Package ‘DMtest’

July 26, 2021

Type Package

Title Differential Methylation Tests (DMtest)

Version 1.0.0

Date 2021-07-22

Author James Dai [aut, cre],
 Xiaoyu Wang [aut]

Maintainer James Dai <jdaifredhutch.org>

Depends R (>= 3.5.0)

Imports matrixStats,stats,foreach,parallel,doParallel

License GPL (>= 2)

NeedsCompilation no

LazyData true

RoxygenNote 7.1.1

Suggests knitr, markdown

VignetteBuilder knitr

Repository CRAN

Date/Publication 2021-07-26 06:50:06 UTC

R topics documented:

 beta ... 2
 covariate .. 2
 dmvc ... 3

Index 5
Example DNA methylation data for dmvc function

Description
DNA methylation data from TCGA-COAD

Usage
data(beta)

Format
An object of class "matrix" with 500 rows and 334 columns. Each row is a CpG, each column is a sample

Examples
data(beta)

Example covariate data for dmvc function

Description
Covariate data for 334 TCGA-COAD samples

Usage
data(covariate)

Format
An object of class "matrix" with 334 rows and 3 variables.

- **group** Whether the sample is normal or tumor, normal:0, tumor:1
- **gender** Female or Male
- **age** age (31–90)

Examples
data(covariate)
Perform DMC, DVC, DMVC, and DMVC+ tests for genome-wide CpGs in methylation arrays.

Description

This function implements an algorithm for computing various tests of mean and variance differences, including the DMVC+ test that specifically addresses the hypermethylation and hypervariability for cancer-specific CpGs.

Usage

dmvc(beta = beta, covariate = covariate, npermut=100, permut.seed=100, corenumber=1)

Arguments

- **beta**: Methylation beta value matrix, row for CpGs, column for samples. The matrix has sample name as the column names, and CpG names as the row names.
- **covariate**: covariate matrix, a data frame including all covariates in the regression model, whose row represents for samples, column represents different covariates. The matrix has sample names as the row names. The matrix must include a "group" column, which is a binary indicator (0 for normal and 1 for tumor) to define two groups of samples to be compared.
- **npermut**: The number of permutations for computing the correlation that is needed for the joint tests.
- **permut.seed**: The random seed used by permutation for joint tests.
- **corenumber**: The number of cores to be used for joint tests; if corenumber>1, a parallel computing version will be used to speed up the computation.

Value

A data frame with the following columns.

- **Mean_normal**: Mean of beta values for normal samples.
- **Mean_tumor**: Mean of beta values for tumor samples.
- **Mean_all**: Mean of beta values for all samples.
- **SD_normal**: Standard deviation of beta values for normal samples.
- **SD_tumor**: Standard deviation of beta values for tumor samples.
- **SD_all**: Standard deviation of beta values for all samples.
- **DMCP**: p-value from DMC test.
- **DVC**: p-value from DVC test.
- **Joint1P**: Joint test for DMVC+ (test for hypermethylation and increased variance in cancer samples).
Joint test for DMVC (test for differential methylation in both direction and increased variance in cancer samples).

LRT1 Likelihood ratio test statistics for joint test1.

LRT2 Likelihood ratio test statistics for joint test2.

pho Correlation value computed by permutations.

References

Examples

data(beta)
data(covariate)
out=dmvc(beta=beta,covariate=covariate)
Index

* datasets
 beta, 2
 covariate, 2

beta, 2

covariate, 2

dmvc, 3