Package ‘DIsccBIO’

October 12, 2022

Date 2021-04-28

Title A User-Friendly Pipeline for Biomarker Discovery in Single-Cell Transcriptomics

Version 1.2.0

Description An open, multi-algorithmic pipeline for easy, fast and efficient analysis of cellular sub-populations and the molecular signatures that characterize them. The pipeline consists of four successive steps: data pre-processing, cellular clustering with pseudo-temporal ordering, defining differential expressed genes and biomarker identification. More details on Ghannoum et. al. (2021) [doi:10.3390/ijms22031399]. This package implements extensions of the work published by Ghannoum et. al. (2019) [doi:10.1101/700989].

License MIT + file LICENSE

Encoding UTF-8

Imports methods, TSCAN, boot, htr, mclust, statmod, igraph, RWeka, philentropy, NetIndices, png, grDevices, RColorBrewer, ggplot2, rpart, fpc, cluster, rpart.plot, tsne, AnnotationDbi, org.Hs.eg.db, graphics, stats, utils, impute

Depends R (>= 4.0), SingleCellExperiment

Suggests testthat, Seurat

LazyData true

RoxygenNote 7.1.1

URL https://github.com/ocbe-uio/DIsccBIO

BugReports https://github.com/ocbe-uio/DIsccBIO/issues

Collate 'DIsccBIO-classes.R' 'DIsccBIO-generic-ClassVectoringDT.R'
'DIsccBIO-generic-ClustDiffGenes.R' 'DIsccBIO-generic-Clustexp.R'
'DIsccBIO-generic-DEGanalysis.R'
'DIsccBIO-generic-DEGanalysis2clust.R'
'DIsccBIO-generic-Exprmclust.R'
'DIsccBIO-generic-FinalPreprocessing.R'
'DIsccBIO-generic-FindOutliers.R'
R topics documented:

'as.DISCBIO' ... 3
check.format ... 4
ClassVectoringDT .. 4
ClustDiffGenes ... 5
Clustexp ... 7
clustheatmap ... 8
comptSNE ... 9
customConvertFeats .. 11
DEGanalysis .. 11
DEGanalysis2clust .. 13
DISCBIO ... 14
DISCBIO2SingleCellExperiment 15
Exprmclust ... 16
FinalPreprocessing ... 17
FindOutliers .. 18
foldchange.seq.twoclass.unpaired 20
HumanMouseGeneIds .. 20
J48DT ... 20
as.DISCBIO

Convert Single Cell Data Objects to DISCBIO.

Description

Initialize a DISCBIO-class object starting from a SingleCellExperiment object or a Seurat object.

Usage

as.DISCBIO(x, ...)

Index

as.DISCBIO
ClassVectoringDT

Arguments
x an object of class Seurat or SingleCellExperiment
... additional parameters to pass to the function

Details
Additional parameters to pass to ‘list’ include, if x is a Seurat object, "assay", which is a string indicating the assay slot used to obtain data from (defaults to ‘RNA’)

Value
a DISCBIO-class object

check.format Check format

Description
Check format

Usage
check.format(y, resp.type, censoring.status = NULL)

Arguments
y y
resp.type resp type
censoring.status censoring status

ClassVectoringDT Generating a class vector to be used for the decision tree analysis.

Description
This function generates a class vector for the input dataset so the decision tree analysis can be implemented afterwards.
ClustDiffGenes

Usage

ClassVectoringDT(
 object,
 Clustering = "K-means",
 K,
 First = "CL1",
 Second = "CL2",
 sigDEG,
 quiet = FALSE
)

S4 method for signature 'DISCBIO'
ClassVectoringDT(
 object,
 Clustering = "K-means",
 K,
 First = "CL1",
 Second = "CL2",
 sigDEG,
 quiet = FALSE
)

Arguments

 object DISCBIO class object.
 Clustering Clustering has to be one of the following: ["K-means", "MB"]. Default is "K-means"
 K A numeric value of the number of clusters.
 First A string vector showing the first target cluster. Default is "CL1"
 Second A string vector showing the second target cluster. Default is "CL2"
 sigDEG A data frame of the differentially expressed genes (DEGs) generated by running "DEGanalysis()" or "DEGanalysisM()".
 quiet If ‘TRUE’, suppresses intermediary output

Value

 A data frame.

ClustDiffGenes

Description

 Creates a table of cluster differences
Usage

```r
ClustDiffGenes(
  object,
  K,
  pValue = 0.05,
  fdr = 0.01,
  export = FALSE,
  quiet = FALSE,
  filename_up = "Up-DEG-cluster",
  filename_down = "Down-DEG-cluster",
  filename_binom = "binomial-DEGsTable",
  filename_sigdeg = "binomial-sigDEG"
)
```

S4 method for signature 'DISCBIO'

```r
ClustDiffGenes(
  object,
  K,
  pValue = 0.05,
  fdr = 0.01,
  export = FALSE,
  quiet = FALSE,
  filename_up = "Up-DEG-cluster",
  filename_down = "Down-DEG-cluster",
  filename_binom = "binomial-DEGsTable",
  filename_sigdeg = "binomial-sigDEG"
)
```

Arguments

- **object** DISCBIO class object.
- **K** A numeric value of the number of clusters.
- **pValue** A numeric value of the p-value. Default is 0.05.
- **fdr** A numeric value of the false discovery rate. Default is 0.01.
- **export** A logical vector that allows writing the final gene list in excel file. Default is TRUE.
- **quiet** if ‘TRUE’, suppresses intermediate text output
- **filename_up** Name of the exported "up" file (if ‘export=TRUE’)
- **filename_down** Name of the exported "down" file (if ‘export=TRUE’)
- **filename_binom** Name of the exported binomial file
- **filename_sigdeg** Name of the exported sigDEG file

Value

A list containing two tables.
Examples

```r
sc <- DISCBIO(valuesG1msTest)
sc <- Clustexp(sc, cln=3, quiet=TRUE)
cdiff <- ClustDiffGenes(sc, K=3, fdr=.3, export=FALSE)
str(cdiff)
```  
```r
cdiff[[2]]
```  

Clustexp
Clustering of single-cell transcriptome data

Description

This function performs the initial clustering of the RaceID algorithm.

Usage

```r
Clustexp(
  object,
  clustnr = 3,
  bootnr = 50,
  metric = "pearson",
  do.gap = TRUE,
  SE.method = "Tibs2001SEmax",
  SE.factor = 0.25,
  B.gap = 50,
  cln = 0,
  rseed = NULL,
  quiet = FALSE
)
```

```r
## S4 method for signature 'DISCBIO'
Clustexp(
  object,
  clustnr = 3,
  bootnr = 50,
  metric = "pearson",
  do.gap = TRUE,
  SE.method = "Tibs2001SEmax",
  SE.factor = 0.25,
  B.gap = 50,
  cln = 0,
  rseed = NULL,
  quiet = FALSE
)
```
Arguments

object DISCBIO class object.

clustnr Maximum number of clusters for the derivation of the cluster number by the saturation of mean within-cluster-dispersion. Default is 20.

bootnr A numeric value of bootstrapping runs for clusterboot. Default is 50.

metric Is the method to transform the input data to a distance object. Metric has to be one of the following: ['spearman', 'pearson', 'kendall', 'euclidean', 'maximum', 'manhattan', 'canberra', 'binary', 'minkowski'].

do.gap A logical vector that allows generating the number of clusters based on the gap statistics. Default is TRUE.

SE.method The SE.method determines the first local maximum of the gap statistics. The SE.method has to be one of the following:['firstSEmax', 'Tibs2001SEmax', 'globalSEmax', 'firstmax', 'globalmax']. Default is 'Tibs2001SEmax'

SE.factor A numeric value of the fraction of the standard deviation by which the local maximum is required to differ from the neighboring points it is compared to. Default is 0.25.

B.gap Number of bootstrap runs for the calculation of the gap statistics. Default is 50

cln Number of clusters to be used. Default is NULL and the cluster number is inferred by the saturation criterion.

rseed Random integer to enforce reproducible clustering results.

quiet if ‘TRUE’, intermediate output is suppressed

Value

The DISCBIO-class object input with the cpart slot filled.

Examples

sc <- DISCBIO(valuesG1msTest) # changes signature of data
sc <- Clustexp(sc, cln=2)

clustheatmap Plotting clusters in a heatmap representation of the cell distances

Description

This functions plots a heatmap of the distance matrix grouped by clusters. Individual clusters are highlighted with rainbow colors along the x and y-axes.
comptSNE

Usage

clustheatmap(
 object,
 clustering_method = "k-means",
 hmethod = "single",
 rseed = NULL,
 quiet = FALSE,
 plot = TRUE
)

S4 method for signature 'DISCBIO'
clustheatmap(
 object,
 clustering_method = "k-means",
 hmethod = "single",
 rseed = NULL,
 quiet = FALSE,
 plot = TRUE
)

Arguments

 DISCBIO class object.

clustering_method
 either "k-means" or "model-based" ("k" and "mb" are also accepted)

hmethod
 Agglomeration method used for determining the cluster order from hierarchical
 clustering of the cluster medoids. This should be one of "ward.D", "ward.D2",
 "single", "complete", "average". Default is "single".

rseed
 Random integer to fix random results.

quiet
 if 'TRUE', intermediary output is suppressed

plot
 if 'TRUE', plots the heatmap; otherwise, just prints cclmo

Value

 Unless otherwise specified, a heatmap and a vector of the underlying cluster order.

Description

 This function is used to compute the t-Distributed Stochastic Neighbor Embedding (t-SNE).
Usage

comptSNE(
 object,
 rseed = NULL,
 max_iter = 5000,
 epoch = 500,
 quiet = FALSE,
 ...
)

S4 method for signature 'DISCBIO'
comptSNE(
 object,
 rseed = NULL,
 max_iter = 5000,
 epoch = 500,
 quiet = FALSE,
 ...
)

Arguments

 object DISCBIO class object.
 rseed Random integer to yield reproducible maps across different runs
 max_iter maximum number of iterations to perform.
 epoch The number of iterations in between update messages.
 quiet if ‘TRUE’, suppresses intermediate output
 ... other parameters to be passed to ‘tsne::tsne’

Value

The DISCBIO-class object input with the tsne slot filled.

Examples

sc <- DISCBIO(valuesG1msTest) # changes signature of data
sc <- Clustexp(sc, cln=2) # data must be clustered before plotting
sc <- comptSNE(sc, max_iter=30)
head(sc@tsne)
customConvertFeats

Automatic Feature Id Conversion.

Description

Attempt to automatically convert non-ENSEMBL feature identifiers to ENSEMBL identifiers. Features are included as rownames of the input data.frame (or matrix). It is assumed that feature identifiers (i.e., rownames of \(x \)) come from human or mouse genomes, and are either OFFICIAL SYMBOLS or ENTREZIDS. If less than 20 is identified, an error will be thrown.

Usage

\[
\text{customConvertFeats}(x, \text{verbose} = \text{TRUE})
\]

Arguments

\(x \)
data.frame or matrix including raw counts (typically, UMIs), where rows are features (genes) and rownames are feature identifiers (SYMBOLs or ENTREZIDs).

\(\text{verbose} \)
logical, shall messages be printed to inform about conversion advances.

Value

a data.frame where rownames are ENSEMBL IDs. The new feature IDs are automatically imputed based on existing feature IDs (SYMBOLs or ENTREZIDs).

DEGanalyzer

Determining differentially expressed genes (DEGs) between all individual clusters.

Description

This function defines DEGs between all individual clusters generated by either K-means or model based clustering.

Usage

\[
\text{DEGanalyzer}(\text{object}, \text{K}, \text{Clustering} = "\text{K-means}", \text{fdr} = 0.05, \text{name} = "\text{Name}", \text{export} = \text{FALSE}, \text{quiet} = \text{FALSE}, \text{plot} = \text{TRUE}, \text{filename_deg} = "\text{DEGsTable}",
\]

filename_sigdeg = "sigDEG",
...
)

S4 method for signature 'DISCBIO'
DEGanalysis(
 object,
 K,
 Clustering = "K-means",
 fdr = 0.05,
 name = "Name",
 export = FALSE,
 quiet = FALSE,
 plot = TRUE,
 filename_deg = "DEGsTable",
 filename_sigdeg = "sigDEG",
 ...
)

Arguments

object DISCBIO class object.

K A numeric value of the number of clusters.

Clustering Clustering has to be one of the following: ["K-means","MB"]. Default is "K-means"

fdr A numeric value of the false discovery rate. Default is 0.05.

name A string vector showing the name to be used to save the resulted tables.

export A logical vector that allows writing the final gene list in excel file. Default is TRUE.

quiet if ‘TRUE’, suppresses intermediate text output

plot if ‘TRUE’, plots are generated

filename_deg Name of the exported DEG table

filename_sigdeg Name of the exported sigDEG table

... additional parameters to be passed to samr()

Value

A list containing two tables.
Determining differentially expressed genes (DEGs) between two particular clusters.

Description

This function defines DEGs between particular clusters generated by either K-means or model based clustering.

Usage

```r
DEGanalysis2clust(
  object,
  K,
  Clustering = "K-means",
  fdr = 0.05,
  name = "Name",
  First = "CL1",
  Second = "CL2",
  export = FALSE,
  quiet = FALSE,
  plot = TRUE,
  filename_deg = "DEGsTable",
  filename_sigdeg = "sigDEG",
  ...
)
```

S4 method for signature 'DISCBIO'

```r
DEGanalysis2clust(
  object,
  K,
  Clustering = "K-means",
  fdr = 0.05,
  name = "Name",
  First = "CL1",
  Second = "CL2",
  export = FALSE,
  quiet = FALSE,
  plot = TRUE,
  filename_deg = "DEGsTable",
  filename_sigdeg = "sigDEG",
  ...
)
```

Arguments

- **object** DISCBIO class object.
DISCBIO

The DISCBIO Class

Description

The DISCBIO class is the central object storing all information generated throughout the pipeline.

Arguments

object An DISCBIO object.

Details

DISCBIO

Slots

SingleCellExperiment Representation of the single cell input data, including both cells from regular and ERCC spike-in samples. Data are stored in a SingleCellExperiment object.

expdata The raw expression data matrix with cells as columns and genes as rows in sparse matrix format. It does not contain ERCC spike-ins.

expdataAll The raw expression data matrix with cells as columns and genes as rows in sparse matrix format. It can contain ERCC spike-ins.

ndata Data with expression normalized to one for each cell.

K A numeric value of the number of clusters.

Clustering Clustering has to be one of the following: ["K-means","MB"]. Default is "K-means"

fdr A numeric value of the false discovery rate. Default is 0.05.

name A string vector showing the name to be used to save the resulted tables.

First A string vector showing the first target cluster. Default is "CL1"

Second A string vector showing the second target cluster. Default is "CL2"

export A logical vector that allows writing the final gene list in excel file. Default is TRUE.

quiet if ‘TRUE’, suppresses intermediate text output

plot if ‘TRUE’, plots are generated

filename_deg Name of the exported DEG table

filename_sigdeg Name of the exported sigDEG table

... additional parameters to be passed to samr()
DISCBIO2SingleCellExperiment

fdata Filtered data with expression normalized to one for each cell.
distances A distance matrix.
tsne A data.frame with coordinates of two-dimensional tsne layout for the K-means clustering.
background A list storing the polynomial fit for the background model of gene expression variability. It is used for outlier identification.
out A list storing information on outlier cells used for the prediction of rare cell types.
cpart A vector containing the final clustering partition computed by K-means.
fcol1 A vector containing the colour scheme for the clusters.
filterpar A list containing the parameters used for cell and gene filtering based on expression.
clusterpar A list containing the parameters used for the K-means clustering.
outlierpar A list containing the parameters used for outlier identification.
kmeans A list containing the results of running the Clustexp() function.
MBclusters A vector containing the final clustering partition computed by Model-based clustering.
kordering A vector containing the Pseudo-time ordering based on k-means clusters.
MBordering A vector containing the Pseudo-time ordering based on Model-based clusters.
MBtsne A data.frame with coordinates of two-dimensional tsne layout for the Model-based clustering.
noiseF A vector containing the gene list resulted from running the noise filtering.
FinalGeneList A vector containing the final gene list resulted from running the noise filtering or/and the expression filtering.

Examples

class(valuesG1msTest)
G1_reclassified <- DISCBIO(valuesG1msTest)
class(G1_reclassified)
str(G1_reclassified, max.level=2)
identical(G1_reclassified@expdataAll, valuesG1msTest)

DISCBIO2SingleCellExperiment

Convert a DISCBIO object to a SingleCellExperiment.

Description

Extract the SingleCellExperiment input data from the corresponding input slot in a DISCBIO-class object

Usage

DISCBIO2SingleCellExperiment(x)
Arguments

x an object of class DISCBIO

Value

a SingleCellExperiment-class object

Examples

g1_disc <- DISCBIO(valuesG1msTest)
class(g1_disc)
g1_sce <- DISCBIO2SingleCellExperiment(g1_disc)
class(g1_sce)

Exprmclust

Performing Model-based clustering on expression values

Description

this function first uses principal component analysis (PCA) to reduce dimensionality of original data. It then performs model-based clustering on the transformed expression values.

Usage

Exprmclust(
 object,
 K = 3,
 modelNames = "VVV",
 reduce = TRUE,
 cluster = NULL,
 quiet = FALSE
)

S4 method for signature 'DISCBIO'
Exprmclust(
 object,
 K = 3,
 modelNames = "VVV",
 reduce = TRUE,
 cluster = NULL,
 quiet = FALSE
)

S4 method for signature 'data.frame'
Exprmclust(

FinalPreprocessing

Final Preprocessing

This function generates the final filtered normalized dataset.

Usage

FinalPreprocessing(
 object,
 GeneFiltering = "NoiseF",
 export = FALSE,
 quiet = FALSE,
 fileName = "filteredDataset"
)

S4 method for signature 'DISCBIO'
FinalPreprocessing(
 object,
 GeneFiltering = "NoiseF",
 export = FALSE,
 quiet = FALSE,
 fileName = "filteredDataset"
)
FindOutliers

Arguments

- **object**: DISCBIO class object.
- **GeneFiltering**: GeneFiltering has to be one of the followings: ["NoiseF","ExpF"]. Default is "NoiseF".
- **export**: A logical vector that allows writing the final gene list in excel file. Default is TRUE.
- **quiet**: if ‘TRUE’, intermediary output is suppressed
- **fileName**: File name for exporting (if ‘export = TRUE’)

Value

The DISCBIO-class object input with the FinalGeneList slot filled.

Examples

```r
sc <- DISCBIO(valuesG1msTest)
scale <- NoiseFiltering(sc, percentile=0.9, CV=0.2, export=FALSE)
scale <- FinalPreprocessing(scale, GeneFiltering="NoiseF", export=FALSE)
```

Description

This function performs the outlier identification for k-means and model-based clustering.

Usage

```r
FindOutliers(
  object,
  K,
  outminc = 5,
  outlg = 2,
  probthr = 0.001,
  thr = 2^-(1:40),
  outdistquant = 0.75,
  plot = TRUE,
  quiet = FALSE
)
```
S4 method for signature 'DISCBIO'

FindOutliers(
 object,
 K,
 outminc = 5,
 outlg = 2,
 probthr = 0.001,
 thr = 2^-(1:40),
 outdistquant = 0.75,
 plot = TRUE,
 quiet = FALSE
)

Arguments

- **object**
 DISCBIO class object.

- **K**
 Number of clusters to be used.

- **outminc**
 minimal transcript count of a gene in a clusters to be tested for being an outlier gene. Default is 5.

- **outlg**
 Minimum number of outlier genes required for being an outlier cell. Default is 2.

- **probthr**
 outlier probability threshold for a minimum of outlg genes to be an outlier cell. This probability is computed from a negative binomial background model of expression in a cluster. Default is 0.001.

- **thr**
 probability values for which the number of outliers is computed in order to plot the dependence of the number of outliers on the probability threshold. Default is $2^{-1:40}$.

- **outdistquant**
 Real number between zero and one. Outlier cells are merged to outlier clusters if their distance smaller than the outdistquant-quantile of the distance distribution of pairs of cells in the orginal clusters after outlier removal. Default is 0.75.

- **plot**
 if ‘TRUE’, produces a plot of -log10prob per K

- **quiet**
 if ‘TRUE’, intermediary output is suppressed

Value

A named vector of the genes containing outlying cells and the number of cells on each.

Examples

```r
sc <- DISCBIO(valuesG1msTest)
sc <- Clustexp(sc, cln=2) # K-means clustering
FindOutliers(sc, K=2)
```
foldchange.seq.twoclass.unpaired

Foldchange of twoclass unpaired sequencing data

Description
Foldchange of twoclass unpaired sequencing data

Usage
foldchange.seq.twoclass.unpaired(x, y, depth)

Arguments
- x
- y
- depth

HumanMouseGeneIds

Human and Mouse Gene Identifiers.

Description
Data.frame including ENTREZID, SYMBOL, and ENSEMBL gene identifiers of human and mouse genes.

Source
Data were imported, modified, and formatted from the Mus.musculus (ver 1.3.1) and the Homo.sapiens (ver 1.3.1) BioConductor libraries.

J48DT

J48 Decision Tree

Description
The decision tree analysis is implemented over a training dataset, which consisted of the DEGs obtained by either SAMseq or the binomial differential expression.

Usage
J48DT(data, quiet = FALSE, plot = TRUE)
Arguments

data A data frame resulted from running the function ClassVectoringDT.
quiet If ‘TRUE’, suppresses intermediary output
plot If ‘FALSE’, suppresses plot output

Value

Information about the J48 model and, by default, a plot of the decision tree.

Description

This function evaluates the performance of the generated trees for error estimation by ten-fold cross validation assessment.

Usage

J48DTeval(data, num.folds = 10, First = "CL1", Second = "CL2", quiet = FALSE)

Arguments

data The resulted data from running the function J48DT.
num.folds A numeric value of the number of folds for the cross validation assessment. Default is 10.
First A string vector showing the first target cluster. Default is “CL1”
Second A string vector showing the second target cluster. Default is “CL2”
quiet If ‘TRUE’, suppresses intermediary output

Value

Statistics about the J48 model
Jaccard

Jaccard's similarity

Description

Robustness of the clusters can be assessed by Jaccard’s similarity, which reflects the reproducibility of individual clusters across bootstrapping runs. Jaccard’s similarity is the intersect of two clusters divided by the union.

Usage

\[
\text{Jaccard}(\text{object}, \text{Clustering} = \text{"K-means"}, K, \text{plot} = \text{TRUE}, R = 100, \ldots)
\]

Arguments

- **object**: DISCBIO class object.
- **Clustering**: Clustering has to be one of the following: ["K-means","MB"]. Default is "K-means"
- **K**: A numeric value of the number of clusters
- **plot**: if ‘TRUE’, plots the mean Jaccard similarities
- **R**: number of bootstrap replicates
- **...**: Further arguments passed to boot::boot

Value

A plot of the mean Jaccard similarity coefficient per cluster.

KmeanOrder

Pseudo-time ordering based on k-means clusters

Description

This function takes the exact output of exprmclust function and construct Pseudo-time ordering by mapping all cells onto the path that connects cluster centers.

Usage

\[
\text{KmeanOrder}(\text{object}, \text{quiet} = \text{FALSE}, \text{export} = \text{FALSE}, \text{filename} = \text{"Cellular_pseudo-time_ordering_based_on_k-means-clusters"})
\]
S4 method for signature 'DISCBIO'
KmeanOrder(
 object,
 quiet = FALSE,
 export = FALSE,
 filename = "Cellular_pseudo-time_ordering_based_on_k-meansclusters"
)

Arguments

- **object**: DISCBIO class object.
- **quiet**: if `TRUE`, suppresses intermediary output
- **export**: if `TRUE`, exports order table to csv
- **filename**: Name of the exported file (if `export=TRUE`)

Value

The DISCBIO-class object input with the kordering slot filled.

Note

This function has been replaced by pseudoTimeOrdering(), but it is being kept for legacy purposes. It will, however, be removed from future versions of DIscBIO.

NetAnalysis

Networking analysis.

Description

This function checks the connectivity degree and the betweenness centrality, which reflect the communication flow in the defined PPI networks.

Usage

NetAnalysis(data, export = FALSE, FileName = "NetworkAnalysisTable-1")

Arguments

- **data**: Protein-protein interaction data frame resulted from running the PPI function.
- **export**: if `TRUE`, exports the analysis table as a csv file
- **FileName**: suffix for the file name (if export = TRUE)

Value

A network analysis table
Networking

Plotting the network.

Description

This function uses STRING API to plot the network.

Usage

Networking(
 data,
 FileName = NULL,
 species = "9606",
 plot_width = 25,
 plot_height = 15,
 retries = 3
)

Arguments

data A gene list.

FileName A string vector showing the name to be used to save the resulted network. If 'NULL', the network will be saved to a temporary directory.

species The taxonomy name/id. Default is "9606" for Homo sapiens.

plot_width Plot width

plot_height Plot height

retries maximum number of attempts to connect to the STRING api.

Value

A plot of the network

References

https://string-db.org/api/
NoiseFiltering

Description

Given a matrix or data frame of count data, this function estimates the size factors as follows: Each column is divided by the geometric means of the rows. The median (or, if requested, another location estimator) of these ratios (skipping the genes with a # geometric mean of zero) is used as the size factor for this column. Source: DESeq package.

Usage

```r
NoiseFiltering(
  object,
  percentile = 0.8,
  CV = 0.3,
  geneCol = "yellow",
  FgeneCol = "black",
  erccCol = "blue",
  Val = TRUE,
  plot = TRUE,
  export = FALSE,
  quiet = FALSE,
  filename = "Noise_filtering_genes_test"
)
```

S4 method for signature 'DISCBIO'

```r
NoiseFiltering(
  object,
  percentile = 0.8,
  CV = 0.3,
  geneCol = "yellow",
  FgeneCol = "black",
  erccCol = "blue",
  Val = TRUE,
  plot = TRUE,
  export = FALSE,
  quiet = FALSE,
  filename = "Noise_filtering_genes_test"
)
```

Arguments

- **object**
 DISCBIO class object.

- **percentile**
 A numeric value of the percentile. It is used to validate the ERCC spik-ins. Default is 0.8.
Normalizedata

A numeric value of the coefficient of variation. It is used to validate the ERCC spik-ins. Default is 0.5.

geneCol Color of the genes that did not pass the filtration.
FgeneCol Color of the genes that passed the filtration.
erccCol Color of the ERCC spik-ins.
Val A logical vector that allows plotting only the validated ERCC spike-ins. Default is TRUE. If Val=FALSE will plot all the ERCC spike-ins.
plot A logical vector that allows plotting the technical noise. Default is TRUE.
export A logical vector that allows writing the final gene list in excel file. Default is TRUE.
quiet if ‘TRUE’, suppresses printed output
filename Name of the exported file (if ‘export=TRUE’)

Value

The DISCBIO-class object input with the noiseF slot filled.

Note

This function should be used only if the dataset has ERCC.

Examples

sc <- DISCBIO(valuesG1msTest) # changes signature of data
dsFiltered <- NoiseFiltering(sc, export=FALSE)
str(sd_filtered)

Description

This function allows filtering of genes and cells to be used in the downstream analysis.

Usage

Normalizedata(
 object,
 minTotal = 1000,
 minExpr = 0,
 minNumber = 0,
 maxExpr = Inf,
 downsample = FALSE,
 dsn = 1,
rseed = NULL
)

S4 method for signature 'DISCBIO'
Normalizedata(
 object,
 mintotal = 1000,
 minexpr = 0,
 minnumber = 0,
 maxexpr = Inf,
 downsample = FALSE,
 dsn = 1,
 rseed = NULL
)

Arguments

object DISCBIO class object.
mintotal minimum total transcript number required. Cells with less than mintotal trans-
cripts are filtered out. Default is 1000.
minexpr minimum required transcript count of a gene in at least minnumber cells. All other genes are filtered out. Default is 0.
minnumber minimum number of cells that are expressing each gene at minexpr transcripts. Default is 0.
maxexpr maximum allowed transcript count of a gene in at least a single cell after normal-
alization or downsampling. All other genes are filtered out. Default is Inf.
downsample A logical vector. Default is FALSE. If downsample is set to TRUE, then tran-
script counts are downsampling to mintotal transcripts per cell, instead of the normal-
alization. Downsampling versions of the transcript count data are averaged across dsn samples
dsn A numeric value of the number of samples to be used to average the down-
sampled versions of the transcript count data. Default is 1 which means that sampling noise should be comparable across cells. For high numbers of dsn the data will become similar to the median normalization.
rseed Random integer to enforce reproducible clustering. results

Value

The DISCBIO-class object input with the ndata and fdata slots filled.

Examples

sc <- DISCBIO(valuesG1msTest) # changes signature of data

In this case this function is used to normalize the reads
sc_normal <- Normalizedata(
 sc, mintotal=1000, minexpr=0, minnumber=0, maxexpr=Inf, downsample=FALSE,
 dsn=1, rseed=17000
)
PCAplotSymbols

Plot PCA symbols

Description
Generates a plot of grouped PCA components

Usage
PCAplotSymbols(object, types = NULL)

Arguments
object
DISCBIO class object.
types
If types=NULL then the names of the cells will be grouped automatically. Default is NULL

Value
Plot of the Principal Components

plotExptSNE

Highlighting gene expression in the t-SNE map

Description
The t-SNE map representation can also be used to analyze expression of a gene or a group of genes, to investigate cluster specific gene expression patterns

Usage
plotExptSNE(object, g, n = NULL)

S4 method for signature 'DISCBIO'
plotExptSNE(object, g, n = NULL)
Arguments

- object: DISCBIO class object.
- g: Individual gene name or vector with a group of gene names corresponding to a subset of valid row names of thendata slot of the DISCBIO object.
- n: String of characters representing the title of the plot. Default is NULL and the first element of g is chosen.

Value

t-SNE plot for one particular gene

Description

Plotting Gap Statistics

Usage

plotGap(object, y_limits = NULL)

S4 method for signature 'DISCBIO'
plotGap(object, y_limits = NULL)

Arguments

- object: DISCBIO class object.
- y_limits: 2-length numeric vector with the limits for the gap plot

Value

A plot of the gap statistics
plotLabelstSNE
tSNE map with labels

Description

Visualizing k-means or model-based clusters using tSNE maps

Usage

```r
plotLabelstSNE(object)
```

```r
## S4 method for signature 'DISCBIO'
plotLabelstSNE(object)
```

Arguments

- `object`
 DISCBIO class object.

Value

Plot containing the ID of the cells in each cluster

PlotMBpca

Plotting pseudo-time ordering or gene expression in Model-based clustering in PCA

Description

The PCA representation can either be used to show pseudo-time ordering or the gene expression of a particular gene.

Usage

```r
PlotMBpca(object, type = "order", g = NULL, n = NULL)
```

Arguments

- `object`
 DISCBIO class object.

- `type`
 either `"order"` to plot pseudo-time ordering or `"exp"` to plot gene expression

- `g`
 Individual gene name or vector with a group of gene names corresponding to a subset of valid row names of the `ndata` slot of the DISCBIO object. Ignored if `type = "order"`.

- `n`
 String of characters representing the title of the plot. Default is `NULL` and the first element of `g` is chosen. Ignored if `type = "order"`.
PlotmclustMB

Value
A plot of the PCA.

Description
Plot the model-based clustering results

Usage
PlotmclustMB(object)

S4 method for signature 'DISCBIO'
PlotmclustMB(object)

Arguments
object DISCBIO class object.

Value
A plot of the PCA.

plotOrderTsne

Description
The tSNE representation can also be used to show the pseudo-time ordering.

Usage
plotOrderTsne(object)

S4 method for signature 'DISCBIO'
plotOrderTsne(object)

Arguments
object DISCBIO class object.

Value
A plot of the pseudo-time ordering.
plotSilhouette
Silhouette Plot for K-means clustering

Description

The silhouette provides a representation of how well each point is represented by its cluster in comparison to the closest neighboring cluster. It computes for each point the difference between the average similarity to all points in the same cluster and to all points in the closest neighboring cluster. This difference it normalize such that it can take values between -1 and 1 with higher values reflecting better representation of a point by its cluster.

Usage

```r
plotSilhouette(object, K)
```

S4 method for signature 'DISCBIO'

```r
plotSilhouette(object, K)
```

Arguments

- `object` DISCBIO class object.
- `K` A numeric value of the number of clusters

Value

A silhouette plot

plotSymbolstSNE
tSNE map for K-means clustering with symbols

Description

Visualizing the K-means clusters using tSNE maps

Usage

```r
plotSymbolstSNE(object, types = NULL, legloc = "bottomright")
```

S4 method for signature 'DISCBIO'

```r
plotSymbolstSNE(object, types = NULL, legloc = "bottomright")
```
Arguments

object DISCBIO class object.
types If types=NULL then the names of the cells will be grouped automatically. Default is NULL
legloc A keyword from the list "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center". Default is "bottomright"

Value
Plot of tsne objet slot, grouped by gene.

plottSNE tSNE map

Description
Visualizing the k-means or model-based clusters using tSNE maps

Usage
plottSNE(object)

S4 method for signature 'DISCBIO'
plottSNE(object)

Arguments
object DISCBIO class object.

Value
A plot of t-SNEs.

PPI Defining protein-protein interactions (PPI) over a list of genes,

Description
This function uses STRING-api. The outcome of STRING analysis will be stored in comma-separated values files.

Usage
PPI(data, FileName = NULL, species = "9606")
Arguments

data A gene list.

Filename A string vector showing the name to be used to save the resulted table. If null, no file will be exported.

species The taxonomy name/id. Default is "9606" for Homo sapiens.

Value

Either CSV files stored in the user’s file system and its corresponding ‘data.frame’ object in R or an R object containing that information.

description

Internal function that prepares a pre-treated dataset for use in several examples.

Usage

prepExampleDataset(dataset, save = TRUE)

Arguments

dataset Dataset used for transformation

save save results?

Details

This function serves the purpose of treating datasets such as valuesG1msReduced to reduce examples of other functions by bypassing some analysis steps covered in the vignettes.

Value

Two rda files, ones for K-means clustering and another for Model-based clustering.

Author(s)

Waldir Leoncio
pseudoTimeOrdering

Pseudo-time ordering

Description

This function takes the exact output of exprmclust function and construct Pseudo-time ordering by mapping all cells onto the path that connects cluster centers.

Usage

```r
pseudoTimeOrdering(
  object,
  quiet = FALSE,
  export = FALSE,
  filename = "Cellular_pseudo-time_ordering"
)
```

Arguments

- `object` DISCBIO class object.
- `quiet` if `TRUE`, suppresses intermediary output
- `export` if `TRUE`, exports order table to csv
- `filename` Name of the exported file (if `export=TRUE`)

Value

The DISCBIO-class object input with the kordering slot filled.

rankcols

Rank columns

Description

Ranks the elements within each col of the matrix x and returns these ranks in a matrix

Usage

```r
rankcols(x)
```
Arguments

x x

Note

this function is equivalent to 'samr::rankcol', but uses 'apply' to rank the columns instead of a compiled Fortran function which was causing our DEGanalysis functions to freeze in large datasets.

reformatSiggenes Reformat Siggenes Table

Description

Reformats the Siggenes table output from the SAMR package

Usage

reformatSiggenes(table)

Arguments

table output from 'samr::samr.compute.siggenes.table'

Author(s)

Waldir Leoncio

See Also

replaceDecimals

replaceDecimals Replace Decimals

Description

Replaces decimals separators between comma and periods on a character vector

Usage

replaceDecimals(x, from = "", to = ".")

Arguments

x vector of characters
from decimal separator on input file
to decimal separator for output file
Note

This function was especially designed to be used with retomatSiggenes

See Also

reformatSiggenes

resa

Resampling

Description

Corresponds to `samr::resample`

Usage

resa(x, d, nresamp = 20)

Arguments

x data matrix. nrow=#gene, ncol=#sample

d estimated sequencing depth

nresamp number of resamplings

Value

xresamp: an rank array with dim #gene*#sample*nresamp

retrieveURL

Retries a URL

Description

Retries a URL

Usage

retrieveURL(data, species, outputFormat, maxRetries = 3, successCode = 200)

Arguments

data A gene list

species The taxonomy name/id. Default is "9606" for Homo sapiens

outputFormat format of the output. Can be "highres_image", "tsv", "json", "tsv-no-header", "xml"

maxRetries maximum number of attempts to connect to the STRING api.

successCode Status code number that represents success
RpartDT

Description

The decision tree analysis is implemented over a training dataset, which consisted of the DEGs obtained by either SAMseq or the binomial differential expression.

Usage

```
RpartDT(data, quiet = FALSE, plot = TRUE)
```

Arguments

- **data**: The exact output of exprmclust function.
- **quiet**: If ‘TRUE’, suppresses intermediary output
- **plot**: If ‘FALSE’, suppresses plot output

Value

Information about the model and, by default, a plot of the decision tree.

RpartEVAL

Description

This function evaluates the performance of the generated trees for error estimation by ten-fold cross validation assessment.

Usage

```
RpartEVAL(data, num.folds = 10, First = "CL1", Second = "CL2", quiet = FALSE)
```
Arguments

data The resulted data from running the function J48DT.
num.folds A numeric value of the number of folds for the cross validation assessment. Default is 10.
First A string vector showing the first target cluster. Default is "CL1"
Second A string vector showing the second target cluster. Default is "CL2"
quiet If ‘TRUE’, suppresses intermediary output

Value

Performance statistics of the model

Description

This function is an adaptation of ‘samr::samr’

Usage

```r
sammy(
  data, 
  resp.type = c("Quantitative", "Two class unpaired", "Survival", "Multiclass", 
                 "One class", "Two class paired", "Two class unpaired timecourse", 
                 "One class timecourse", "Two class paired timecourse", "Pattern discovery"),
  assay.type = c("array", "seq"),
  s0 = NULL,
  s0.perc = NULL,
  nperms = 100,
  center.arrays = FALSE,
  testStatistic = c("standard", "wilcoxon"),
  time.summary.type = c("slope", "signed.area"),
  regression.method = c("standard", "ranks"),
  return.x = FALSE,
  knn.neighbors = 10,
  random.seed = NULL,
  nresamp = 20,
  nresamp.perm = NULL,
  xl.mode = c("regular", "firsttime", "next20", "lasttime"),
  xl.time = NULL,
  xl.prevfit = NULL
)
```
Arguments

data Data object with components x- p by n matrix of features, one observation per column (missing values allowed); y- n-vector of outcome measurements; censoring.status- n-vector of censoring status (1= died or event occurred, 0= survived, or event was censored), needed for a censored survival outcome

resp.type Problem type: "Quantitative" for a continuous parameter (Available for both array and sequencing data); "Two class unpaired" (for both array and sequencing data); "Survival" for censored survival outcome (for both array and sequencing data); "Multiclass": more than 2 groups (for both array and sequencing data); "One class" for a single group (only for array data); "Two class paired" for two classes with paired observations (for both array and sequencing data); "Two class unpaired timecourse" (only for array data), "One class time course" (only for array data), "Two class,Paired timecourse" (only for array data), or "Pattern discovery" (only for array data)

assay.type Assay type: "array" for microarray data, "seq" for counts from sequencing

s0 Exchangeability factor for denominator of test statistic; Default is automatic choice. Only used for array data.

s0.perc Percentile of standard deviation values to use for s0; default is automatic choice; -1 means s0=0 (different from s0.perc=0, meaning s0=zeroeth percentile of standard deviation values= min of sd values. Only used for array data.

nperms Number of permutations used to estimate false discovery rates

center.arrays Should the data for each sample (array) be median centered at the outset? Default =FALSE. Only used for array data.

testStatistic Test statistic to use in two class unpaired case. Either "standard" (t-statistic) or "wilcoxon" (Two-sample wilcoxon or Mann-Whitney test). Only used for array data.

time.summary.type Summary measure for each time course: "slope", or "signed.area"). Only used for array data.

regression.method Regression method for quantitative case: "standard", (linear least squares) or "ranks" (linear least squares on ranked data). Only used for array data.

return.x Should the matrix of feature values be returned? Only useful for time course data, where x contains summaries of the features over time. Otherwise x is the same as the input data data\$x

knn.neighbors Number of nearest neighbors to use for imputation of missing features values. Only used for array data.

random.seed Optional initial seed for random number generator (integer)

nresamp For assay.type="seq", number of resamples used to construct test statistic. Default 20. Only used for sequencing data.

nresamp.perm For assay.type="seq", number of resamples used to construct test statistic for permutations. Default is equal to nresamp and it must be at most nresamp. Only used for sequencing data.
samr.estimate.depth

Description

Estimate sequencing depths

Usage

samr.estimate.depth(x)

Arguments

x
data matrix. nrow=#gene, ncol=#sample

Value

depth: estimated sequencing depth. a vector with len sample.

valuesG1msTest

Single-cells data from a myxoid liposarcoma cell line

Description

A sample of single cells from a myxoid liposarcoma cell line. Columns refer to samples and rows refer to genes. The last rows refer to external RNA controls consortium (ERCC) spike-ins. This dataset is part of a larger dataset containing 94 single cells. The complete dataset is fully compatible with this package and an rda file can be obtained at https://github.com/ocbe-uio/DiscBIO/blob/dev/data/valuesG1ms.rda
VolcanoPlot

Description

Plotting differentially expressed genes (DEGs) in a particular cluster. Volcano plots are used to readily show the DEGs by plotting significance versus fold-change on the y and x axes, respectively.

Usage

VolcanoPlot(object, value = 0.05, name = NULL, fc = 0.5, FS = 0.4)

Arguments

object A data frame showing the differentially expressed genes (DEGs) in a particular cluster
value A numeric value of the false discovery rate. Default is 0.05. Default is 0.05
name A string vector showing the name to be used on the plot title
fc A numeric value of the fold change. Default is 0.5.
FS A numeric value of the font size. Default is 0.4.

Value

A volcano plot

wilcoxon.unpaired.seq.func

Twoclass Wilcoxon statistics

Description

Twoclass Wilcoxon statistics

Usage

wilcoxon.unpaired.seq.func(xresamp, y)

Arguments

xresamp an rank array with dim #gene*#sample*nresamp
y outcome vector of values 1 and 2

Value

the statistic.
Index

as.DISCBIO, 3
check.format, 4
ClassVectoringDT, 4
ClassVectoringDT, DISCBIO-method
(ClassVectoringDT), 4
ClustDiffGenes, 5
ClustDiffGenes, DISCBIO-method
(ClustDiffGenes), 5
Clustexp, 7
Clustexp, DISCBIO-method (Clustexp), 7
clustheatmap, 8
clustheatmap, DISCBIO-method
(clustheatmap), 8
comptSNE, 9
comptSNE, DISCBIO-method (comptSNE), 9
customConvertFeats, 11
DEGanalysis, 11
DEGanalysis, DISCBIO-method
(DEGanalysis), 11
DEGanalysis2clust, 13
DEGanalysis2clust, DISCBIO-method
(DEGanalysis2clust), 13
DISCBIO, 14
DISCBIO-class (DISCBIO), 14
DISCBIO-class, (DISCBIO), 14
DISCBIO2SingleCellExperiment, 15
Exprmclust, 16
Exprmclust, data.frame-method
(Exprmclust), 16
Exprmclust, DISCBIO-method (Exprmclust), 16
FinalPreprocessing, 17
FinalPreprocessing, DISCBIO-method
(FinalPreprocessing), 17
FindOutliers, 18
FindOutliers, DISCBIO-method
(FindOutliers), 18
foldchange.seq.twoclass.unpaired, 20
HumanMouseGeneIds, 20
J48DT, 20
J48DTeval, 21
Jaccard, 22
KmeanOrder, 22
KmeanOrder, DISCBIO-method (KmeanOrder), 22
NetAnalysis, 23
Networking, 24
NoiseFiltering, 25
NoiseFiltering, DISCBIO-method
(NoiseFiltering), 25
Normalizedata, 26
Normalizedata, DISCBIO-method
(Normalizedata), 26
PCApplotSymbols, 28
PCApplotSymbols, DISCBIO-method
(PCAplotSymbols), 28
plotExptSNE, 28
plotExptSNE, DISCBIO-method
(plotExptSNE), 28
plotGap, 29
plotGap, DISCBIO-method (plotGap), 29
plotLabelstSNE, 30
plotLabelstSNE, DISCBIO-method
(plotLabelstSNE), 30
PlotMBpca, 30
PlotmclustMB, 31
PlotmclustMB, DISCBIO-method
(PlotmclustMB), 31
plotOrderTsne, 31
plotOrderTsne, DISCBIO-method
(plotOrderTsne), 31
plotSilhouette, 32
plotSilhouette,DISCBIO-method
 (plotSilhouette), 32
plotSymbolstSNE, 32
plotSymbolstSNE,DISCBIO-method
 (plotSymbolstSNE), 32
plottSNE, 33
plottSNE,DISCBIO-method (plottSNE), 33
PPI, 33
prepExampleDataset, 34
pseudoTimeOrdering, 35
pseudoTimeOrdering,DISCBIO-method
 (pseudoTimeOrdering), 35
rankcols, 35
reformatSiggenes, 36
replaceDecimals, 36
resa, 37
retrieveURL, 37
RpartDT, 38
RpartEVAL, 38
sammy, 39
samr.estimate.depth, 41
valuesG1msTest, 41
VolcanoPlot, 42
wilcoxon.unpaired.seq.func, 42