Package ‘DTWUMI’

July 13, 2018

Type Package

Title Imputation of Multivariate Time Series Based on Dynamic Time Warping

Version 1.0

Date 2018-06-12

Author DEZECACHE Camille, PHAN Thi Thu Hong, POISSON-CAILLAULT Emilie

Maintainer POISSON-CAILLAULT Emilie <emilie.poisson@univ-littoral.fr>

Description Functions to impute large gaps within multivariate time series based on Dynamic Time Warping methods. Gaps of size 1 or inferior to a defined threshold are filled using simple average and weighted moving average respectively. Larger gaps are filled using the methodology provided by Phan et al. (2017) <DOI:10.1109/MLSP.2017.8168165>: a query is built immediately before/after a gap and a moving window is used to find the most similar sequence to this query using Dynamic Time Warping. To lower the calculation time, similar sequences are pre-selected using global features. Contrary to the univariate method (package ‘DTWBI’), these global features are not estimated over the sequence containing the gap(s), but a feature matrix is built to summarize general features of the whole multivariate signal. Once the most similar sequence to the query has been identified, the adjacent sequence to this window is used to fill the gap considered. This function can deal with multiple gaps over all the sequences composing the input multivariate signal. However, for better consistency, large gaps at the same location over all sequences should be avoided.

Depends R (>= 3.0.0)

Imports dtw, rlist, stats, e1071, entropy, lsa, DTWBI

License GPL (>= 2)

RoxygenNote 6.0.1

URL http://mawenzi.univ-littoral.fr/DTWUMI/

NeedsCompilation no

Repository CRAN

Date/Publication 2018-07-13 14:30:09 UTC
Description

Functions to impute large gaps within multivariate time series based on Dynamic Time Warping methods. Gaps of size 1 or inferior to a defined threshold are filled using simple average and weighted moving average respectively. Larger gaps are filled using the methodology provided by Phan et al. (2017) <DOI:10.1109/MLSP.2017.8168165>: a query is built immediately before/after a gap and a moving window is used to find the most similar sequence to this query using Dynamic Time Warping. To lower the calculation time, similar sequences are pre-selected using global features. Contrary to the univariate method (package ‘DTWBI’), these global features are not estimated over the sequence containing the gap(s), but a feature matrix is built to summarize general features of the whole multivariate signal. Once the most similar sequence to the query has been identified, the adjacent sequence to this window is used to fill the gap considered. This function can deal with multiple gaps over all the sequences composing the input multivariate signal. However, for better consistency, large gaps at the same location over all sequences should be avoided.

Details

Index of help topics:

<table>
<thead>
<tr>
<th>Package/Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTWUMI-package</td>
<td>Imputation of Multivariate Time Series Based on Dynamic Time Warping</td>
</tr>
<tr>
<td>DTWUMI_1gap_imputation</td>
<td>Imputation of a large gap based on DTW for multivariate signals</td>
</tr>
<tr>
<td>DTWUMI_imputation</td>
<td>Large gaps imputation based on DTW for multivariate signals</td>
</tr>
<tr>
<td>Indexes_size_missing_multi</td>
<td>Indexing gaps size</td>
</tr>
<tr>
<td>dataDTWUMI</td>
<td>A multivariate times series consisting of three signals as example for DTWUMI package</td>
</tr>
<tr>
<td>imp_1NA</td>
<td>Imputing gaps of size 1</td>
</tr>
</tbody>
</table>
dataDTWUMI

Author(s)

DEZECACHE Camille, PHAN Thi Thu Hong, POISSON-CAILLAULT Emilie
Maintainer: POISSON-CAILLAULT Emilie <emilie.poisson@univ-littoral.fr>

References

Examples

data(dataDTWUMI)
dataDTWUMI_gap <- dataDTWUMI[["incomplete_signal"]]
imputation <- DTWUMI_imputation(dataDTWUMI_gap, gap_size_threshold = 10, DTW_method = "DTW")
plot(dataDTWUMI_gap[, 1], type = "l", lwd = 2)
lines(imputation$output[, 1], col = "red")
plot(dataDTWUMI_gap[, 2], type = "l", lwd = 2)
lines(imputation$output[, 2], col = "red")
plot(dataDTWUMI_gap[, 3], type = "l", lwd = 2)
lines(imputation$output[, 3], col = "red")

Description

A multivariate times series consisting of three signals as example for DTWUMI package

Usage

dataDTWUMI

Format

A list storing two data frames with three columns each. The first table contains the original complete simulated data. The second table contains the same simulated data with one large gap added within each signal.
Description

Fills a gap of size 'gap_size' beginning at the position 'begin_gap' within a multivariate signal using DTW.

Usage

\[
\text{DTWumi}_1\text{gap}_\text{imputation}(\text{data}, \text{id_sequence}, \text{begin_gap}, \text{gap_size}, \text{DTW_method = "DTW"}, \text{threshold_cos = 0.995}, \text{thresh_cos_stop = 0.8}, \text{step_threshold = 2, ...})
\]

Arguments

- **data**: a multivariate signals containing gaps
- **id_sequence**: id of the sequence containing the gap to fill (corresponding to the column number)
- **begin_gap**: id of the beginning of the gap to fill
- **gap_size**: size of the gap to fill
- **DTW_method**: DTW method used for imputation ("DTW", "DDTW", "AFBDTW"). By default "DTW"
- **threshold_cos**: threshold used to define similar sequences to the query
- **thresh_cos_stop**: Define the lowest cosine threshold acceptable to find a similar window to the query
- **step_threshold**: step used within the loops determining the threshold and the most similar sequence to the query
- ... additional arguments from dtw() function

Value

returns a list containing the following elements:

- **imputed_values**: output vector containing the imputation proposal
- **id_imputation**: a vector containing the position of the imputed values extracted
- **id_sim_win**: a vector containing the position of the similar window to the query
- **id_gap**: a vector containing the position gap considered
- **id_query**: a vector containing the position of the query

Author(s)

DEZECAUCHE Camille, PHAN Thi Thu Hong, POISSON-CAillaULT Emilie
DTWUMI_imputation

Examples

data(dataDTWUMI)
dataDTWUMI_gap <- dataDTWUMI[["incomplete_signal"]]
t <- 207; T <- 40
imputation <- DTWUMI_1gap_imputation(dataDTWUMI_gap, id_sequence=1, t, T)
plot(dataDTWUMI_gap[, 1], type = "l", lwd = 2)
lines(y = imputation$imputed_values, x = imputation$id_gap, col = "red")
lines(y = dataDTWUMI_gap[imputation$id_query, 1], x = imputation$id_query, col = "green")
lines(y = dataDTWUMI_gap[imputation$id_sim_win, 1], x = imputation$id_sim_win, col = "blue")
lines(y = dataDTWUMI_gap[imputation$id_imputation, 1], x = imputation$id_imputation, col = "orange")

DTWUMI_imputation Large gaps imputation based on DTW for multivariate signals

Description

Fills all gaps within a multivariate signal. Gaps of size 1 are filled using the average values of nearest neighbours. Gaps of size >1 and <gap_size_threshold are filled using weighted moving average. Larger gaps are filled using DTW.

Usage

DTWUMI_imputation(data, gap_size_threshold, DTW_method = "DTW",
threshold_cos = 0.995, thresh_cos_stop = 0.8, step_threshold = 2, ...)

Arguments

data a multivariate signals containing gaps

gap_size_threshold threshold above which dtw based imputation is computed. Below this threshold, a weighted moving average is calculated

DTW_method DTW method used for imputation ("DTW", "DDTW", "AFBDTW"). By default "DTW"

threshold_cos threshold used to define similar sequences to the query

thresh_cos_stop Define the lowest cosine threshold acceptable to find a similar window to the query

step_threshold step used within the loops determining the threshold and the most similar sequence to the query

... additional arguments from dtw() function

Value

returns a list containing a dataframe of completed signals
imp_1NA

Imputing gaps of size 1

Description
Imputes isolated missing values based on the average of nearest neighbours.

Usage
imp_1NA(data, pos1)

Arguments
- data: a univariate signal
- pos1: the position of the beginning of gaps of size 1, as obtained using Indexes_size_missing_multi() function

Value
returns a new vector of same size with imputed values

Author(s)
DEZECACHE Camille, PHAN Thi Thu Hong, POISSON-CAILLAULT Emilie
Indexes_size_missing_multi

Indexing gaps size

Description
Stores the position of the beginning of each gap and their respective size within a multivariate signal.

Usage
Indexes_size_missing_multi(data)

Arguments
data multivariate signal

Value
returns a list with one element per signal. Within each element of this list, the first column gives the position of the beginning of each gap and the second column its size.

Author(s)
DEZECACHE Camille, PHAN Thi Thu Hong, POISSON-CAILLAULT Emilie

Examples
data(dataDTWUMI)
id_NA <- Indexes_size_missing_multi(dataDTWUMI$incomplete_signal)
Index

*Topic DTW
 DTWUMI-package, 2
*Topic datasets
 dataDTWUMI, 3
*Topic imputation
 DTWUMI-package, 2
*Topic package
 DTWUMI-package, 2
*Topic times series
 DTWUMI-package, 2

dataDTWUMI, 3
DTWUMI (DTWUMI-package), 2
DTWUMI-package, 2
DTWUMI_1gap_imputation, 4
DTWUMI_imputation, 5

imp_1NA, 6
Indexes_size_missing_multi, 7