Package ‘DTDA.cif’

February 13, 2020

Title Doubly Truncated Data Analysis, Cumulative Incidence Functions

Version 1.0.2

Maintainer José Carlos Soage González <jsoage@uvigo.es>

Depends R (>= 3.5.0)

License GPL-2

Encoding UTF-8

Imports doParallel, foreach, Rcpp

LinkingTo Rcpp

LazyData true

RoxygenNote 6.1.1

NeedsCompilation yes

Author Jacobo de Uña Álvarez [aut],
 José Carlos Soage González [cre]

Repository CRAN

Date/Publication 2020-02-13 12:30:02 UTC

R topics documented:

DTDA.cif-package .. 2
DTDAcif ... 3
plot.DTDAcif .. 5
summary.DTDAcif .. 6

Index 7
DTDA.cif-package

Doubly Truncated Data Analysis, Cumulative Incidence Functions

Description

Nonparametric estimator of the cumulative incidences of competing risks under double truncation. The estimator generalizes the Efron-Petrosian NPMLE (Non-Parametric Maximum Likelihood Estimator) to the competing risks setting.

Details

- Package: ‘DTDA.cif’
- Version: 1.0.2
- Maintainer: José Carlos Soage González <jsoage@uvigo.es>
- License: GPL-2

Value

- ‘DTDAcif’
- ‘plot.DTDAcif’
- ‘summary.DTDAcif’

Acknowledgements

- Jacobo de Uña-Álvarez was supported by Grant MTM2017-89422-P (MINECO/AEI/FEDER, UE).
- José Carlos Soage was supported by Grupos de Referencia Competitiva, Consolidación y Estructuración de Unidades de Investigación Competitivas del SUG, Cons. de Cultura, Educación e OU, Xunta de Galicia (GRC ED431C 2016/040).

Author(s)

- de Uña-Álvarez, Jacobo.
- Soage González, José Carlos.
- Maintainer: José Carlos Soage González. <jsoage@uvigo.es>

References

DTDAcif

Doubly Truncated Data Analysis, Cumulative Incidence Functions

Description

This function computes a nonparametric estimator of the cumulative incidences of competing risks under double truncation. The estimator generalizes the Efron-Petrosian NPMLE (Non-Parametric Maximum Likelihood Estimator) to the competing risks setting.

Usage

```r
DTDAcif(x, u, v, comp.event, method = c("indep", "dep"), boot = F,
        B = 300, N.iter = 100, error = 1e-06)
```

Arguments

- `x` Numeric vector corresponding to the variable of ultimate interest.
- `u` Numeric vector corresponding to the left truncation variable.
- `v` Numeric vector corresponding to the right truncation variable.
- `comp.event` Competing risk indicator.
- `method` The method used to compute the nonparametric estimator. Use ‘indep’ for independent truncation variables and “dep” for truncation variables possibly depending on the competing risk.
- `boot` Logical. If TRUE the bootstrap standard deviation of the cumulative incidences is calculated.
- `B` Number of bootstrap replicates.
- `N.iter` Maximum number of iterations.
- `error` Error criterion for convergence.

Details

The nonparametric estimator is based on the Efron-Petrosian NPMLE (Efron and Petrosian, 1999). Actually, each pair (Xi,Zi) -where Xi stands for the variable of interest and Zi is the competing event indicator- is weighted by the jump of the Efron-Petrosian NPMLE at Xi (method="indep"), or by a normalized version of the Efron-Petrosian NPMLE computed from the subset of (Xs,Zs)’s such that Zs=Zi (method="dep”). The former is suitable when the truncating couple (U,V) is independent of (X,Z), while the latter is recommended when (U,V) and X are only conditionally independent given Z; see de Uña-Álvarez (2019) for a full description of the estimators and of their properties. When the competing event indicator is missing, the function simply computes the Efron-Petrosian NPMLE and the argument method has no role.
Value

A list containing:

- method: The method used to compute the estimator.
- biasf: The biasing function which reports the sampling probability for each \(Xi \).
- cif.mas: The mass attached to each \((Xi,Zi) \). The cumsum of cif.mas for \(Zi=j \) is the estimator of the \(j \)-th cumulative incidence function.
- data: The data corresponding to \((X,Z) \) ordered with respect to \(X \) within each \(Z \)-value.
- sd.boot: The bootstrap standard deviation.

Acknowledgements

- Jacobo de Uña-Álvarez was supported by Grant MTM2017-89422-P (MINECO/AEI/FEDER, UE).
- José Carlos Soage was supported by Grupos de Referencia Competitiva, Consolidación y Estructuración de Unidades de Investigación Competitivas del SUG, Cons. de Cultura, Educación e OU, Xunta de Galicia (GRC ED431C 2016/040).

Author(s)

- de Uña-Álvarez, Jacobo.
- Soage González, José Carlos.
- Maintainer: José Carlos Soage González. <jsoage@uvigo.es>

References

Examples

```r
set.seed(1234)
n <- 50  # sample size
x <- runif(n, 0, 1)  # time variable of interest
z <- rbinom(n, 1, 1 / 4)  # competing event indicator

# truncation variables
u <- runif(n, -.25, .5)  # left truncation variable
v <- u + .75  # right truncation variable
```
note: (u,v) is independent of (x,z) so both estimation methods are consistent

truncating the sample:

for (i in 1:n) {
 while (u[i] > x[i] | v[i] < x[i]) {
 x[i] <- runif(1, 0, 1)
 z[i] <- rbinom(1, 1, 1 / 4)
 u[i] <- runif(1, -.25, .5)
 v[i] <- u[i] + .75
 }
}

note: (u,v) since is independent of (x,z)
both estimation methods are consistent:

res.i <- DTDAcif(x, u, v, z, method = "indep", boot = TRUE)
res.d <- DTDAcif(x, u, v, z, method = "dep", boot = TRUE)

oldpar <- par(mfrow=c(1,2))
plot(res.i, main = "Indep trunc", intervals = TRUE)
plot(res.d, main = "Cond indep trunc", intervals = TRUE)
summary(res.i)
summary(res.d)

plot(res.i$data$x, res.i$biasf, type = "s") # the observational bias
the observational bias, event 1
plot(res.d$data$x[res.d$data$z == 1], res.d$biasf$biasf_1, type = "s")
the observational bias, event 2
lines(res.d$data$x[res.d$data$z == 2], res.d$biasf$biasf_2, type = "s", col = 2)
par(oldpar)

Description

S3 method to plot a DTDAcif object by using the generic plot function.

Usage

S3 method for class 'DTDAcif'
plot(x, intervals = FALSE, level = 0.95, main = "", xlab = "", ylab = ", ylim, xlim, ...)
Arguments

- **x**: DTDAcif object.
- **intervals**: Logical. If TRUE confidence intervals are calculated if standard deviation was calculated before.
- **level**: Confidence level of the standard deviation of the cifs. Default is 0.95.
- **main**: An overall title for the plot.
- **xlab**: A title for the x axis.
- **ylab**: A title for the y axis.
- **ylim**: Limit over the y axis.
- **xlim**: Limit over the x axis.
- **...**: Additional parameters.

Author(s)

- de Uña-Álvarez, Jacobo.
- Soage González, José Carlos.
- Maintainer: José Carlos Soage González. <jsoage@uvigo.es>

Description

S3 method to summarize a DTDAcif object by using the generic summary function.

Usage

```r
## S3 method for class 'DTDAcif'
summary(object, ...)
```

Arguments

- **object**: DTDAcif object.
- **...**: Additonal parameters.

Author(s)

- de Uña-Álvarez, Jacobo.
- Soage González, José Carlos.
- Maintainer: José Carlos Soage González. <jsoage@uvigo.es>
Index

DTDA.cif (DTDA.cif-package), 2
DTDA.cif-package, 2
DTDAcif, 2, 3
plot.DTDAcif, 2, 5
summary.DTDAcif, 2, 6