Application

Description

Application data set

Usage

```r
data("Application")
```

Format

The format is: int [1:48, 1:15] 6 9 7 5 6 7 9 9 4 ... - attr(*, "dimnames")=List of 2 ..$: NULL ..$

: chr [1:15] "FL" "APP" "AA" "LA" ...

Details

It is the scoring of 15 indicators on 48 interviewees

Examples

```r
data(Application)
## maybe str(Application) ; plot(Application) ...
```

DLPCA

Distributed local PCA

Description

Calculate the estimator on the DLPCA method

Usage

```r
DLPCA(X = X, n = n, p = p, m = m, K = K, L = L)
```

Arguments

- **X** is the original data matrix
- **n** is the sample size
- **p** is the number of variables
- **m** is the number of eigenvalues
- **K** is the number of nodes
- **L** is the number of subgroups
Value

- **time** is the time cost
- **V** is the right singular matrix
- **Vm** is the m-right singular matrix
- **Smean** is the mean covariance matrix
- **MMSER** is the mean MSE values of the robust covariance matrix sub-estimators
- **MSES** is the mean MSE values of the covariance matrix sub-estimators
- **MMSEX** is the mean MSE values of the sub-estimators of the matrix X
- **MSER** is the min MSE values of the robust covariance matrix sub-estimators
- **MSES** is the min MSE values of the covariance matrix sub-estimators
- **MSEX** is the min MSE values of the sub-estimators of the matrix X
- **wMSER** is the location of the min MSE values of the robust covariance matrix sub-estimators
- **wMSES** is the location of the min MSE values of the covariance matrix sub-estimators
- **wMSEX** is the location of the min MSE values of the sub-estimators of the matrix X
- **sigm** is the estimator of the covariance matrix of the matrix X

Examples

```r
data(Application)
X=Application
n=nrow(Application);p=ncol(Application)
m=5;L=4;K=4
DLPCA_result=DLPCA(X=X,n=n,p=p,m=m,K=K,L=L)
```

Description

Gas-Turbine CO and NOx Emission Data in 2011

Usage

```r
data("gt2011")
```
Format

A data frame with 7411 observations on the following 11 variables.

AT a numeric vector
AP a numeric vector
AH a numeric vector
AFDP a numeric vector
GTEP a numeric vector
TIT a numeric vector
TAT a numeric vector
TEY a numeric vector
CDP a numeric vector
CO a numeric vector
NOX a numeric vector

Details

The dataset contains 36733 instances of 11 sensor measures aggregated over one hour, from a gas turbine located in Turkey for the purpose of studying flue gas emissions, namely CO and NOx.

Source

Heysem Kaya, Department of Information and Computing Sciences, Utrecht University, 3584 CC, Utrecht, The Netherlands

Examples

data(gt2011)

data(gt2012)

Gas-Turbine CO and NOx Emission Data

Description

Gas-Turbine CO and NOx Emission Data in 2012

Usage

data("gt2012")
Format

A data frame with 7628 observations on the following 11 variables.

- **AT**: a numeric vector
- **AP**: a numeric vector
- **AH**: a numeric vector
- **AFDP**: a numeric vector
- **GTEP**: a numeric vector
- **TIT**: a numeric vector
- **TAT**: a numeric vector
- **TEY**: a numeric vector
- **CDP**: a numeric vector
- **CO**: a numeric vector
- **NOX**: a numeric vector

Details

The dataset contains 36733 instances of 11 sensor measures aggregated over one hour, from a gas turbine located in Turkey for the purpose of studying flue gas emissions, namely CO and NOx.

Source

Heysem Kaya, Department of Information and Computing Sciences, Utrecht University, 3584 CC, Utrecht, The Netherlands

Examples

data(gt2012)
Format

A data frame with 7152 observations on the following 11 variables.

- **AT** a numeric vector
- **AP** a numeric vector
- **AH** a numeric vector
- **AFDP** a numeric vector
- **GTEP** a numeric vector
- **TIT** a numeric vector
- **TAT** a numeric vector
- **TEY** a numeric vector
- **CDP** a numeric vector
- **CO** a numeric vector
- **NOX** a numeric vector

Details

The dataset contains 36733 instances of 11 sensor measures aggregated over one hour, from a gas turbine located in Turkey for the purpose of studying flue gas emissions, namely CO and NOx.

Source

Heysem Kaya, Department of Information and Computing Sciences, Utrecht University, 3584 CC, Utrecht, The Netherlands

Examples

```r
data(gt2013)
```

gt2014

Gas-Turbine CO and NOx Emission Data

Description

Gas-Turbine CO and NOx Emission Data in 2014

Usage

```r
data("gt2014")
```
gt2015

Format

A data frame with 7158 observations on the following 11 variables.

AT a numeric vector
AP a numeric vector
AH a numeric vector
AFDP a numeric vector
GTEP a numeric vector
TIT a numeric vector
TAT a numeric vector
TEY a numeric vector
CDP a numeric vector
CO a numeric vector
NOX a numeric vector

Details

The dataset contains 36733 instances of 11 sensor measures aggregated over one hour, from a gas turbine located in Turkey for the purpose of studying flue gas emissions, namely CO and NOx.

Source

Heysem Kaya, Department of Information and Computing Sciences, Utrecht University, 3584 CC, Utrecht, The Netherlands

Examples

data(gt2014)

gt2015 Gas-Turbine CO and NOx Emission Data

Description

Gas-Turbine CO and NOx Emission Data in 2015

Usage

data("gt2015")
Format

A data frame with 7384 observations on the following 11 variables.

- AT a numeric vector
- AP a numeric vector
- AH a numeric vector
- AFDP a numeric vector
- GTEP a numeric vector
- TIT a numeric vector
- TAT a numeric vector
- TEY a numeric vector
- CDP a numeric vector
- CO a numeric vector
- NOX a numeric vector

Details

The dataset contains 36733 instances of 11 sensor measures aggregated over one hour, from a gas turbine located in Turkey for the purpose of studying flue gas emissions, namely CO and NOx.

Source

Heysem Kaya, Department of Information and Computing Sciences, Utrecht University, 3584 CC, Utrecht, The Netherlands

Examples

```r
data(gt2015)
```

```
 Iris    Iris
```

Description

Iris data set

Usage

```r
data("Iris")
```
Format

A data frame with 150 observations on the following 5 variables.

- Sepal.length a numeric vector
- Sepal.width a numeric vector
- Petal.length a numeric vector
- Petal.width a numeric vector
- Species a character vector

Details

It contains 150 samples with 5 variables

Source

Gaspar peninsula in Canada

Examples

```r
data(Iris)
## maybe str(Iris) ; plot(Iris) ...
```

Description

Caculate the MSE value on PCA

Usage

```r
MSEpca(V = V, X = X, n = n, p = p, m = m, K = K, L = L)
```

Arguments

- \(V\) is the right singular matrix
- \(X\) is the original data set
- \(n\) is the sample size
- \(p\) is the number of variables
- \(m\) is the number of eigenvalues
- \(K\) is the number of nodes
- \(L\) is the number of subgroups

Value

\(\text{MSEpca}\) the MSE value on PCA
Examples

data(Application)
X=Application
n=nrow(Application);p=ncol(Application)
m=5;L=4;K=4
DLPCA_result=DLPCA(X=X,n=n,p=p,m=m,K=K,L=L)
V=DLPCA_result$V
MSEpca_result=MSEpca(V=V,X,n=n,p=p,m=m,K=K,L=L)
MSE_PCA=MSEpca_result$MSEpca
Index

* datasets
 Application, 2
 gt2011, 3
 gt2012, 4
 gt2013, 5
 gt2014, 6
 gt2015, 7
 Iris, 8

Application, 2

DLPCA, 2

gt2011, 3
gt2012, 4
gt2013, 5
gt2014, 6
gt2015, 7

Iris, 8

MSEpca, 9