Package ‘DTAT’

March 29, 2023

Type Package
Title Dose Titration Algorithm Tuning
Version 0.3-6
Date 2023-03-29
Maintainer David C. Norris <david@precisionmethods.guru>
Depends R (>= 3.5.0), survival
Imports km.ci, pomp, Hmisc, data.table, dplyr, r2d3, shiny, jsonlite, methods
Suggests knitr, rmarkdown, lattice, latticeExtra, widgetframe, tidyr, RColorBrewer, invgamma, zipfR, rms
Description Dose Titration Algorithm Tuning (DTAT) is a methodologic framework allowing dose individualization to be conceived as a continuous learning process that begins in early-phase clinical trials and continues throughout drug development, on into clinical practice. This package includes code that researchers may use to reproduce or extend key results of the DTAT research programme, plus tools for trialists to design and simulate a ‘3+3/PC’ dose-finding study. Please see Norris (2017a) <doi:10.12688/f1000research.10624.3> and Norris (2017c) <doi:10.1101/240846>.

URL https://precisionmethods.guru/
License MIT + file LICENSE
RoxygenNote 7.2.3
VignetteBuilder knitr, rmarkdown
Encoding UTF-8
NeedsCompilation no
Author David C. Norris [aut, cre]
Repository CRAN
Date/Publication 2023-03-29 19:40:02 UTC
Description

Dose Titration Algorithm Tuning (DTAT) is a methodologic framework allowing dose individualization to be conceived as a continuous learning process that begins in early-phase clinical trials and continues throughout drug development, on into clinical practice. This package includes code that researchers may use to reproduce or extend key results of the DTAT research programme, plus tools for trialists to design and simulate a '3+3/PC' dose-finding study. Please see Norris (2017a) doi:10.12688/f1000research.10624.3 and Norris (2017c) doi:10.1101/240846.

Author(s)

David C. Norris

References

as_d3_data,DE-method

as_d3_data,DE-method

Convert a DE object to JSON

Description

Convert a DE object to JSON

Usage

```r
## S4 method for signature 'DE'
as_d3_data(x, ...)
```

Arguments

- `x` An object of class DE
- `...` Unused.

DE-class

An S4 class for simulating dose-titration study designs

Description

An S4 class for simulating dose-titration study designs

Slots

doses A numeric vector of prospectively-determined discrete doses to trial.
units A string indicating dose units, e.g. "mg/kg".
MTDi A numeric vector of optimal doses for simulated study participants. Optionally a call to an `r<distribution>(...)` function which may be parsed to calculate the mtd_quantiles slot.
mtd_quantiles A numeric vector of quantiles of the distribution from which the MTDi slot was simulated. Intended mainly to support visualization of this distribution, e.g. as an transparent overlay on the dose-survival plot. NULL in case MTDi is provided verbatim.
fractol A numeric vector of probabilities for the simulated MTDi slot. Intended mainly to support visualization, e.g. plotting of 'MTD pointers' on the interactive dose-survival plot.
data A data.frame with columns:
 • id Participant identifier
 • period DLT assessment period, numbered consecutively from 1
 • dose Dose level, numbered consecutively starting from 1
 • dlt A logical indicator: did this participant experience a DLT during this period?

stop_esc integer Period in which ‘stop rule’ was triggered

ds_conf_level numeric Confidence level for confidence band around Kaplan-Meier estimate of
the dose-survival curve.

dose_drop_threshold numeric Threshold for triggering the ‘bypass rule’.

stop_esc_under numeric Threshold for triggering the ‘stop rule’.

undo_esc_under numeric Threshold for triggering the ‘rollback rule’.

Description

This is a length-10 list of data frames, summarizing the simulated trial from this paper, at the end
of periods 1, 2, ..., 10. This structure reflects an awkward S3 implementation that package DTAT
v0.3 reimplemented using S4. This data set is retained to support regression tests.

Format

A length-10 list of data frames, each with the following columns:

 id Participant identifier
 period DLT assessment period, numbered consecutively from 1
 dose Dose level, numbered consecutively starting from 1
 dlt A logical indicator: did this participant experience a DLT during this period?

Details

A stop.esc attribute is attached to data frames in this list, indicating when escalation stopped
during the simulated trial.

References

Norris DC. Precautionary Coherence Unravels Dose Escalation Designs. bioRxiv. December
Examples

```r
data(de.bioRxiv.240846)
# Demonstrate that the new S4 3+3/PC implementation reproduces the
# simulated trial from the paper:
set.seed(2017)
CV <- 0.7; mean_mtd <- 1.0
shape <- CV^-2; scale <- mean_mtd/shape
trial <- new("DE", doses=0.25 * 1.4^(0:6),
               MTDi=rgamma(24, shape=shape, scale=scale),
               units="mg")
trial <- titration(trial, periods=10)
stopifnot(all(trial@data == de.bioRxiv.240846[[10]]))
stopifnot(trial@stop_esc == attr(de.bioRxiv.240846[[10]],"stop.esc"))
```

do.survfit

Calculate a dose-survival curve from a dose titration study, adding a confidence band

Description

The 'dose-survival curve' is nothing other than an empirical cumulative distribution for MTDi in the sampled population. The term 'survival' is suggested in part by our application of the Kaplan-Meier estimator to interval-censored toxicity information.

Usage

dose.survfit(de, method = "rothman", avoid.degeneracy = TRUE, conf.level = 0.8)

Arguments

de A dose titration experiment like the data slot of class DE
method The method to be used by km.ci when calculating CI
avoid.degeneracy When TRUE, this parameter directs the function to introduce artificial events into the dose titration experiment, to avoid degeneracies at the lower and upper ends of the dose-survival curve.
conf.level Confidence level for KM confidence band.

Details

TODO: Describe details of degeneracy avoidance, once these have stabilized.

Value

An object of class survfit.
Author(s)
David C. Norris

See Also
dose.survival, km.ci

Examples
CV <- 0.7; mean_mtd <- 1.0
shape <- CV^2; scale <- mean_mtd/shape
trial <- new("DE", doses=0.25 * 1.4^(0:6),
 MTDi=rgamma(24, shape=shape, scale=scale),
 units="mg")
trial <- titration(trial, periods=10)
sf <- dose.survfit(trial@data)
summary(sf)

dose.survival Extract interval-censored dose tolerance data from a dose titration study

Description
Constructs a Surv object from a dose-escalation experiment, using interval-censoring constructs of type='interval2'.

Usage
dose.survival(de)

Arguments
de A data frame describing a dose-titration study

Value
A Surv object of type='interval2'

Author(s)
David C. Norris

See Also
dose.survfit
Examples

CV <- 0.7; mean_mtd <- 1.0
shape <- CV^-2; scale <- mean_mtd/shape
trial <- new("DE", doses=0.25 * 1.4^(0:6),
 MTDi=rgamma(24, shape=shape, scale=scale),
 units="mg")
trial <- titration(trial, periods=10)
dose.survival(trial@data)

d.s Surv
Extract the dose-survival curve, with its upper and lower confidence band limits

Description

This utility function simply makes the results of dose.survfit available in the convenient form of a list.

Usage

ds.curve(de, ...)

Arguments

de A data frame describing a dose-titration study.
... Passed through to function dose.survfit

Value

A list with components surv, upper and lower, each containing a vector that can be indexed by dose level.

Author(s)

David C. Norris

See Also

dose.survfit
Examples

```r
CV <- 0.7; mean_mtd <- 1.0
shape <- CV^-2; scale <- mean_mtd/shape
trial <- new("DE", doses=0.25 * 1.4^(0:6),
              MTDi=rgamma(24, shape=shape, scale=scale),
              units="mg")
trial <- titration(trial, periods=10)
ds.curve(trial@data)
```

Description

This dataset is provided to support fast reproduction of a forthcoming pharmacoeconomic paper that includes examination of the empirical distribution of MTDi in N=1000 simulated subjects.

Format

A data frame showing end-of-cycle state of neutrophil-guided dose titration for 1000 simulated subjects, across 10 cycles of chemotherapy.

- **cycle**: Cycle number 1..10
- **id**: Subject identifiers; an ordered factor with levels id1 < ... < id1000
- **Cc**: Central-compartment drug concentration
- **Cp**: Peripheral-compartment drug concentration
- **Prol**: Progenitor cells in proliferating compartment of Friberg et al. (2002) model
- **Tx.1**: Transit compartment 1
- **Tx.2**: Transit compartment 1
- **Tx.3**: Transit compartment 1
- **Circ**: Concentration (cells/mm^3) of circulating neutrophils
- **dose**: Dose of 1-hour infusion administered this cycle
- **CircMin**: Neutrophil nadir (cells/mm^3)
- **tNadir**: Time (days) of neutrophil nadir
- **scaled.dose**: Fourth root of dose
- **time**: Time (weeks) of dose administration

Details

Running the examples interactively, you can verify the reproducibility of this dataset. (That demo is included in a `donttest` block to spare the CRAN servers.)
References

Examples

data(dtat1000)
1. Extract the N final doses, assuming convergence by the tenth course
MTD_i <- with(dtat1000, dose[time==27])
MTD_i <- MTD_i[MTD_i < 5000] # Exclude few outliers
2. Do a kernel density plot
library(Hmisc)
library(latticeExtra)
hist <- histogram(~MTD_i, breaks=c(0,100,200,300,400,600,900,1500,2500,4000,5000)
 , xlab=expression(MTD[i]))
approx <- data.frame(mtd_i=seq(0, 5000, 10))
approx <- upData(approx,
 gamma = dgamma(mtd_i, shape=1.75, scale=200))
dist <- xyplot(gamma ~ mtd_i, data=approx, type="l", col="black", lwd=2)
library(grid)
hist + dist
grid.text(expression(MTD[i] %~% paste("Gamma(", alpha==1.75,", beta==1/200,)")))

A very long repro, which a user of this package may well wish to verify
by running the examples interactively, although it takes many minutes
to compute. (Enclosed in a dontest block to avoid overburdening CRAN.)

Demonstrate close reproduction of original titration (the titration takes many minutes!)
set.seed(2016)
library(pomp)
Onoue.Friberg(N=1000)
This titration may take an hour to run ...
chemo <- titrate(doserange = c(50, 3000),
 dta=newton.raphson(dose1 = 100,
 omega = 0.75,
 slope1 = -2.0,
 slopeU = -0.2)
)

dtat1k <- upData(chemo$course
 , time = 3*(cycle-1)
 , labels = c(time="Time")
 , units = c(time="weeks")
 , print = FALSE)
A dose titration algorithm (DTA) 'factory' based on the Newton-Raphson heuristic

Description
This higher-order ('factory') function produces a simple dose titration algorithm for neutrophil-guided chemotherapy dosing.

Usage
newton.raphson(dose1, omega, slope1, slopeU)

Arguments
- **dose1**: The starting dose for titration
- **omega**: A relaxation parameter used to moderate dose increments
- **slope1**: Dose-response slope assumed prior to 2nd measured neutrophil nadir
- **slopeU**: Upper bound imposed on slope estimates

Details
This function manifests the core concept of Dose Titration Algorithm Tuning by delivering an objectively realized 'DTA'. It therefore enables a variety of DTAs to be implemented and compared.

Value
A dose titration function that advises dose for next cycle of chemotherapy.

Author(s)
David C. Norris

See Also
titrate
Description

This function produces a POMP model combining docetaxel pharmacokinetics (PK) drawn from Table 2 of Onoue et al (2016) with myelosuppression dynamics drawn from Friberg et al (2002). This model enables simulation of neutrophil-guided dose titration of docetaxel, as done in Norris (2017).

Usage

```r
Onoue.Friberg(
  N,
  cycle.length.days = 21,
  data = data.frame(time = c(seq(0, 1.95, 0.05), seq(2, cycle.length.days * 24, 1)), y = NA),
  delta.t = 0.1
)
```

Arguments

- `N` Size of simulated population.
- `cycle.length.days` Duration (in days) of chemotherapy cycle to be simulated.
- `data` Passed through as the `data` argument of the `pomp` constructor.
- `delta.t` Time-step (in hours) of `pomp`'s `euler` plug-in.

Value

No value is returned; rather, the function sets global variables in package environment `DTAT::sim`.

Author(s)

David C. Norris

References

See Also

pomp, sim

Examples

```r
# Reproduce the sim$pkpd model and sim$pop population from reference #3:
library(pomp)
Onoue.Friberg(N=25)
sim$pop # NB: this differs from pop of original paper...

# Whereas the present version of Onoue.Friberg() draws simulated populations
# using pomp::rprior(), to reproduce the original F1000Research paper [3] we
# re-draw sim$pop as originally & prosaically done (see https://osf.io/vwnqz/):
set.seed(2016)
N <- 25
dtx.mm <- 0.808 # molar mass (mg/μM) of docetaxel
sim$pop$Circ0 <- rlnorm(N, meanlog=log(5050), sdlog=0.42) # units=cells/mm^3
sim$pop$MTT <- rlnorm(N, meanlog=log(89.3), sdlog=0.16) # mean transit time
sim$pop$gamma <- rlnorm(N, meanlog=log(0.163), sdlog=0.039) # feedback factor
sim$pop$Emax <- rlnorm(N, meanlog=log(83.9), sdlog=0.33)
sim$pop$EC50 <- rlnorm(N, meanlog=log(7.17*dtx.mm), sdlog=0.50)
# PK params from 2-compartment docetaxel model of Onoue et al (2016)
sim$pop$CL <- rlnorm(N, meanlog=log(32.6), sdlog=0.295)
sim$pop$Q <- rlnorm(N, meanlog=log(5.34), sdlog=0.551)
sim$pop$Vc <- rlnorm(N, meanlog=log(5.77), sdlog=0.1) # Onoue gives no CV% for V1
sim$pop$Vp <- rlnorm(N, meanlog=log(11.0), sdlog=0.598) # Called 'V2' in Onoue
sim$pop$kTR=4/sim$pop$MTT

# Now we run the sim$pkpd model, separately for each of N simulated individuals:
allout <- data.frame() # accumulator for N individual ODE solutions
for (id in 1:sim$N) {
  out <- trajectory(sim$pkpd,
    params=c(sim$pop[[sim$pop$id==id, -which(names(sim$pop) %in% c('id','MTT'))]
    , sigma=0.05, dose=100, duration=1),
    format="data.frame")
  # drop 'traj' and shift 'time' to first column
  out <- out[,c('time',setdiff(colnames(out),c('time','traj')))]
  out$id <- paste("id",id,sep="")
  allout <- rbind(allout, out)
}

library(Hmisc)
allout <- upData(allout
  , id = ordered(id, levels=paste("id",1:sim$N,sep=""))
  , units=c(Pro="cells/mm^3", Tx.1="cells/mm^3",
    Tx.2="cells/mm^3", Tx.3="cells/mm^3",
    Circ="cells/mm^3")
```
library(tidyrd)
cout <- gather(allout, key="Series", value="Concentration"
, Cc, Cp
, factor_key = TRUE)

label(cout$Concentration) <- "Drug Concentration"

Figure 1 from reference [3]:
library(RColorBrewer)
xYplot(Concentration ~ time | id, group=Series
, data=cout, subset=time<6
, layout=c(5,NA)
, type='l', as.table=TRUE
, label.curves=FALSE
, par.settings=list(superpose.line=list(lwd=2,col=brewer.pal(4,"PRGn")[c(1,4)]))
, scales=list(y=list(log=TRUE, lim=c(10^-3,10^1)))
, auto.key=list(points=FALSE, lines=TRUE, columns=2))

mout <- gather(allout, key="Series", value="ANC"
, Prol, Tx.1, Tx.2, Tx.3, Circ
, factor_key = TRUE)

mout <- upData(mout
, time = time/24
, units = c(time="days")
, print = FALSE)

Figure 3 from citation [3]:
xYplot(ANC ~ time | id, group=Series
, data=mout
, layout=c(5,5)
, type='l', as.table=TRUE
, label.curves=FALSE
, par.settings=list(superpose.line=list(lwd=2,col=brewer.pal(11,"RdYlBu")[c(1,3,4,8,10)]))
, scales=list(y=list(log=TRUE, lim=c(100,15000), at=c(200, 500, 1000, 2000, 5000, 10000)))
, auto.key=list(points=FALSE, lines=TRUE, columns=5))

Plot a DE object as an interactive htmlwidget

Description

Plot a DE object as an interactive htmlwidget
runDTATapp

Usage

S4 method for signature 'DE,missing'
plot(x, y, ..., devtree = FALSE)

Arguments

x An object of class DE
y Unused; included for S4 generic consistency
... Passed to r2d3, enabling caller to (e.g.) the override the default viewer = "internal".
devtree Logical indicator used to select local package dir

Description

Run Shiny apps included in package DTAT

Usage

runDTATapp(app)

Arguments

app Character vector of length 1. Name of app to run.

Value

Invoked for side effect. Runs the named Shiny app.

Examples

if(interactive()){
 runDTATapp("Sim33PC")
 runDTATapp("TheCost")
}
Description

Implement an inverse power-law scaling for drug dose.

Usage

scaled(dose, a = 4)

Arguments

dose A numeric vector of doses
a A numeric exponent for power-law rescaling

Value

A rescaled vector of doses

Author(s)

David C. Norris

seq.function

A seq method supporting custom-scaled plot axes.

Description

This provides a seq method for class function, supporting a natural axis scaling idiom.

Usage

S3 method for class 'function'
seq(scalefun, from, to, length.out, digits = NULL, ...)

Arguments

scalefun A numeric function that will be invoked componentwise, and so need not be vectorized
from, to The starting and ending values of the sequence returned
length.out Desired length of the sequence
digits If non-NULL, returned value is rounded accordingly
... Unused; included for S3 generic/method consistency.
Value

A numeric vector that (not considering the effect of any rounding applied), becomes an arithmetic sequence after application of `scalefun` to it. The initial and final elements of that vector are from and to.

Author(s)

David C. Norris

Examples

Provide evenly-spaced length-6 sequence from 100 to 1000,
evenly spaced on a fourth-root scale:
seq(function(dose, a=4.0) dose^(1/a), from=100, to=1000, length.out=6, digits=0)

Description

To simplify the code of package DTAT, as well as client tasks, this exported environment contains a handful of global variables useful for the simulations.

Details

Global variables maintained within environment `sim` are:

1. `pkpd`: The population PK/PD model to be simulated.
2. `pop`: A sample drawn from the population model.
3. `N`: Restricts simulation to first N subjects in `pop`.
4. `params.default`: Default parameters.

Examples

Even when nrow(pop) is large, one may easily restrict
time-consuming simulations to pop[1:N,], as follows:
sim$N <- 25
Now perform simulation work
Not run:
titrate(...)
titrate

Perform neutrophil-guided dose titration of a chemotherapy drug.

Description
This is included in package DTAT mainly for archival purposes, with the aim to document a reproduction of Figure 5 from the 2017 *F1000Research* paper (referenced below), using a clearer and more general software design than is found in the online code supplement available at https://osf.io/vwnqz/.

Usage

```
titate(draw.days = NULL, Ncycles = 10, doserange = c(50, 500), dta = NULL)
```

Arguments

- **draw.days**: Integer days on which ANC is to be measured
- **Ncycles**: Number of chemo cycles through which to simulate titration
- **doserange**: Range of doses to consider
- **dta**: A Dose Titration Algorithm (DTA) to drive the titration

Value

A list with 2 components:

- **course**: A data frame containing cycle-wise measures of each id’s titration course
- **anc.ts**: A data frame detailing high-frequency ANC measures for each id

Author(s)

David C. Norris

References

Examples

```
if(interactive()){
  # Reproduce Figure 5 from the F1000Research paper (run time > 10 s).
  # 1. Set up sim$pop & sim$pkpd by running the repro for Figures 1 & 3:
  example(topic="Onoue.Friberg", package="DTAT", ask=FALSE)
  # 2. Do the neutrophil-nadir-guided dose titration:
  chemo <- titrate(doserange = c(50, 3000),
                   dta=newton.raphson(dose1 = 50,
                                      omega = 0.75,
                                      slope1 = -2.0,
                                      }
```r
library(latticeExtra)
newton <- chemo$course
new.ts <- chemo$anc.ts
anc.tics <- c(200, 500, 1500, 4000, 10000)
right <- xYplot(ANC ~ time | id, data=new.ts,
 as.table=TRUE, type="l",
 layout=c(5, 5),
 scales=list(y=list(log=TRUE, lim=c(100, 1.5e4),
 at=anc.tics,
 lab=as.character(anc.tics)),
 x=list(at=seq(0, 30, 3)))
)
newton <- upData(newton,
 time = 3*(cycle-1),
 labels = c(time="Time"),
 units = c(time="weeks"),
 print = FALSE)
dose.tics <- c(50, 200, 600, 1500, 3000)
left <- xYplot(scaled.dose ~ time | id, data=newton,
 as.table=TRUE, type="p", pch="+", cex=1.5,
 layout=c(5, 5),
 scales=list(y=list(lim=DTAT:::scaled(c(30, 3200)),
 at=DTAT:::scaled(dose.tics),
 lab=as.character(dose.tics)),
 x=list(lim=c(-1, 31),
 at=seq(0, 30, 3),
 lab=c("0", ",", "6", ",", "12", ",", "18", ",", "24", ",", "30")))
)
update(doubleYScale(left, right, add.ylab2=TRUE),
 par.settings = simpleTheme(col=brewer.pal(4,"PRGn")[c(4, 1)])
)
```
Arguments

- An object of S4 class `DE`
- the number of DLT assessment periods to titrate over. Should be a positive integer.
- May be used to pass `verbatim = 'TRUE'` to internal `step_time` method.

References

Index

* datasets
  de.bioRxiv.240846, 4
  dtat1000, 8
  sim, 16
* survival
  dose.survfit, 5
  dose.survival, 6
  ds.curve, 7

as_d3_data, DE-method, 3

DE, 5, 19
DE-class, 3
de.bioRxiv.240846, 4
dose.survfit, 5, 6, 7
dose.survival, 6, 6
ds.curve, 7
DTAT (DTAT-package), 2
DTAT-package, 2
dtat1000, 8

km.ci, 5, 6

newton.raphson, 10
Onoue.Friberg, 11

plot, DE, missing-method, 13
pomp, 12

r2d3, 14
runDTATapp, 14

scaled, 15
seq.function, 15
sim, 12, 16
Surv, 6

titrate, 10, 17
titration, 18
titration, DE, numeric-method (titration), 18