Package ‘DIscBIO’

November 6, 2023

Date 2023-11-06
Title A User-Friendly Pipeline for Biomarker Discovery in Single-Cell Transcriptomics
Version 1.2.2
License MIT + file LICENSE
Encoding UTF-8
Imports methods, TSCAN, httr, mclust, statmod, igraph, RWeka, vegan, NetIndices, png, grDevices, RColorBrewer, ggplot2, rpart, fpc, cluster, rpart.plot, tsne, AnnotationDbi, org.Hs.eg.db, graphics, stats, utils, impute, withr
Depends R (>= 4.0), SingleCellExperiment
Suggests testthat, Seurat
LazyData true
RoxygenNote 7.2.3
URL https://github.com/ocbe-uiodiscBIO
BugReports https://github.com/ocbe-uiodiscBIO/issues
Collate 'DIscBIO-classes.R' 'DIscBIO-generic-ClassVectoringDT.R'
 'DIscBIO-generic-ClustDiffGenes.R' 'DIscBIO-generic-Clustexp.R'
 'DIscBIO-generic-DEGanalysis.R'
 'DIscBIO-generic-DEGanalysis2clust.R'
 'DIscBIO-generic-Exprmclust.R'
 'DIscBIO-generic-FinalPreprocessing.R'
 'DIscBIO-generic-FindOutliers.R'
R topics documented:

as.DISCBIO
check.format
ClassVectoringDT
ClustDiffGenes
Clustexp
comptSNE
customConvertFeats
DEGanalysis
DEGanalysis2clust
DISCBIO
DISCBIO2SingleCellExperiment
Exprmclust
FinalPreprocessing
FindOutliers
foldchange.seq.twoclass.unpaired
HumanMouseGeneIds

J48DT.R J48DTeval.R
PlotMBpca.R RpartDT.R RpartEVAL.R VolcanoPlot.R
.bootstrap.R calc_pcareduceres.R cross.val.R
customConverters.R datasets.R
'internal-functions-samr-adapted.R' 'internal-functions.R'

NeedsCompilation no

Author Salim Ghannoum [aut, cph],
Alvaro Köhn-Luque [aut, ths],
Waldir Leoncio [cre, aut],
Damiano Fantini [ctb]

Maintainer Waldir Leoncio <w.l.netto@medisin.uio.no>

Repository CRAN

Date/Publication 2023-11-06 10:50:02 UTC
as.DISCBIO

Convert Single Cell Data Objects to DISCBIO.

Description

Initialize a DISCBIO-class object starting from a SingleCellExperiment object or a Seurat object

Usage

as.DISCBIO(x, ...)

Index

as.DISCBIO

j48dt

j48dteval

jaccard

kmeanorder

netanalysis

networking

noisefiltering

normalizedata

pcaplotsymbols

plotexptSNE

plotgap

plotlabelsSNE

plotMBpca

plotmclustMB

plotordertSne

plothsilhouette

plotsymbolsSNE

plottSNE

PPI

prepExampleDataset

pseudotimeordering

rankcols

reformatSiggenes

replaceDecimals

resa

retrieveURL

RpartDT

RpartEV AL

sammy

samr.estimate.depth

valuesG1msTest

VolcanoPlot

wilcoxon.unpaired.seq.func
Arguments

x an object of class Seurat or SingleCellExperiment

Details

Additional parameters to pass to ‘list’ include, if x is a Seurat object, "assay", which is a string indicating the assay slot used to obtain data from (defaults to 'RNA')

Value

a DISCBIO-class object

description

check.format Check format

Description

Check format

Usage

check.format(y, resp.type, censoring.status = NULL)

Arguments

y y
resp.type resp type
censoring.status censoring status

Generating a class vector to be used for the decision tree analysis.

Description

This function generates a class vector for the input dataset so the decision tree analysis can be implemented afterwards.
Usage

ClassVectoringDT(
 object,
 Clustering = "K-means",
 K,
 First = "CL1",
 Second = "CL2",
 sigDEG,
 quiet = FALSE
)

S4 method for signature 'DISCBIO'
ClassVectoringDT(
 object,
 Clustering = "K-means",
 K,
 First = "CL1",
 Second = "CL2",
 sigDEG,
 quiet = FALSE
)

Arguments

- **object** DISCBIO class object.
- **Clustering** Clustering has to be one of the following: ["K-means", "MB"]. Default is "K-means"
- **K** A numeric value of the number of clusters.
- **First** A string vector showing the first target cluster. Default is "CL1"
- **Second** A string vector showing the second target cluster. Default is "CL2"
- **sigDEG** A data frame of the differentially expressed genes (DEGs) generated by running "DEGanalysis()" or "DEGanalysisM()".
- **quiet** If 'TRUE', suppresses intermediary output

Value

A data frame.

Description

Creates a table of cluster differences
Usage

ClustDiffGenes(
 object,
 K,
 pValue = 0.05,
 fdr = 0.01,
 export = FALSE,
 quiet = FALSE,
 filename_up = "Up-DEG-cluster",
 filename_down = "Down-DEG-cluster",
 filename_binom = "binomial-DEGsTable",
 filename_sigdeg = "binomial-sigDEG"
)

S4 method for signature 'DISCBIO'
ClustDiffGenes(
 object,
 K,
 pValue = 0.05,
 fdr = 0.01,
 export = FALSE,
 quiet = FALSE,
 filename_up = "Up-DEG-cluster",
 filename_down = "Down-DEG-cluster",
 filename_binom = "binomial-DEGsTable",
 filename_sigdeg = "binomial-sigDEG"
)

Arguments

object DISCBIO class object.
K A numeric value of the number of clusters.
pValue A numeric value of the p-value. Default is 0.05.
fdr A numeric value of the false discovery rate. Default is 0.01.
export A logical vector that allows writing the final gene list in excel file. Default is TRUE.
quiet if ‘TRUE’, suppresses intermediate text output
filename_up Name of the exported "up" file (if ‘export=TRUE’)
filename_down Name of the exported "down" file (if ‘export=TRUE’)
filename_binom Name of the exported binomial file
filename_sigdeg Name of the exported sigDEG file

Value

A list containing two tables.
Examples

```r
sc <- DISCBIO(valuesG1msTest)
scl <- Clustexp(sc, cln = 3, quiet = TRUE)
cdiff <- ClustDiffGenes(sc, K = 3, fdr = .3, export = FALSE)
str(cdiff)
cdiff[[2]]
```

Description

This function performs the initial clustering of the RaceID algorithm.

Usage

```r
Clustexp(
  object,
  clustnr = 3,
  bootnr = 50,
  metric = "pearson",
  do.gap = TRUE,
  SE.method = "Tibs2001SEmax",
  SE.factor = 0.25,
  B.gap = 50,
  cln = 0,
  rseed = NULL,
  quiet = FALSE
)
```

Clustexp

Clustering of single-cell transcriptome data

Description

This function performs the initial clustering of the RaceID algorithm.

Usage

```r
Clustexp(
  object,
  clustnr = 3,
  bootnr = 50,
  metric = "pearson",
  do.gap = TRUE,
  SE.method = "Tibs2001SEmax",
  SE.factor = 0.25,
  B.gap = 50,
  cln = 0,
  rseed = NULL,
  quiet = FALSE
)
```
Arguments

object DISCBIO class object.

clustnr Maximum number of clusters for the derivation of the cluster number by the saturation of mean within-cluster-dispersion. Default is 20.

boottnr A numeric value of bootstraping runs for clusterboot. Default is 50.

metric Is the method to transform the input data to a distance object. Metric has to be one of the following: ['spearman', 'pearson', 'kendall', 'euclidean', 'maximum', 'manhattan', 'canberra', 'binary', 'minkowski'].

do.gap A logical vector that allows generating the number of clusters based on the gap statistics. Default is TRUE.

SE.method The SE.method determines the first local maximum of the gap statistics. The SE.method has to be one of the following:['firstSEmax', 'Tibs2001SEmax', 'globalSEmax', 'firstmax', 'globalmax']. Default is 'Tibs2001SEmax'

SE.factor A numeric value of the fraction of the standard deviation by which the local maximum is required to differ from the neighboring points it is compared to. Default is 0.25.

B.gap Number of bootstrap runs for the calculation of the gap statistics. Default is 50

cln Number of clusters to be used. Default is NULL and the cluster number is inferred by the saturation criterion.

rseed Random integer to enforce reproducible clustering results.

quiet if ‘TRUE’, intermediate output is suppressed

Value
The DISCBIO-class object input with the cpart slot filled.

Examples

sc <- DISCBIO(valuesG1msTest) # changes signature of data
sc <- Clustexp(sc, cln = 2)

Value
Plotting clusters in a heatmap representation of the cell distances

Description
This functions plots a heatmap of the distance matrix grouped by clusters. Individual clusters are highlighted with rainbow colors along the x and y-axes.
Usage

clustheatmap(
 object,
 clustering_method = "k-means",
 hmethod = "single",
 rseed = NULL,
 quiet = FALSE,
 plot = TRUE
)

S4 method for signature 'DISCBIO'
clustheatmap(
 object,
 clustering_method = "k-means",
 hmethod = "single",
 rseed = NULL,
 quiet = FALSE,
 plot = TRUE
)

Arguments

object DISCBIO class object.
clustering_method either "k-means" or "model-based" ("k" and "mb" are also accepted)
hmethod Agglomeration method used for determining the cluster order from hierarchical clustering of the cluster medoids. This should be one of "ward.D", "ward.D2", "single", "complete", "average". Default is "single".
rseed Random integer to fix random results.
quiet if ‘TRUE’, intermediary output is suppressed
plot if ‘TRUE’, plots the heatmap; otherwise, just prints cclmo

Value

Unless otherwise specified, a heatmap and a vector of the underlying cluster order.

Descripton

This function is used to compute the t-Distributed Stochastic Neighbor Embedding (t-SNE).
Usage

comptSNE(
 object,
 rseed = NULL,
 max_iter = 5000,
 epoch = 500,
 quiet = FALSE,
 ...
)

S4 method for signature 'DISCBIO'
comptSNE(
 object,
 rseed = NULL,
 max_iter = 5000,
 epoch = 500,
 quiet = FALSE,
 ...
)

Arguments

object DISCBIO class object.
rseed Random integer to to yield reproducible maps across different runs
max_iter maximum number of iterations to perform.
epoch The number of iterations in between update messages.
quiet if ‘TRUE’, suppresses intermediate output
... other parameters to be passed to ‘tsne::tsne’

Value

The DISCBIO-class object input with the tsne slot filled.

Examples

s <- DISCBIO(valuesG1mstest) # changes signature of data
sc <- Clustexp(sc, cln = 2) # data must be clustered before plotting
sc <- comptSNE(sc, max_iter = 30)
head(sc@tsne)
customConvertFeats

Automatic Feature Id Conversion.

Description

Attempt to automatically convert non-ENSEMBL feature identifiers to ENSEMBL identifiers. Features are included as rownames of the input data.frame (or matrix). It is assumed that feature identifiers (i.e., rownames of x) come from human or mouse genomes, and are either OFFICIAL SYMBOLS or ENTREZIDS. If less than 20 is identified, an error will be thrown.

Usage

```r
customConvertFeats(x, verbose = TRUE)
```

Arguments

- `x`: data.frame or matrix including raw counts (typically, UMIs), where rows are features (genes) and rownames are feature identifiers (SYMBOLs or ENTREZIDs).
- `verbose`: logical, shall messages be printed to inform about conversion advances.

Value

a data.frame where rownames are ENSEMBL IDs. The new feature IDs are automatically imputed based on existing feature IDs (SYMBOLs or ENTREZIDs).

DEGanalysis

Determining differentially expressed genes (DEGs) between all individual clusters.

Description

This function defines DEGs between all individual clusters generated by either K-means or model based clustering.

Usage

```r
DEGanalysis(  
  object,  
  K,  
  Clustering = "K-means",  
  fdr = 0.05,  
  name = "Name",  
  export = FALSE,  
  quiet = FALSE,  
  plot = TRUE,  
  filename_deg = "DEGsTable",  
)```
DEGanalysis

filename_sigdeg = "sigDEG",
...
)

## S4 method for signature 'DISCBIO'
DEGanalysis(
  object,
  K,
  Clustering = "K-means",
  fdr = 0.05,
  name = "Name",
  export = FALSE,
  quiet = FALSE,
  plot = TRUE,
  filename_deg = "DEGsTable",
  filename_sigdeg = "sigDEG",
  ...
)

Arguments

object
  DISCBIO class object.

K
  A numeric value of the number of clusters.

Clustering
  Clustering has to be one of the following: ["K-means","MB"]. Default is "K-means"

fdr
  A numeric value of the false discovery rate. Default is 0.05.

name
  A string vector showing the name to be used to save the resulted tables.

export
  A logical vector that allows writing the final gene list in excel file. Default is TRUE.

quiet
  if ‘TRUE’, suppresses intermediate text output

plot
  if ‘TRUE’, plots are generated

filename_deg
  Name of the exported DEG table

filename_sigdeg
  Name of the exported sigDEG table

... additional parameters to be passed to samr()

Value

A list containing two tables.
DEGanalysis2clust

Determining differentially expressed genes (DEGs) between two particular clusters.

Description

This function defines DEGs between particular clusters generated by either K-means or model based clustering.

Usage

DEGanalysis2clust(
  object,
  K,
  Clustering = "K-means",
  fdr = 0.05,
  name = "Name",
  First = "CL1",
  Second = "CL2",
  export = FALSE,
  quiet = FALSE,
  plot = TRUE,
  filename_deg = "DEGsTable",
  filename_sigdeg = "sigDEG",
  ...
)

Arguments

object DISCBIO class object.
K  A numeric value of the number of clusters.
Clustering  Clustering has to be one of the following: ["K-means","MB"). Default is "K-means"
FDR  A numeric value of the false discovery rate. Default is 0.05.
name  A string vector showing the name to be used to save the resulted tables.
First  A string vector showing the first target cluster. Default is "CL1"
Second  A string vector showing the second target cluster. Default is "CL2"
export  A logical vector that allows writing the final gene list in excel file. Default is TRUE.
quiet  if ‘TRUE’, suppresses intermediate text output
plot  if ‘TRUE’, plots are generated
filename_deg  Name of the exported DEG table
filename_sigdeg  Name of the exported sigDEG table
...  additional parameters to be passed to samr()

Value

A list containing two tables.

The DISCBIO Class

Description

The DISCBIO class is the central object storing all information generated throughout the pipeline.

Arguments

object  An DISCBIO object.

Details

DISCBIO

Slots

SingleCellExperiment  Representation of the single cell input data, including both cells from regular and ERCC spike-in samples. Data are stored in a SingleCellExperiment object.
expdata  The raw expression data matrix with cells as columns and genes as rows in sparse matrix format. It does not contain ERCC spike-ins.
expdataAll  The raw expression data matrix with cells as columns and genes as rows in sparse matrix format. It can contain ERCC spike-ins.
data  Data with expression normalized to one for each cell.
**DISCBIO2SingleCellExperiment**

`fdata` Filtered data with expression normalized to one for each cell.

`distances` A distance matrix.

`tsne` A data.frame with coordinates of two-dimensional tsne layout for the K-means clustering.

`background` A list storing the polynomial fit for the background model of gene expression variability. It is used for outlier identification.

`out` A list storing information on outlier cells used for the prediction of rare cell types.

`cpart` A vector containing the final clustering partition computed by K-means.

`fcol` A vector containing the colour scheme for the clusters.

`filterpar` A list containing the parameters used for cell and gene filtering based on expression.

`clusterpar` A list containing the parameters used for the K-means clustering.

`outlierpar` A list containing the parameters used for outlier identification.

`kmeans` A list containing the results of running the Clustexp() function.

`MBclusters` A vector containing the final clustering partition computed by Model-based clustering.

`kordering` A vector containing the Pseudo-time ordering based on k-means clusters.

`MBordering` A vector containing the Pseudo-time ordering based on Model-based clusters.

`MBtsne` A data.frame with coordinates of two-dimensional tsne layout for the Model-based clustering.

`noiseF` A vector containing the gene list resulted from running the noise filtering.

`FinalGeneList` A vector containing the final gene list resulted from running the noise filtering or/and the expression filtering.

**Examples**

```r
class(valuesG1msTest)
G1_reclassified <- DISCBIO(valuesG1msTest)
class(G1_reclassified)
str(G1_reclassified, max.level = 2)
identical(G1_reclassified@expdataAll, valuesG1msTest)
```

---

**DISCBIO2SingleCellExperiment**

*Convert a DISCBIO object to a SingleCellExperiment.*

---

**Description**

Extract the SingleCellExperiment input data from the corresponding input slot in a DISCBIO-class object

**Usage**

`DISCBIO2SingleCellExperiment(x)`
Arguments

x an object of class DISCBIO

Value

a SingleCellExperiment-class object

Examples

g1_disc <- DISCBIO(valuesG1msTest)
class(g1_disc)
g1_sce <- DISCBIO2SingleCellExperiment(g1_disc)
class(g1_sce)

Description

Performing Model-based clustering on expression values

this function first uses principal component analysis (PCA) to reduce dimensionality of original data. It then performs model-based clustering on the transformed expression values.

Usage

Exprmclust(
  object,
  K = 3,
  modelNames = "VVV",
  reduce = TRUE,
  cluster = NULL,
  quiet = FALSE
)

## S4 method for signature 'DISCBIO'
Exprmclust(
  object,
  K = 3,
  modelNames = "VVV",
  reduce = TRUE,
  cluster = NULL,
  quiet = FALSE
)

## S4 method for signature 'data.frame'
Exprmclust(
  object,
FinalPreprocessing

\[
K = 3, \\
\text{modelNames} = "VVV", \\
\text{reduce} = \text{TRUE}, \\
\text{cluster} = \text{NULL}, \\
\text{quiet} = \text{FALSE}
\]

Arguments

- **object** DISCBIO class object.
- **K** An integer vector specifying all possible cluster numbers. Default is 3.
- **modelNames** model to be used in model-based clustering. By default "ellipsoidal, varying volume, shape, and orientation" is used.
- **reduce** A logical vector that allows performing the PCA on the expression data. Default is TRUE.
- **cluster** A vector showing the ID of cells in the clusters.
- **quiet** if 'TRUE', suppresses intermediary output

Value

If `object` is of class DISCBIO, the output is the same object with the MBclusters slot filled. If the `object` is a data frame, the function returns a named list containing the four objects that together correspond to the contents of the MBclusters slot.

Description

This function generates the final filtered normalized dataset.

Usage

FinalPreprocessing(
  object, 
  GeneFiltering = "NoiseF", 
  export = FALSE, 
  quiet = FALSE, 
  fileName = "filteredDataset"
)

## S4 method for signature 'DISCBIO'
FinalPreprocessing(
  object, 
  GeneFiltering = "NoiseF", 
  export = FALSE, 
  ...)
FindOutliers

quiet = FALSE,
fileName = "filteredDataset"
)

Arguments

object DISCBIO class object.
GeneFiltering GeneFiltering has to be one of the followings: ["NoiseF","ExpF"]. Default is "NoiseF"
export A logical vector that allows writing the final gene list in excel file. Default is TRUE.
quiet if 'TRUE', intermediary output is suppressed
fileName File name for exporting (if 'export = TRUE')

Value

The DISCBIO-class object input with the FinalGeneList slot filled.

Examples

#sc <- DISCBIO(valuesGlmsTest)
#sc <- NoiseFiltering(sc, percentile = 0.9, CV = 0.2, export = FALSE)
#sc <- FinalPreprocessing(sc, GeneFiltering = "NoiseF", export = FALSE)

FindOutliers Inference of outlier cells

Description

This functions performs the outlier identification for k-means and model-based clustering

Usage

FindOutliers(
  object,
  K,
  outminc = 5,
  outlg = 2,
  probthr = 0.001,
  thr = 2^(-(1:40)),
  outdistquant = 0.75,
  plot = TRUE,
  quiet = FALSE
)

## S4 method for signature 'DISCBIO'
FindOutliers(
  object,
  K,
  outminc = 5,
  outlg = 2,
  probthr = 0.001,
  thr = 2^-(1:40),
  outdistquant = 0.75,
  plot = TRUE,
  quiet = FALSE
)

Arguments

object  DISCBIO class object.
K       Number of clusters to be used.
outminc minimal transcript count of a gene in a clusters to be tested for being an outlier
gene. Default is 5.
outlg  Minimum number of outlier genes required for being an outlier cell. Default is
2.
probthr outlier probability threshold for a minimum of outlg genes to be an outlier cell. 
This probability is computed from a negative binomial background model of 
expression in a cluster. Default is 0.001.
thr probability values for which the number of outliers is computed in order to plot 
the dependence of the number of outliers on the probability threshold. Default 
is 2**-(1:40).set
outdistquant Real number between zero and one. Outlier cells are merged to outlier clusters if 
their distance smaller than the outdistquant-quantile of the distance distribution 
of pairs of cells in the orginal clusters after outlier removal. Default is 0.75.
plot if ‘TRUE’, produces a plot of -log10prob per K
quiet if ‘TRUE’, intermediary output is suppressed

Value

A named vector of the genes containing outlying cells and the number of cells on each.

Examples

sc <- DISCBIO(valuesG1msTest)
sc <- Clustexp(sc, cln = 2) # K-means clustering
FindOutliers(sc, K = 2)
foldchange.seq.twoclass.unpaired

*Foldchange of twoclass unpaired sequencing data*

**Description**

Foldchange of twoclass unpaired sequencing data

**Usage**

foldchange.seq.twoclass.unpaired(x, y, depth)

**Arguments**

- **x**
- **y**
- **depth**

**HumanMouseGeneIds**

*Human and Mouse Gene Identifiers.*

**Description**

Data.frame including ENTREZID, SYMBOL, and ENSEMBL gene identifiers of human and mouse genes.

**Source**

Data were imported, modified, and formatted from the Mus.musculus (ver 1.3.1) and the Homo.sapiens (ver 1.3.1) BioConductor libraries.

**J48DT**

*J48 Decision Tree*

**Description**

The decision tree analysis is implemented over a training dataset, which consisted of the DEGs obtained by either SAMseq or the binomial differential expression.

**Usage**

J48DT(data, quiet = FALSE, plot = TRUE)
### J48DTeval

**Arguments**

- `data`: A data frame resulted from running the function ClassVectoringDT.
- `quiet`: If ‘TRUE’, suppresses intermediary output
- `plot`: If ‘FALSE’, suppresses plot output

**Value**

Information about the J48 model and, by default, a plot of the decision tree.

---

### Description

This function evaluates the performance of the generated trees for error estimation by ten-fold cross validation assessment.

### Usage

```r
J48DTeval(data, num.folds = 10, First = "CL1", Second = "CL2", quiet = FALSE)
```

### Arguments

- `data`: The resulted data from running the function J48DT.
- `num.folds`: A numeric value of the number of folds for the cross validation assessment. Default is 10.
- `First`: A string vector showing the first target cluster. Default is “CL1”
- `Second`: A string vector showing the second target cluster. Default is “CL2”
- `quiet`: If ‘TRUE’, suppresses intermediary output

### Value

Statistics about the J48 model
### Jaccard

**Jaccard’s similarity**

**Description**

Robustness of the clusters can be assessed by Jaccard’s similarity, which reflects the reproducibility of individual clusters across bootstrapping runs. Jaccard’s similarity is the intersect of two clusters divided by the union.

**Usage**

```r
Jaccard(object, Clustering = "K-means", K, plot = TRUE, R = 100)
```

**Arguments**

- `object` DISCBIO class object.
- `Clustering` Clustering has to be one of the following: ["K-means","MB"]. Default is "K-means"
- `K` A numeric value of the number of clusters
- `plot` if ‘TRUE’, plots the mean Jaccard similarities
- `R` number of bootstrap replicates

**Value**

A plot of the mean Jaccard similarity coefficient per cluster.

### KmeanOrder

**Pseudo-time ordering based on k-means clusters**

**Description**

This function takes the exact output of exprmclust function and construct Pseudo-time ordering by mapping all cells onto the path that connects cluster centers.

**Usage**

```r
KmeanOrder(
 object,
 quiet = FALSE,
 export = FALSE,
 filename = "Cellular_pseudo-time_ordering_based_on_k-meansc-lusters"
)
```

## S4 method for signature 'DISCBIO'
NetAnalysis

KmeanOrder(
    object,
    quiet = FALSE,
    export = FALSE,
    filename = "Cellular_pseudo-time_ordering_based_on_k-meansc-lusters"
)

Arguments

- object: DISCBIO class object.
- quiet: if ‘TRUE’, suppresses intermediary output
- export: if ‘TRUE’, exports order table to csv
- filename: Name of the exported file (if ‘export=TRUE’)

Value

The DISCBIO-class object input with the kordering slot filled.

Note

This function has been replaced by pseudoTimeOrdering(), but it is being kept for legacy purposes. It will, however, be removed from future versions of DISCBIO.

NetAnalysis  Networking analysis.

Description

This function checks the connectivity degree and the betweenness centrality, which reflect the communication flow in the defined PPI networks

Usage

NetAnalysis(data, export = FALSE, FileName = "NetworkAnalysisTable-1")

Arguments

- data: Protein-protein interaction data frame resulted from running the PPI function.
- export: if ‘TRUE’, exports the analysis table as a csv file
- FileName: suffix for the file name (if export = TRUE)

Value

A network analysis table
Network Plotting the network.

Description

This function uses STRING API to plot the network.

Usage

```r
Networking(
 data,
 FileName = NULL,
 species = "9606",
 plot_width = 25,
 plot_height = 15,
 retries = 3
)
```

Arguments

- **data**: A gene list.
- **FileName**: A string vector showing the name to be used to save the resulted network. If ‘NULL’, the network will be saved to a temporary directory.
- **species**: The taxonomy name/id. Default is "9606" for Homo sapiens.
- **plot_width**: Plot width.
- **plot_height**: Plot height.
- **retries**: maximum number of attempts to connect to the STRING api.

Value

A plot of the network.

References

https://string-db.org/api/
NoiseFiltering

Description

Given a matrix or data frame of count data, this function estimates the size factors as follows: Each column is divided by the geometric means of the rows. The median (or, if requested, another location estimator) of these ratios (skipping the genes with a # geometric mean of zero) is used as the size factor for this column. Source: DESeq package.

Usage

```r
NoiseFiltering(
 object,
 percentile = 0.8,
 CV = 0.3,
 geneCol = "yellow",
 FgeneCol = "black",
 erccCol = "blue",
 Val = TRUE,
 plot = TRUE,
 export = FALSE,
 quiet = FALSE,
 filename = "Noise_filtering_genes_test"
)
```

## S4 method for signature 'DISCBIO'

```r
NoiseFiltering(
 object,
 percentile = 0.8,
 CV = 0.3,
 geneCol = "yellow",
 FgeneCol = "black",
 erccCol = "blue",
 Val = TRUE,
 plot = TRUE,
 export = FALSE,
 quiet = FALSE,
 filename = "Noise_filtering_genes_test"
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>DISCBIO class object.</td>
</tr>
<tr>
<td>percentile</td>
<td>A numeric value of the percentile. It is used to validate the ERCC spik-ins. Default is 0.8.</td>
</tr>
</tbody>
</table>
Normalizedata

CV A numeric value of the coefficient of variation. It is used to validate the ERCC spik-ins. Default is 0.5.
geneCol Color of the genes that did not pass the filtration.
FgeneCol Color of the genes that passed the filtration.
erccCol Color of the ERCC spik-ins.
Val A logical vector that allows plotting only the validated ERCC spike-ins. Default is TRUE. If Val=FALSE will plot all the ERCC spike-ins.
plot A logical vector that allows plotting the technical noise. Default is TRUE.
export A logical vector that allows writing the final gene list in excel file. Default is TRUE.
quiet if ‘TRUE’, suppresses printed output
filename Name of the exported file (if ‘export=TRUE’)

Value

The DISCBIO-class object input with the noiseF slot filled.

Note

This function should be used only if the dataset has ERCC.

Examples

sc <- DISCBIO(valuesG1msTest) # changes signature of data
ds_filtered <- NoiseFiltering(sc, export = FALSE)
str(sd_filtered)

Normalizedata Normalizing and filtering

Description

This function allows filtering of genes and cells to be used in the downstream analysis.

Usage

Normalizedata(
  object,
  mintotal = 1000,
  minexpr = 0,
  minnumber = 0,
  maxexpr = Inf,
  downsample = FALSE,
  dsn = 1,
## Arguments

- **object** (DISCBIO class object).
- **mintotal** minimum total transcript number required. Cells with less than mintotal transcripts are filtered out. Default is 1000.
- **minexpr** minimum required transcript count of a gene in at least minnumber cells. All other genes are filtered out. Default is 0.
- **minnumber** minimum number of cells that are expressing each gene at minexpr transcripts. Default is 0.
- **maxexpr** maximum allowed transcript count of a gene in at least a single cell after normalization or downsampling. All other genes are filtered out. Default is Inf.
- **downsample** A logical vector. Default is FALSE. If downsample is set to TRUE, then transcript counts are downsampled to mintotal transcripts per cell, instead of the normalization. Downsampling versions of the transcript count data are averaged across dsn samples
- **dsn** A numeric value of the number of samples to be used to average the downsampled versions of the transcript count data. Default is 1 which means that sampling noise should be comparable across cells. For high numbers of dsn the data will become similar to the median normalization.
- **rseed** Random integer to enforce reproducible clustering. results

### Value
The DISCBIO-class object input with the ndata and fdata slots filled.

### Examples

```r
sc <- DISCBIO(valuesGlmsTest) # changes signature of data

In this case this function is used to normalize the reads
sc_normal <- Normalizedata(
 sc,
 mintotal = 1000, minexpr = 0, minnumber = 0, maxexpr = Inf,
 rseed = NULL
)
```
downsample = FALSE, dsn = 1, rseed = 17000
)
summary(sc_normal@fdata)

---

PCAplotSymbols  Plot PCA symbols

Description

Generates a plot of grouped PCA components

Usage

PCAplotSymbols(object, types = NULL)

## S4 method for signature 'DISCBIO'
PCAplotSymbols(object, types = NULL)

Arguments

object  DISCBIO class object.
types  If types=NULL then the names of the cells will be grouped automatically. Default is NULL

Value

Plot of the Principal Components

---

plotExptSNE  Highlighting gene expression in the t-SNE map

Description

The t-SNE map representation can also be used to analyze expression of a gene or a group of genes, to investigate cluster specific gene expression patterns

Usage

plotExptSNE(object, g, n = NULL)

## S4 method for signature 'DISCBIO'
plotExptSNE(object, g, n = NULL)
plotGap

Arguments

object DISCBIO class object.
g Individual gene name or vector with a group of gene names corresponding to a subset of valid row names of the ndata slot of the DISCBIO object.
n String of characters representing the title of the plot. Default is NULL and the first element of g is chosen.

Value

t-SNE plot for one particular gene

Description

Plotting Gap Statistics

Usage

plotGap(object, y_limits = NULL)

## S4 method for signature 'DISCBIO'
plotGap(object, y_limits = NULL)

Arguments

object DISCBIO class object.
y_limits 2-length numeric vector with the limits for the gap plot

Value

A plot of the gap statistics
**plotLabelstSNE**  
*tSNE map with labels*

### Description
Visualizing k-means or model-based clusters using tSNE maps

### Usage
```r
plotLabelstSNE(object)
```

#### Arguments
- `object`  
  DISCBIO class object.

#### Value
Plot containing the ID of the cells in each cluster

---

**PlotMBpca**  
*Plotting pseudo-time ordering or gene expression in Model-based clustering in PCA*

### Description
The PCA representation can either be used to show pseudo-time ordering or the gene expression of a particular gene.

### Usage
```r
PlotMBpca(object, type = "order", g = NULL, n = NULL)
```

#### Arguments
- `object`  
  DISCBIO class object.
- `type`  
  either 'order' to plot pseudo-time ordering or 'exp' to plot gene expression
- `g`  
  Individual gene name or vector with a group of gene names corresponding to a subset of valid row names of the `ndata` slot of the DISCBIO object. Ignored if 'type="order"'.
- `n`  
  String of characters representing the title of the plot. Default is NULL and the first element of `g` is chosen. Ignored if 'type="order"'.
**PlotmclustMB**

PlotmclustMB

**Value**
A plot of the PCA.

---

**PlotmclustMB**

Plotting the Model-based clusters in PCA.

**Description**
Plot the model-based clustering results

**Usage**
PlotmclustMB(object)

```r
S4 method for signature 'DISCBIO'
PlotmclustMB(object)
```

**Arguments**

- `object` DISCBIO class object.

**Value**
A plot of the PCA.

---

**plotOrderTsne**

Plotting the pseudo-time ordering in the t-SNE map

**Description**
The tSNE representation can also be used to show the pseudo-time ordering.

**Usage**

```r
plotOrderTsne(object)
```

```r
S4 method for signature 'DISCBIO'
plotOrderTsne(object)
```

**Arguments**

- `object` DISCBIO class object.

**Value**
A plot of the pseudo-time ordering.
**plotSilhouette**  
*Silhouette Plot for K-means clustering*

**Description**

The silhouette provides a representation of how well each point is represented by its cluster in comparison to the closest neighboring cluster. It computes for each point the difference between the average similarity to all points in the same cluster and to all points in the closest neighboring cluster. This difference it normalize such that it can take values between -1 and 1 with higher values reflecting better representation of a point by its cluster.

**Usage**

```r
plotSilhouette(object, K)
```

### S4 method for signature 'DISCBIO'

```r
plotSilhouette(object, K)
```

**Arguments**

- **object**  
  DISCBIO class object.

- **K**  
  A numeric value of the number of clusters

**Value**

A silhouette plot

---

**plotSymbolstSNE**  
*tSNE map for K-means clustering with symbols*

**Description**

Visualizing the K-means clusters using tSNE maps

**Usage**

```r
plotSymbolstSNE(object, types = NULL, legloc = "bottomright")
```

### S4 method for signature 'DISCBIO'

```r
plotSymbolstSNE(object, types = NULL, legloc = "bottomright")
```
Arguments

object DISCBIO class object.
types If types=NULL then the names of the cells will be grouped automatically. Default is NULL.
legloc A keyword from the list "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center". Default is "bottomright"

Value

Plot of tsne objet slot, grouped by gene.

plottSNE

tSNE map

Description

Visualizing the k-means or model-based clusters using tSNE maps

Usage

plottSNE(object)

## S4 method for signature 'DISCBIO'
plottSNE(object)

Arguments

object DISCBIO class object.

Value

A plot of t-SNEs.

PPI

Defining protein-protein interactions (PPI) over a list of genes,

Description

This function uses STRING-api. The outcome of STRING analysis will be stored in comma-separated values files.

Usage

PPI(data, FileName = NULL, species = "9606")
Arguments

data  A gene list.
FileName  A string vector showing the name to be used to save the resulted table. If null, no file will be exported
species  The taxonomy name/id. Default is "9606" for Homo sapiens.

Value

Either CSV files stored in the user’s file system and its corresponding 'data.frame' object in R or and R object containing that information.

prepExampleDataset  Prepare Example Dataset

Description

Internal function that prepares a pre-treated dataset for use in several examples

Usage

prepExampleDataset(dataset, save = TRUE)

Arguments

dataset  Dataset used for transformation
save  save results?

Details

This function serves the purpose of treating datasets such as valuesG1msReduced to reduce examples of other functions by bypassing some analysis steps covered in the vignettes.

Value

Two rda files, ones for K-means clustering and another for Model-based clustering.

Author(s)

Waldir Leoncio
**pseudoTimeOrdering**

---

**pseudoTimeOrdering**  
*Pseudo-time ordering*

**Description**

This function takes the exact output of exprmclust function and construct Pseudo-time ordering by mapping all cells onto the path that connects cluster centers.

**Usage**

```r
pseudoTimeOrdering(
 object,
 quiet = FALSE,
 export = FALSE,
 filename = "Cellular_pseudo-time_ordering"
)
```

```r
S4 method for signature 'DISCBIO'
pseudoTimeOrdering(
 object,
 quiet = FALSE,
 export = FALSE,
 filename = "Cellular_pseudo-time_ordering"
)
```

**Arguments**

- `object`: DISCBIO class object.
- `export`: if ‘TRUE’, exports order table to csv.
- `filename`: Name of the exported file (if ‘export=TRUE’).

**Value**

The DISCBIO-class object input with the kordering slot filled.

---

**rankcols**  
*Rank columns*

**Description**

Ranks the elements within each col of the matrix x and returns these ranks in a matrix.

**Usage**

```
rankcols(x)
```
replaceDecimals

Arguments

  x

Note

  This function is equivalent to `samr::rankcol`, but uses `apply` to rank the columns instead of a compiled Fortran function which was causing our DEGanalysis functions to freeze in large datasets.

reformatSiggenes  Reformat Siggenes Table

Description

  Reformats the Siggenes table output from the SAMR package

Usage

  reformatSiggenes(table)

Arguments

  table  output from `samr::samr.compute.siggenes.table`

Author(s)

  Waldir Leoncio

See Also

  replaceDecimals

replaceDecimals  Replace Decimals

Description

  Replaces decimals separators between comma and periods on a character vector

Usage

  replaceDecimals(x, from = ",", to = ".")

Arguments

  x  vector of characters

  from  decimal separator on input file

  to  decimal separator for output file
Note

This function was especially designed to be used with retomatSiggenes

See Also

reformatSiggenes

---

### resa

**Resampling**

**Description**

Corresponds to `samr::resample`

**Usage**

```r
resa(x, d, nresamp = 20)
```

**Arguments**

- `x`: data matrix. `nrow=#gene`, `ncol=#sample`
- `d`: estimated sequencing depth
- `nresamp`: number of resamplings

**Value**

`xresamp`: an rank array with dim `#gene*#sample*nresamp`

---

### retrieveURL

**Retries a URL**

**Description**

Retries a URL

**Usage**

```r
retrieveURL(data, species, outputFormat, maxRetries = 3, successCode = 200)
```

**Arguments**

- `data`: A gene list
- `species`: The taxonomy name/id. Default is "9606" for Homo sapiens
- `outputFormat`: format of the output. Can be "highres_image", "tsv", "json", "tsv-no-header", "xml"
- `maxRetries`: maximum number of attempts to connect to the STRING api.
- `successCode`: Status code number that represents success
RpartDT

**RPART Decision Tree**

**Description**

The decision tree analysis is implemented over a training dataset, which consisted of the DEGs obtained by either SAMseq or the binomial differential expression.

**Usage**

RpartDT(data, quiet = FALSE, plot = TRUE)

**Arguments**

- **data**
  - The exact output of the exprmclust function.
- **quiet**
  - If ‘TRUE’, suppresses intermediary output
- **plot**
  - If ‘FALSE’, suppresses plot output

**Value**

Information about the model and, by default, a plot of the decision tree.

RpartEVAL

**Evaluating the performance of the RPART Decision Tree.**

**Description**

This function evaluates the performance of the generated trees for error estimation by ten-fold cross validation assessment.

**Usage**

RpartEVAL(data, num.folds = 10, First = "CL1", Second = "CL2", quiet = FALSE)
Arguments

data The resulted data from running the function J48DT.
num.folds A numeric value of the number of folds for the cross validation assessment. Default is 10.
First A string vector showing the first target cluster. Default is "CL1"
Second A string vector showing the second target cluster. Default is "CL2"
quiet If 'TRUE', suppresses intermediary output

Value

Performance statistics of the model

Description

This function is an adaptation of ‘samr::samr’

Usage

```r
sammy(
 data,
 resp.type = c("Quantitative", "Two class unpaired", "Survival", "Multiclass", "One class", "Two class paired", "Two class unpaired timecourse", "One class timecourse", "Two class paired timecourse", "Pattern discovery"),
 assay.type = c("array", "seq"),
 s0 = NULL,
 s0.perc = NULL,
 nperms = 100,
 center.arrays = FALSE,
 testStatistic = c("standard", "wilcoxon"),
 time.summary.type = c("slope", "signed.area"),
 regression.method = c("standard", "ranks"),
 return.x = FALSE,
 knn.neighbors = 10,
 random.seed = NULL,
 nresamp = 20,
 nresamp.perm = NULL,
 xl.mode = c("regular", "firsttime", "next20", "lasttime"),
 xl.time = NULL,
 xl.prevfit = NULL
)
```
Arguments

data
Data object with components x- p by n matrix of features, one observation per column (missing values allowed); y- n-vector of outcome measurements; censoring.status- n-vector of censoring status (1= died or event occurred, 0=survived, or event was censored), needed for a censored survival outcome.

resp.type
Problem type: "Quantitative" for a continuous parameter (Available for both array and sequencing data); "Two class unpaired" (for both array and sequencing data); "Survival" for censored survival outcome (for both array and sequencing data); "Multiclass": more than 2 groups (for both array and sequencing data); "One class" for a single group (only for array data); "Two class paired" for two classes with paired observations (for both array and sequencing data); "Two class unpaired timecourse" (only for array data), "One class time course" (only for array data), "Two class.paired timecourse" (only for array data), or "Pattern discovery" (only for array data).

assay.type
Assay type: "array" for microarray data, "seq" for counts from sequencing.

s0
Exchangeability factor for denominator of test statistic; Default is automatic choice. Only used for array data.

s0.perc
Percentile of standard deviation values to use for s0; default is automatic choice; -1 means s0=0 (different from s0.perc=0, meaning s0=zeroeth percentile of standard deviation values= min of sd values. Only used for array data.

nperms
Number of permutations used to estimate false discovery rates.

center.arrays
Should the data for each sample (array) be median centered at the outset? Default =FALSE. Only used for array data.

testStatistic
Test statistic to use in two class unpaired case. Either "standard" (t-statistic) or "wilcoxon" (Two-sample wilcoxon or Mann-Whitney test). Only used for array data.

time.summary.type
Summary measure for each time course: "slope", or "signed.area"). Only used for array data.

regression.method
Regression method for quantitative case: "standard", (linear least squares) or "ranks" (linear least squares on ranked data). Only used for array data.

return.x
Should the matrix of feature values be returned? Only useful for time course data, where x contains summaries of the features over time. Otherwise x is the same as the input data.

knn.neighbors
Number of nearest neighbors to use for imputation of missing features values. Only used for array data.

random.seed
Optional initial seed for random number generator (integer).

nresamp
For assay.type="seq", number of resamples used to construct test statistic. Default 20. Only used for sequencing data.

nresamp.perm
For assay.type="seq", number of resamples used to construct test statistic for permutations. Default is equal to nresamp and it must be at most nresamp. Only used for sequencing data.
**samr.estimate.depth**

*Estimate sequencing depths*

**Description**

Estimate sequencing depths

**Usage**

```r
samr.estimate.depth(x)
```

**Arguments**

- `x`: data matrix. `nrow=#gene`, `ncol=#sample`

**Value**

- `depth`: estimated sequencing depth. a vector with len sample.

---

**valuesG1msTest**

*Single-cells data from a myxoid liposarcoma cell line*

**Description**

A sample of single cells from a myxoid liposarcoma cell line. Columns refer to samples and rows refer to genes. The last rows refer to external RNA controls consortium (ERCC) spike-ins. This dataset is part of a larger dataset containing 94 single cells. The complete dataset is fully compatible with this package and an rda file can be obtained at https://github.com/ocb-e-uio/DlscBIO/blob/dev/data/valuesG1ms.rda
VolcanoPlot

Description

Plotting differentially expressed genes (DEGs) in a particular cluster. Volcano plots are used to readily show the DEGs by plotting significance versus fold-change on the y and x axes, respectively.

Usage

VolcanoPlot(object, value = 0.05, name = NULL, fc = 0.5, FS = 0.4)

Arguments

- **object**: A data frame showing the differentially expressed genes (DEGs) in a particular cluster.
- **value**: A numeric value of the false discovery rate. Default is 0.05.
- **name**: A string vector showing the name to be used on the plot title.
- **fc**: A numeric value of the fold change. Default is 0.5.
- **FS**: A numeric value of the font size. Default is 0.4.

Value

A volcano plot

wilcoxon.unpaired.seq.func

**Twoclass Wilcoxon statistics**

Description

Twoclass Wilcoxon statistics

Usage

wilcoxon.unpaired.seq.func(xresamp, y)

Arguments

- **xresamp**: an rank array with dim #gene*#sample*nresamp
- **y**: outcome vector of values 1 and 2

Value

the statistic.
## Index

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>as.DISCBI0</td>
<td>3</td>
</tr>
<tr>
<td>check.format</td>
<td>4</td>
</tr>
<tr>
<td>ClassVectoringDT</td>
<td>4</td>
</tr>
<tr>
<td>ClassVectoringDT,DISCBIO-method</td>
<td>4</td>
</tr>
<tr>
<td>ClustDiffGenes</td>
<td>5</td>
</tr>
<tr>
<td>ClustDiffGenes,DISCBIO-method</td>
<td>5</td>
</tr>
<tr>
<td>Clustexp</td>
<td>7</td>
</tr>
<tr>
<td>Clustexp,DISCBIO-method (Clustexp)</td>
<td>7</td>
</tr>
<tr>
<td>clustheatmap</td>
<td>8</td>
</tr>
<tr>
<td>clustheatmap,DISCBIO-method</td>
<td>8</td>
</tr>
<tr>
<td>comptSNE</td>
<td>9</td>
</tr>
<tr>
<td>comptSNE,DISCBIO-method (comptSNE)</td>
<td>9</td>
</tr>
<tr>
<td>customConvertFeats</td>
<td>11</td>
</tr>
<tr>
<td>DEGanalysis</td>
<td>11</td>
</tr>
<tr>
<td>DEGanalysis,DISCBIO-method</td>
<td>11</td>
</tr>
<tr>
<td>DEGanalysis2clust</td>
<td>13</td>
</tr>
<tr>
<td>DEGanalysis2clust,DISCBIO-method</td>
<td>13</td>
</tr>
<tr>
<td>DISCBIO</td>
<td>14</td>
</tr>
<tr>
<td>DISCBIO-class (DISCBIO)</td>
<td>14</td>
</tr>
<tr>
<td>DISCBIO-class,DISCBIO</td>
<td>14</td>
</tr>
<tr>
<td>DISCBIO2SingleCellExperiment</td>
<td>15</td>
</tr>
<tr>
<td>Exprmclust</td>
<td>16</td>
</tr>
<tr>
<td>Exprmclust,data.frame-method</td>
<td>16</td>
</tr>
<tr>
<td>Exprmclust,DISCBIO-method (Exprmclust)</td>
<td>16</td>
</tr>
<tr>
<td>FinalPreprocessing</td>
<td>17</td>
</tr>
<tr>
<td>FinalPreprocessing,DISCBIO-method</td>
<td>17</td>
</tr>
<tr>
<td>FindOutliers</td>
<td>18</td>
</tr>
<tr>
<td>FindOutliers,DISCBIO-method</td>
<td>18</td>
</tr>
<tr>
<td>foldchange.seq.twoclass.unpaired</td>
<td>20</td>
</tr>
<tr>
<td>HumanMouseGeneIds</td>
<td>20</td>
</tr>
<tr>
<td>J48DT</td>
<td>20</td>
</tr>
<tr>
<td>J48DTeval</td>
<td>21</td>
</tr>
<tr>
<td>Jaccard</td>
<td>22</td>
</tr>
<tr>
<td>KmeanOrder</td>
<td>22</td>
</tr>
<tr>
<td>KmeanOrder,DISCBIO-method (KmeanOrder)</td>
<td>22</td>
</tr>
<tr>
<td>NetAnalysis</td>
<td>23</td>
</tr>
<tr>
<td>Networking</td>
<td>24</td>
</tr>
<tr>
<td>NoiseFiltering</td>
<td>25</td>
</tr>
<tr>
<td>NoiseFiltering,DISCBIO-method</td>
<td>25</td>
</tr>
<tr>
<td>Normalizedata</td>
<td>26</td>
</tr>
<tr>
<td>Normalizedata,DISCBIO-method</td>
<td>26</td>
</tr>
<tr>
<td>PCAplotSymbols</td>
<td>28</td>
</tr>
<tr>
<td>PCAplotSymbols,DISCBIO-method</td>
<td>28</td>
</tr>
<tr>
<td>plotExptSNE</td>
<td>28</td>
</tr>
<tr>
<td>plotExptSNE,DISCBIO-method</td>
<td>28</td>
</tr>
<tr>
<td>plotGap</td>
<td>29</td>
</tr>
<tr>
<td>plotGap,DISCBIO-method (plotGap)</td>
<td>29</td>
</tr>
<tr>
<td>plotLabelstSNE</td>
<td>30</td>
</tr>
<tr>
<td>plotLabelstSNE,DISCBIO-method</td>
<td>30</td>
</tr>
<tr>
<td>PlotMBpca</td>
<td>30</td>
</tr>
<tr>
<td>PlotmclustMB</td>
<td>31</td>
</tr>
<tr>
<td>PlotmclustMB,DISCBIO-method</td>
<td>31</td>
</tr>
<tr>
<td>plotOrderTsne</td>
<td>31</td>
</tr>
<tr>
<td>plotOrderTsne,DISCBIO-method</td>
<td>31</td>
</tr>
<tr>
<td>plotSilhouette</td>
<td>32</td>
</tr>
</tbody>
</table>
plotSilhouette, DISCBIO-method
  (plotSilhouette), 32
plotSymbolstSNE, 32
plotSymbolstSNE, DISCBIO-method
  (plotSymbolstSNE), 32
plottSNE, 33
plottSNE, DISCBIO-method (plottSNE), 33
PPI, 33
prepExampleDataset, 34
pseudoTimeOrdering, 35
pseudoTimeOrdering, DISCBIO-method
  (pseudoTimeOrdering), 35
rankcols, 35
reformatSiggenes, 36
replaceDecimals, 36
resa, 37
retrieveURL, 37
RpartDT, 38
RpartEVAL, 38

sammy, 39
samr.estimate.depth, 41

valuesG1msTest, 41
VolcanoPlot, 42

wilcoxon.unpaired.seq.func, 42