Package ‘DIFboost’

June 11, 2020

Type Package
Title Detection of Differential Item Functioning (DIF) in Rasch Models by Boosting Techniques
Version 0.3
Date 2020-06-11
Imports mboost, penalized, stabs
Author Gunther Schauberger
Maintainer Gunther Schauberger <gunther.schauberger@tum.de>
License GPL-2
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2020-06-11 19:00:18 UTC

R topics documented:

 DIFboost-package .. 2
 DIFboost ... 3
 print.DIFboost .. 5
 simul.data .. 6

Index 8
Description

A package to perform DIFboost, a method to detect DIF (Differential Item Functioning) in Rasch Models. It can handle settings with many covariates and also metric covariates simultaneously. The method is described in Tutz and Schaubberger (2015). Model/variable selection is performed using stability selection.

Details

The method assumes the DIFmodel from Tutz and Schaubberger (2015) where boosting is used for DIF detection. Computation is based on the functions `gamboost` and `stabsel`.

Author(s)

Gunther Schaubberger
<gunther.schauberger@tum>
https://www.sg.tum.de/epidemiologie/team/schauberger/

References

See Also

DIFboost, print.DIFboost

Examples

```r
## Not run:
data(simul.data)
Y <- simul.data[,1:10]
X <- simul.data[,11:13]
m1 <- DIFboost(Y = Y, X = X)
print(m1)
## End(Not run)
```
DIFboost

Detection of Differential Item Functioning (DIF) in Rasch Models by Boosting Techniques

Description

A function to perform DIFboost, a method to detect DIF (Differential Item Functioning) in Rasch Models. It can handle settings with many covariates and also metric covariates simultaneously. The method is described in Tutz and Schauburger (2015). Model/variable selection is performed using stability selection.

Usage

DIFboost(Y, X, mstop = 400, trace = TRUE, cutoff = 0.9, B = 500, mc.cores = 1, q = 0.6 * I)

Arguments

Y: Data frame (one row per person, one column per item) containing response. May only contain 0 or 1.
X: Data frame (one row per person, one column per covariate) containing covariates. Has to be standardized.
mstop: Number of boosting iterations maximally performed in one iteration of the stability selection.
trace: Should the trace of the single boosting steps be printed?
cutoff: Cutoff value for stability selection.
B: Number of subsamples used for stability selection.
mc.cores: Number of cores for parallelized stability selection. For windows machines, parallelization is not possible.
q: Maximum number of base learner to be included in the boosting algorithm for one subsample in stability selection. By default set to 60 percent of the total number of items.

details

The method assumes the DIFmodel from Tutz and Schauburger (2015) where boosting is used for DIF detection. Computation is based on the functions gamboost and stabsel.

Value

- model: Model from initial gamboost fit
- dif.mat: Estimates of the item-specific parameter estimates, with zeros for non-DIF items
- coefficients: coefficient vector with all estimates from refitted model
- theta: Estimated person abilities
beta Estimated item difficulties
gamma Estimated item-specific parameters
P Number of (valid) persons
I Number of items
names.y Names of the items
names.x Names of the covariates
design.matrix Design matrix for refitted model
PFER upper bound for the per-family error rate. For details see `stabsel`.
lin.pred linear predictor from refitted model
DIF.items Which items have been detected to be DIF items?
ref.item Reference item
phat selection probabilities for single base learners in stability selection. For details see `stabsel`
cutoff cutoff value used for stability selection

Author(s)
Gunther Schauberger
<gunther.schauberger@tum>
https://www.sg.tum.de/epidemiologie/team/schauberger/

References

See Also
`print.DIFboost`, `gamboost`, `stabsel`

Examples
```r
## Not run:
data(simul.data)

Y <- simul.data[,1:10]
X <- simul.data[,11:13]

m1 <- DIFboost(Y = Y, X = X)
print(m1)

## End(Not run)
```
Description

Prints the most important output of a DIFboost object.

Usage

```r
## S3 method for class 'DIFboost'
print(x, ...)
```

Arguments

- `x`
 DIFboost object, created by `DIFboost`
- `...`
 Further arguments to be passed to the `print` function.

Author(s)

Gunther Schauberger
<gunther.schauberger@tum>
https://www.sg.tum.de/epidemiologie/team/schauberger/

References

See Also

`DIFboost`

Examples

```r
## Not run:
data(simul.data)

Y <- simul.data[,1:10]
X <- simul.data[,11:13]

m1 <- DIFboost(Y = Y, X = X)
print(m1)

## End(Not run)
```
Simulated data set

Description

Simulated data set with 100 persons, 10 items and 3 (standardized) covariates. Items 1, 2 and 3 are DIF items.

Usage

data(simul.data)

Format

Item1 Item 1, DIF item
Item2 Item 2, DIF item
Item3 Item 3, DIF item
Item4 Item 4, non-DIF item
Item5 Item 5, non-DIF item
Item6 Item 6, non-DIF item
Item7 Item 7, non-DIF item
Item8 Item 8, non-DIF item
Item9 Item 9, non-DIF item
Item10 Item 10, non-DIF item
CovBin1 Binary covariate (standardized)
CovBin2 Binary covariate (standardized)
CovMet Metric covariate (standardized)

Author(s)

Gunther Schaubberger
<gunther.schauberger@tum>
https://www.sg.tum.de/epidemiologie/team/schauberger/

References

See Also

DIFboost, print.DIFboost
Examples

```r
## Not run:
data(simul.data)

Y <- simul.data[,1:10]
X <- simul.data[,11:13]

m1 <- DIFboost(Y = Y, X = X)
print(m1)

## End(Not run)
```
Index

*Topic DIFboost

DIFboost, 3
DIFboost, 2, 3, 5, 6
DIFboost-package, 2

gamboost, 2–4

print, 5
print.DIFboost, 2, 4, 5, 6

simul.data, 6
stabsel, 2–4