests

Description

Simulated overdisperstion tests

Usage

testOverdispersion(simulationOutput, ...)

Arguments

simulationOutput

a DHARMa object with simulated residuals created with simulateResiduals

... additional arguments to testDispersion

Details

Deprecated, switch your code to using the testDispersion function
testOverdispersionParametric

Parametric overdispersion tests

Description

Parametric overdispersion tests

Usage

testOverdispersionParametric(...)

Arguments

... arguments will be ignored, the parametric tests is no longer recommend

Details

Deprecated, switch your code to using the testDispersion function. The function will do nothing, arguments will be ignored, the parametric tests is no longer recommend

testPDistribution

Plot distribution of p-values

Description

Plot distribution of p-values

Usage

testPDistribution(x, plot = T,
 main = "p distribution \n expected is flat at 1", ...)

Arguments

x vector of p values
plot should the values be plottet
main title for the plot
... additional arguments to hist

Author(s)

Florian Hartig
testResiduals

DHARMa general residual test

Description
Calls both uniformity and dispersion test

Usage
testResiduals(simulationOutput)

Arguments
simulationOutput
a DHARMa object with simulated residuals created with simulateResiduals

Details
This function is a wrapper for the various test functions implemented in DHARMa. Currently, this function calls the testUniformity and the testDispersion functions. All other tests (see below) have to be called by hand.

Author(s)
Florian Hartig

See Also
testUniformity, testOutliers, testDispersion, testZeroInflation, testGeneric, testTemporalAutocorrelation, testSpatialAutocorrelation

testSimulatedResiduals
Residual tests

Description
Residual tests

Usage
testSimulatedResiduals(simulationOutput)

Arguments
simulationOutput
a DHARMa object with simulated residuals created with simulateResiduals
testSpatialAutocorrelation

Details

Deprecated, switch your code to using the testResiduals function

Author(s)

Florian Hartig

testSpatialAutocorrelation

Test for spatial autocorrelation

description

This function performs a standard test for spatial autocorrelation on the simulated residuals

Usage

```r
testSpatialAutocorrelation(simulationOutput, x = NULL, y = NULL, distMat = NULL, alternative = c("two.sided", "greater", "less"), plot = T)
```

Arguments

- `simulationOutput`: a DHARMa object with simulated residuals created with `simulateResiduals`
- `x`: the x coordinate, in the same order as the data points. If not provided, random values will be created
- `y`: the y coordinate, in the same order as the data points. If not provided, random values will be created
- `distMat`: optional distance matrix. If not provided, a distance matrix will be calculated based on x and y. See details for explanation
- `alternative`: a character string specifying whether the test should test if observations are "greater", "less" or "two.sided" compared to the simulated null hypothesis
- `plot`: whether to plot output

Details

The function performs Moran.I test from the package ape, based on the provided distance matrix of the data points.

There are several ways to specify this distance. If a distance matrix (distMat) is provided, calculations will be based on this distance matrix, and x,y coordinates will only used for the plotting (if provided) If distMat is not provided, the function will calculate the euclidian distances between x,y coordinates, and test Moran.I based on these distances.

The sense of being able to run the test with x/y = NULL (random values) is to test the rate of false positives under the current residual structure (random x/y corresponds to H0: no spatial autocorrelation), e.g. to check if the test has noninal error rates for particular residual structures.
Author(s)
Florian Hartig

See Also

`testResiduals`, `testUniformity`, `testOutliers`, `testDispersion`, `testZeroInflation`, `testGeneric`,
`testSpatialAutocorrelation`

Examples

testData = createData(sampleSize = 40, family = gaussian())
fittedModel <- lm(observedResponse ~ Environment1, data = testData)
res = simulateResiduals(fittedModel)

Standard use
testSpatialAutocorrelation(res, x = testData$x, y = testData$y)

If x and y is not provided, random values will be created
testSpatialAutocorrelation(res)

Alternatively, one can provide a distance matrix
dM = as.matrix(dist(cbind(testData$x, testData$y)))
testSpatialAutocorrelation(res, distMat = dM)

if there are multiple observations with the same x values,
create first ar group with unique values for each location
then aggregate the residuals per location, and calculate
spatial autocorrelation on the new group
res2 = recalculateResiduals(res, group = testData$group)
testSpatialAutocorrelation(res)

carefull with clustered data and conditional / unconditional simulations
this originates from https://github.com/florianhartig/DHARMa/issues/81

Assume our data is divided into clusters, and we use a RE to take out cluster effects
clusters = 100
subsamples = 10
size = clusters * subsamples
testData = createData(sampleSize = size, family = gaussian(), numGroups = clusters)
testData$x = rnorm(clusters)[testData$group] + rnorm(size, sd = 0.01)
testData$y = rnorm(clusters)[testData$group] + rnorm(size, sd = 0.01)

library(lme4)
fittedModel <- lmer(observedResponse ~ Environment1 + (1|group), data = testData)

DHARMa default is to re-simulted REs - this means spatial pattern remains
because residuals are still clustered
testTemporalAutocorrelation

Description
This function performs a standard test for temporal autocorrelation on the simulated residuals

Usage
testTemporalAutocorrelation(simulationOutput, time = NULL,
 alternative = c("two.sided", "greater", "less"), plot = T)

Arguments
- simulationOutput
 an object with simulated residuals created by simulateResiduals
- time
 the time, in the same order as the data points. If set to "random", random values will be created
- alternative
 a character string specifying whether the test should test if observations are "greater", "less" or "two.sided" compared to the simulated null hypothesis
- plot
 whether to plot output

Details
The function performs a Durbin-Watson test on the uniformly scaled residuals, and plots the residuals against time. The DB test was originally be designed for normal residuals. In simulations, I didn’t see a problem with this setting though. The alternative is to transform the uniform residuals to normal residuals and perform the DB test on those.
Description

This function tests the overall uniformity of the simulated residuals in a DHARMa object.

Usage

```r
testUniformity(simulationOutput, alternative = c("two.sided", "less", "greater"), plot = T)
```

Arguments

- `simulationOutput`: a DHARMa object with simulated residuals created with `simulateResiduals`
- `alternative`: a character string specifying whether the test should test if observations are "greater", "less" or "two.sided" compared to the simulated null hypothesis. See `ks.test` for details.
- `plot`: if T, plots calls `plotQQunif` as well.
testZeroInflation

Details

The function applies a *ks.test* for uniformity on the simulated residuals.

Author(s)

Florian Hartig

See Also

testResiduals, testOutliers, testDispersion, testZeroInflation, testGeneric, testTemporalAutocorrelation, testSpatialAutocorrelation

Description

This function compares the observed number of zeros with the zeros expected from simulations.

Usage

```r
testZeroInflation(simulationOutput, ...)  
```

Arguments

- `simulationOutput`
 - a DHARMa object with simulated residuals created with `simulateResiduals`
- `...`
 - further arguments to `testGeneric`

Details

shows the expected distribution of zeros against the observed

Author(s)

Florian Hartig

See Also

testResiduals, testUniformity, testOutliers, testDispersion, testGeneric, testTemporalAutocorrelation, testSpatialAutocorrelation
Examples

creating test data

testData = createData(sampleSize = 200, overdispersion = 0.5, randomEffectVariance = 0)
fittedModel <- glm(observedResponse ~ Environment1, family = "poisson", data = testData)
simulationOutput <- simulateResiduals(fittedModel = fittedModel)

plot(simulationOutput, quantreg = FALSE)

Distribution tests

testUniformity(simulationOutput)

Dispersion tests

testDispersion(simulationOutput, alternative = "less") # underdispersion

Both together

testResiduals(simulationOutput)

Special tests

testing zero inflation

testZeroInflation(simulationOutput)

testing generic summaries

countOnes <- function(x) sum(x == 1) # testing for number of 1s

testGeneric(simulationOutput, summary = countOnes) # 1-inflation

testGeneric(simulationOutput, summary = countOnes, alternative = "less") # 1-deficit

means <- function(x) mean(x) # testing if mean prediction fits

testGeneric(simulationOutput, summary = means)

spread <- function(x) sd(x) # testing if mean sd fits

testGeneric(simulationOutput, summary = spread)

Refitted

if model is refitted, a different test will be called

simulationOutput <- simulateResiduals(fittedModel = fittedModel, refit = TRUE, seed = 12)
testDispersion(simulationOutput)

Test per group

simulationOutput = recalculateResiduals(simulationOutput, group = testData$group)
testDispersion(simulationOutput)
Index

createData, 3
createDHARMA, 4

DHARMA, 7
DHARMA-package (DHARMA), 7

fitted.gam, 8

getRandomState, 8
getResponse, 10
getSimulations, 10

hist.DHARMA, 11

ks.test, 38, 39

plot.DHARMA, 12, 18, 26
plotConventionalResiduals, 14
plotQQunif, 12, 13, 14, 17, 18, 38
plotResiduals, 11–13, 15, 16, 18
plotSimulatedResiduals, 11, 15, 17, 18, 24
print.DHARMA, 18, 26

qqunif, 14

reCalculateResiduals, 19, 26
refit.glmmTMB, 20
refit.lm, 21
residuals.DHARMA, 22, 26
runBenchmarks, 23

simulateResiduals, 5, 8, 12, 18, 19, 22, 24, 27, 29, 31, 32, 34, 35, 37–39

testDispersion, 27, 29, 32–34, 36, 38, 39
testGeneric, 27, 29, 32, 34, 36, 38, 39
testModel, 31
testOutliers, 12, 14, 16, 27, 29, 31, 34, 36, 38, 39
testOverdispersion, 26, 32
testOverdispersionParametric, 33