Package ‘DRR’

February 12, 2020

Title Dimensionality Reduction via Regression

Version 0.0.4

Description An Implementation of Dimensionality Reduction
via Regression using Kernel Ridge Regression.

License GPL-3 | file LICENSE

URL https://github.com/gdkrmr/DRR

BugReports https://github.com/gdkrmr/DRR/issues

Imports stats, methods

Suggests knitr, rmarkdown

VignetteBuilder knitr

LazyData true

Depends kernlab, CVST, Matrix

RoxygenNote 7.0.2

NeedsCompilation no

Author Guido Kraemer [aut, cre]

Maintainer Guido Kraemer <gkraemer@bgc-jena.mpg.de>

Repository CRAN

Date/Publication 2020-02-12 13:10:06 UTC

R topics documented:

DRR-package ... 2

constructFastKRRLearner 2

drr .. 4

Index 7
Description

DRR implements the Dimensionality Reduction via Regression using Kernel Ridge Regression. It also adds a faster implementation of Kernel Ridge regression that can be used with the CVST package.

Details

Funding provided by the Department for Biogeochemical Integration, Empirical Inference of the Earth System Group, at the Max Plack Institute for Biogeochemistry, Jena.

Author(s)

Maintainer: Guido Kraemer <gkraemer@bgc-jena.mpg.de>

References

See Also

Useful links:
- https://github.com/gdkrmr/DRR
- Report bugs at https://github.com/gdkrmr/DRR/issues

constructFastKRRLearner

Fast implementation for Kernel Ridge Regression.

Description

Constructs a learner for the divide and conquer version of KRR.

Usage

constructFastKRRLearner()
Details

This function is to be used with the CVST package as a drop in replacement for \texttt{constructKRRLearner}. The implementation approximates the inversion of the kernel Matrix using the divide and conquer scheme, lowering computational and memory complexity from $O(n^3)$ and $O(n^2)$ to $O(n^3/m^2)$ and $O(n^2/m^2)$ respectively, where m are the number of blocks to be used (parameter \texttt{nbloks}). Theoretically safe values for m are $< n^{1/3}$, but practically m may be a little bit larger. The function will issue a warning, if the value for m is too large.

Value

Returns a learner similar to \texttt{constructKRRLearner} suitable for the use with \texttt{CV} and \texttt{fastCV}.

References

See Also

\texttt{constructLearner}

Examples

```r
ns <- noisySinc(1000)
nsTest <- noisySinc(1000)

fast.krr <- constructFastKRRLearner()
fast.p <- list(kernel="rbfdot", sigma=100, lambda=.1/getN(ns), nbloks = 4)
system.time(fast.m <- fast.krr$learn(ns, fast.p))
fast.pred <- fast.krr$predict(fast.m, nsTest)
sum((fast.pred - nsTest$y)^2) / getN(nsTest)
```

```
## Not run:
krr <- CVST::constructKRRLearner()
p <- list(kernel="rbfdot", sigma=100, lambda=.1/getN(ns))
system.time(m <- krr$learn(ns, p))
pred <- krr$predict(m, nsTest)
sum((pred - nsTest$y)^2) / getN(nsTest)
```

```r
plot(ns, col = "#00000030", pch = 19)
lines(sort(nsTest$x), fast.pred[order(nsTest$x)], col = "#00C000", lty = 2)
lines(sort(nsTest$x), pred[order(nsTest$x)], col = "#0000C0", lty = 2)
legend("topleft", legend = c("fast KRR", "KRR"),
       col = c("#00C000", "#0000C0"), lty = 2)
```

End(Not run)
```
Description

drr implements Dimensionality Reduction via Regression using Kernel Ridge Regression.

Usage

drr(
  X,
  ndim = ncol(X),
  lambda = c(0, 10^((-3:2)),
  kernel = "rbfdot",
  kernel.pars = list(sigma = 10^((-3:4)),
  pca = TRUE,
  pca.center = TRUE,
  pca.scale = FALSE,
  fastcv = FALSE,
  cv.folds = 5,
  fastcv.test = NULL,
  fastkrr nbblocks = 4,
  verbose = TRUE
)

Arguments

X          input data, a matrix.
ndim       the number of output dimensions and regression functions to be estimated, see
dimensions for inversion.
lambda      the penalty term for the Kernel Ridge Regression.
kernel      a kernel function or string, see kernel-class for details.
kernels.pars a list with parameters for the kernel. each parameter can be a vector, crossvalidation will choose the best combination.
pca         logical, do a preprocessing using pca.
pca.center  logical, center data before applying pca.
pca.scale   logical, scale data before applying pca.
fastcv      if TRUE uses fastCV, if FALSE uses CV for crossvalidation.
cv.folds    if using normal crossvalidation, the number of folds to be used.
fastcv.test an optional separate test data set to be used for fastCV, handed over as option
test to fastCV.
fastkrr nbblocks the number of blocks used for fast KRR, higher numbers are faster to compute but may introduce numerical inaccuracies, see constructFastKRR Learner for details.
verbose     logical, should the crossvalidation report back.
Details

Parameter combination will be formed and cross-validation used to select the best combination. Cross-validation uses CV or fastCV.

Pre-treatment of the data using a PCA and scaling is made $\alpha = Vx$. the representation in reduced dimensions is

$$y_i = \alpha - f_i(\alpha_1, \ldots, \alpha_{i-1})$$

then the final DRR representation is:

$$r = (\alpha_1, y_2, y_3, \ldots, y_d)$$

DRR is invertible by

$$\alpha_i = y_i + f_i(\alpha_1, \alpha_2, \ldots, \alpha_{i-1})$$

If less dimensions are estimated, there will be less inverse functions and calculating the inverse will be inaccurate.

Value

A list the following items:

- "fitted.data" The data in reduced dimensions.
- "pca.means" The means used to center the original data.
- "pca.scale" The standard deviations used to scale the original data.
- "pca.rotation" The rotation matrix of the PCA.
- "models" A list of models used to estimate each dimension.
- "apply" A function to fit new data to the estimated model.
- "inverse" A function to untransform data.

References


Examples

```r
tt <- seq(0,4*pi, length.out = 200)
helix <- cbind(
 x = 3 * cos(tt) + rnorm(length(tt), sd = seq(0.1, 1.4, length.out = length(tt))),
 y = 3 * sin(tt) + rnorm(length(tt), sd = seq(0.1, 1.4, length.out = length(tt))),
 z = 2 * tt + rnorm(length(tt), sd = seq(0.1, 1.4, length.out = length(tt)))
)
helix <- helix[sample(nrow(helix)),] # shuffling data is important!!
system.time(
 drr.fit <- drr(helix, ndim = 3, cv.folds = 4,
```
\begin{verbatim}
lambda = 10^(-2:1),
kern.pars = list(sigma = 10^(0:3)),
fastkrr.nblocks = 2, verbose = TRUE,
fastcv = FALSE)

## Not run:
library(rgl)
plot3d(helix)
points3d(drr.fit$inverse(drr.fit$fitted.data[,1,drop = FALSE]), col = 'blue')
points3d(drr.fit$inverse(drr.fit$fitted.data[,1:2]), col = 'red')

plot3d(drr.fit$fitted.data)
pad <- -3
fd <- drr.fit$fitted.data
xx <- seq(min(fd[,1]), max(fd[,1]), length.out = 25)
yy <- seq(min(fd[,2]) - pad, max(fd[,2]) + pad, length.out = 5)
zz <- seq(min(fd[,3]) - pad, max(fd[,3]) + pad, length.out = 5)

dd <- as.matrix(expand.grid(xx, yy, zz))
plot3d(helix)
for(y in yy) for(x in xx)
  rgl.linestrips(drr.fit$inverse(cbind(x, y, zz)), col = 'blue')
for(y in yy) for(z in zz)
  rgl.linestrips(drr.fit$inverse(cbind(xx, y, z)), col = 'blue')
for(x in xx) for(z in zz)
  rgl.linestrips(drr.fit$inverse(cbind(x, yy, z)), col = 'blue')

## End(Not run)
\end{verbatim}
Index

constructFastKRR Learner, 2, 4
constructKRR Learner, 3
constructLearner, 3
CV, 3–5

DRR (DRR-package), 2
drr, 4
DRR-package, 2

fastCV, 3–5