Package ‘DIFboost’

October 12, 2022

Type Package

Title Detection of Differential Item Functioning (DIF) in Rasch Models by Boosting Techniques

Version 0.3

Date 2020-06-11

Imports mboost, penalized, stabs

Author Gunther Schauberger

Maintainer Gunther Schauberger <gunther.schauberger@tum.de>

License GPL-2

LazyLoad yes

NeedsCompilation no

Repository CRAN

Date/Publication 2020-06-11 19:00:18 UTC

R topics documented:

DIFboost-package .. 2
DIFboost .. 3
print.DIFboost ... 5
simul.data .. 6

Index 8
Description

A package to perform DIFboost, a method to detect DIF (Differential Item Functioning) in Rasch Models. It can handle settings with many covariates and also metric covariates simultaneously. The method is described in Tutz and Schaubinger (2015). Model/variable selection is performed using stability selection.

Details

The method assumes the DIFmodel from Tutz and Schaubinger (2015) where boosting is used for DIF detection. Computation is based on the functions `gamboost` and `stabsel`.

Author(s)

Gunther Schaubinger
<gunther.schauberger@tum>
https://www.sg.tum.de/epidemiologie/team/schauberger/

References

See Also

DIFboost, print.DIFboost

Examples

```r
## Not run:
data(simul.data)
Y <- simul.data[,1:10]
X <- simul.data[,11:13]
m1 <- DIFboost(Y = Y, X = X)
print(m1)
## End(Not run)
```
DIFboost

Detection of Differential Item Functioning (DIF) in Rasch Models by Boosting Techniques

Description
A function to perform DIFboost, a method to detect DIF (Differential Item Functioning) in Rasch Models. It can handle settings with many covariates and also metric covariates simultaneously. The method is described in Tutz and Schauerger (2015). Model/variable selection is performed using stability selection.

Usage
DIFboost(Y, X, mstop = 400, trace = TRUE, cutoff = 0.9, B = 500, mc.cores = 1, q = 0.6 * I)

Arguments
Y
Data frame (one row per person, one column per item) containing response. May only contain 0 or 1.

X
Data frame (one row per person, one column per covariate) containing covariates. Has to be standardized.

mstop
Number of boosting iterations maximally performed in one iteration of the stability selection.

trace
Should the trace of the single boosting steps be printed?

cutoff
Cutoff value for stability selection.

B
Number of subsamples used for stability selection.

mc.cores
Number of cores for parallelized stability selection. For windows machines, parallelization is not possible.

q
Maximum number of base learner to be included in the boosting algorithm for one subsample in stability selection. By default set to 60 percent of the total number of items.

Details
The method assumes the DIFmodel from Tutz and Schauerger (2015) where boosting is used for DIF detection. Computation is based on the functions gamboost and stabsel.

Value
model
Model from initial gamboost fit

dif.mat
Estimates of the item-specific parameter estimates, with zeros for non-DIF items

coefficients
Coefficient vector with all estimates from refitted model

theta
Estimated person abilities
beta Estimated item difficulties
gamma Estimated item-specific parameters
P Number of (valid) persons
I Number of items
names.y Names of the items
names.x Names of the covariates
design.matrix Design matrix for refitted model
PFER upper bound for the per-family error rate. For details see stabsel.
lin.pred linear predictor from refitted model
DIF.items Which items have been detected to be DIF items?
ref.item Reference item
phat selection probabilities for single base learners in stability selection. For details see stabsel
cutoff cutoff value used for stability selection

Author(s)

Gunther Schauberger
<gunther.schauberger@tum>
https://www.sg.tum.de/epidemiologie/team/schauberger/

References

See Also

print.DIFboost, gamboost, stabsel

Examples

Not run:
data(simul.data)

Y <- simul.data[,1:10]
X <- simul.data[,11:13]

m1 <- DIFboost(Y = Y, X = X)
print(m1)

End(Not run)
print.DIFboost

Print function for DIFboost

Description

Prints the most important output of a DIFboost object.

Usage

S3 method for class 'DIFboost'
print(x, ...)

Arguments

x DIFboost object, created by DIFboost
... Further arguments to be passed to the print function.

Author(s)

Gunther Schauberger
<gunther.schauberger@tum>
https://www.sg.tum.de/epidemiologie/team/schauberger/

References

See Also

DIFboost

Examples

Not run:
data(simul.data)

Y <- simul.data[,1:10]
X <- simul.data[,11:13]

m1 <- DIFboost(Y = Y, X = X)
print(m1)

End(Not run)
Simulated data set

Description
Simulated data set with 100 persons, 10 items and 3 (standardized) covariates. Items 1, 2 and 3 are DIF items.

Usage
data(simul.data)

Format
Item1 Item 1, DIF item
Item2 Item 2, DIF item
Item3 Item 3, DIF item
Item4 Item 4, non-DIF item
Item5 Item 5, non-DIF item
Item6 Item 6, non-DIF item
Item7 Item 7, non-DIF item
Item8 Item 8, non-DIF item
Item9 Item 9, non-DIF item
Item10 Item 10, non-DIF item
CovBin1 Binary covariate (standardized)
CovBin2 Binary covariate (standardized)
CovMet Metric covariate (standardized)

Author(s)
Gunther Schaubberger
<gunther.schauberger@tum>
https://www.sg.tum.de/epidemiologie/team/schauberger/

References

See Also
DIFboost, print.DIFboost
Examples

Not run:
```r
data(simul.data)

Y <- simul.data[,1:10]
X <- simul.data[,11:13]

m1 <- DIFboost(Y = Y, X = X)
print(m1)
```

End(Not run)
Index

* **DIFboost**
 DIFboost, 3

DIFboost, 2, 3, 5, 6
DIFboost-package, 2

gamboost, 2–4

print, 5
print.DIFboost, 2, 4, 5, 6

simul.data, 6
stabsel, 2–4