Package ‘DatabionicSwarm’

May 30, 2023

Type Package
License GPL-3
Title Swarm Intelligence for Self-Organized Clustering
Version 1.2.0
Date 2023-05-30
Maintainer Michael Thrun <m.thrun@gmx.net>

Description
Algorithms implementing populations of agents that interact with one another and sense their environment may exhibit emergent behavior such as self-organization and swarm intelligence. Here, a swarm system called Databionic swarm (DBS) is introduced which was published in Thrun, M.C., Ultsch A.: "Swarm Intelligence for Self-Organized Clustering" (2020), Artificial Intelligence, <DOI:10.1016/j.artint.2020.103237>. DBS is able to adapt itself to structures of high-dimensional data such as natural clusters characterized by distance and/or density based structures in the data space. The first module is the parameter-free projection method called Pswarm (Pswarm()), which exploits the concepts of self-organization and emergence, game theory, swarm intelligence and symmetry considerations. The second module is the parameter-free high-dimensional data visualization technique, which generates projected points on the topographic map with hypsometric tints defined by the generalized U-matrix (GeneratePswarmVisualization()). The third module is the clustering method itself with non-critical parameters (DBSclustering()). Clustering can be verified by the visualization and vice versa. The term DBS refers to the method as a whole. It enables even a non-professional in the field of data mining to apply its algorithms for visualization and/or clustering to data sets with completely different structures drawn from diverse research fields. The comparison to common projection methods can be found in the book of Thrun, M.C.: "Projection Based Clustering through Self-Organization and Swarm Intelligence" (2018) <DOI:10.1007/978-3-658-20540-9>.

Imports Rcpp (>= 1.0.8), RcppParallel (>= 5.1.4), deldir, GeneralizedUmatrix

Suggests DataVisualizations, knitr (>= 1.12), rmarkdown (>= 0.9), plotrix, geometry, sp, spdep, AdaptGauss, ABCanalysis, parallel, rgl, png, ProjectionBasedClustering, parallelDist, pracma, dendextend

LinkingTo Rcpp, RcppArmadillo, RcppParallel
R topics documented:

- DatabionicSwarm-package
- ClusteringAccuracy
- DBSclustering
- DefaultColorSequence
- Delaunay4Points
- DelaunayClassificationError
- Delta3DWeightsC
- DijkstraSSSP
- findPossiblePositionsCsingle
- GeneratePswarmVisualization
- getCartesianCoordinates
- getUmatrix4Projection
- Hepta
- Lsun3D
- plotSwarm
- ProjectedPoints2Grid
- Pswarm
- PswarmCurrentRadiusC2botsPositive
- rDistanceToroidCsingle
- RelativeDifference
- RobustNormalization
- RobustNorm_BackTrafo
- sESOM4BMUs
- setdiffMatrix
- setGridSize
- setPolarGrid
- setRmin
- ShortestGraphPathsC
Description

Algorithms implementing populations of agents that interact with one another and sense their environment may exhibit emergent behavior such as self-organization and swarm intelligence. Here, a swarm system called Databionic swarm (DBS) is introduced which was published in Thrun, M.C., Ultsch A.: "Swarm Intelligence for Self-Organized Clustering" (2020), Artificial Intelligence, <DOI:10.1016/j.artint.2020.103237>. DBS is able to adapt itself to structures of high-dimensional data such as natural clusters characterized by distance and/or density based structures in the data space. The first module is the parameter-free projection method called Pswarm (Pswarm()), which exploits the concepts of self-organization and emergence, game theory, swarm intelligence and symmetry considerations. The second module is the parameter-free high-dimensional data visualization technique, which generates projected points on the topographic map with hypsometric tints defined by the generalized U-matrix (GeneratePswarmVisualization()). The third module is the clustering method itself with non-critical parameters (DBSclustering()). Clustering can be verified by the visualization and vice versa. The term DBS refers to the method as a whole. It enables even a non-professional in the field of data mining to apply its algorithms for visualization and/or clustering to data sets with completely different structures drawn from diverse research fields. The comparison to common projection methods can be found in the book of Thrun, M.C.: "Projection Based Clustering through Self-Organization and Swarm Intelligence" (2018) <DOI:10.1007/978-3-658-20540-9>.

Details

For a brief introduction to DatabionicSwarm please see the vignette Short Intro to the Databionic Swarm (DBS).

Package: Databonic swarm
Type: Package
Version: 1.1.5
Date: 2021-01-12
License: CC BY-NC-SA 4.0
DefaultColorSequence Default color sequence for plots
Delaunay4Points Adjacency matrix of the delaunay graph for
 BestMatches of Points
DelaunayClassificationError Delaunay Classification Error (DCE)
Delta3DWeightsC Intern function
DijkstraSSSP Internal function: Dijkstra SSSP
GeneratePswarmVisualization
 Generates the Umatrix for Pswarm algorithm
Hepta Hepta is part of the Fundamental Clustering
 Problem Suit (FCPS) [Thrun/Ultsch, 2020].
Lsun3D Lsun3D is part of the Fundamental Clustering
 Problem Suit (FCPS) [Thrun/Ultsch, 2020].
ProjectedPoints2Grid Transforms ProjectedPoints to a grid
Pswarm A Swarm of Databots based on polar coordinates
 (Polar Swarm).
PswarmCurrentRadiusC2botsPositive
 intern function, do not use yourself
RelativeDifference Relative Difference
RobustNorm_BackTrafo Transforms the Robust Normalization back
RobustNormalization RobustNormalization
ShortestGraphPathsC Shortest GraphPaths = geodesic distances
UniquePoints Unique Points
findPossiblePositionsCsingle
 Intern function, do not use yourself
getCartesianCoordinates
 Intern function: Transformation of Databot
 indizes to coordinates
getUmatrix4Projection depricated! see GeneralizedUmatrix()
 Generalisierte U-Matrix fuer
 Projekionsverfahren
plotSwarm Intern function for plotting during the Pswarm
 annealing process
rDistanceToroidCsingle
 Intern function for 'Pswarm'
sESOM4BMUs Intern function: Simplified Emergent
 Self-Organizing Map
setGridSize Sets the grid size for the Pswarm algorithm
setPolarGrid Intern function: Sets the polar grid
setRmin Intern function: Estimates the minimal radius
 for the Databot scent
setdiffMatrix setdiffMatrix shortens Matrix2Curt by those
 rows that are in both matrices.
trainstepC Internal function for sESOM

Note

For interactive Island Generation of a generalized Umatrix see interactiveGeneralizedUmatrixIsland
function in the package ProjectionBasedClustering.
If you want to verify your clustering result externally, you can use Heatmap or SilhouettePlot of the CRAN package DataVisualizations.

Author(s)

Michal Thrun

Maintainer: Michael Thrun <m.thrun@gmx.net>

References

Successfully used in

Examples

data('Lsun3D')
##2d projection, without instant visualization of steps

#Alternative I:
#DistanceMatrix hast to be defined by the user.
InputDistances=as.matrix(dist(Lsun3D$Data))

projection=Pswarm(InputDistances)
##2d projection, with instant visualization

Not run:
#Alternative II: DataMatrix, Distance is Euclidean per default
projection=Pswarm(Lsun3D$Data,Cls=Lsun3D$Cls,PlotIt=T)

End(Not run)
#
##Computation of Generalized Umatrix
If Non Euclidean Distances are used, Please Use \code{MDS}
from the ProjectionBasedClustering package with the correct OutputDimension
to generate a new DataMatrix from the distances (see SheppardDiagram
or KruskalStress)
genUmatrixList=GeneratePswarmVisualization(Data = Lsun3D$Data,
projection$ProjectedPoints,projection$LC)

Visualizuation of GenerelizedUmatrix,
Estimation of the Number of Clusters=Number of valleys
library(GeneralizedUmatrix)#install if not installed
GeneralizedUmatrix::plotTopographicMap(genUmatrixList$Umatrix,genUmatrixList$Bestmatches)

Automatic Clustering
number of Cluster from dendrogram (PlotIt=TRUE) or visualization
Cls=DBSclustering(k=3, Lsun3D$Data,
genUmatrixList$Bestmatches, genUmatrixList$LC,PlotIt=FALSE)
Verification, often its better to mark Outliers manually

GeneralizedUmatrix::plotTopographicMap(genUmatrixList$Umatrix,genUmatrixList$Bestmatches,Cls)

Not run:
To generate the 3D landscape in the shape of an island
from the toroidal topograpic map visualization
you may cut your island interactivly around high mountain ranges
Imx = ProjectionBasedClustering::interactiveGeneralizedUmatrixIsland(genUmatrixList$Umatrix,
genUmatrixList$Bestmatches,Cls)

GeneralizedUmatrix::plotTopographicMap(genUmatrixList$Umatrix,
genUmatrixList$Bestmatches, Cls=Cls,Imx = Imx)
ClusteringAccuracy

End(Not run)
Not run:
library(ProjectionBasedClustering)#install if not installed
Cls2=ProjectionBasedClustering::interactiveClustering(genUmatrixList$Umatrix,
genUmatrixList$Bestmatches, Cls)

End(Not run)

Description

Clustering Accuracy

Usage

`ClusteringAccuracy(PriorCls,CurrentCls,K=9)`

Arguments

- `PriorCls` [1:n] integer vector; Ground truth
- `CurrentCls` [1:n] integer vector with clustering result
- `K` Maximal number of classes for computation.

Details

Here, accuracy is defined as the normalized sum over all true positive labeled data points of a clustering algorithm. The best of all permutation of labels with the highest accuracy is selected in every trial because algorithms arbitrarily define the labels.

Value

Accuracy Between zero and one

Author(s)

Michael Thrun

References

Michael C. Thrun, Felix Pape, Alfred Ultsch: Benchmarking Cluster Analysis Methods in the Case of Distance and Density-based Structures Defined by a Prior Classification Using PDE-Optimized Violin Plots, ECDA, Potsdam, 2018
Examples

data(Hepta)

InputDistances=as.matrix(dist(Hepta$Data))
projection=Pswarm(InputDistances)
visualization=GeneratePswarmVisualization(Data = Hepta$Data,
projection$ProjectedPoints, projection$LC)
Cls=DBSclustering(k=7, Hepta$Data, visualization$Bestmatches,
visualization$LC, PlotIt=FALSE)
ClusteringAccuracy(Hepta$Cls, Cls, K=9)

DBSclustering

Dataabonic swarm clustering (DBS)

Description

DBS is a flexible and robust clustering framework that consists of three independent modules. The first module is the parameter-free projection method Pswarm $Pswarm$, which exploits the concepts of self-organization and emergence, game theory, swarm intelligence and symmetry considerations [Thrun/Ultsch, 2021]. The second module is a parameter-free high-dimensional data visualization technique, which generates projected points on a topographic map with hypsometric colors $GeneratePswarmVisualization$, called the generalized U-matrix. The third module is a clustering method with no sensitive parameters $DBSclustering$ (see [Thrun, 2018, p. 104 ff]). The clustering can be verified by the visualization and vice versa. The term DBS refers to the method as a whole.

The $DBSclustering$ function applies the automated Clustering approach of the Databonic swarm using abstract U distances, which are the geodesic distances based on high-dimensional distances combined with low dimensional graph paths by using $ShortestGraphPathsC$.

Usage

$DBSclustering(k, DataOrDistance, BestMatches, LC, StructureType = TRUE,
PlotIt = FALSE, ylab, main, method = "euclidean",...)$

Arguments

- **k**: number of clusters, how many to you see in the topographic map (3D landscape)?
- **DataOrDistance**: Either $[1:n,1:d]$ Matrix of Data (n cases, d dimensions) that will be used. One DataPoint per row or symmetric Distance matrix $[1:n,1:n]$
- **BestMatches**: $[1:n,1:2]$ Matrix with positions of Bestmatches or ProjectedPoints, one matrix line per data point
- **LC**: grid size c(Lines,Columns), please see details
StructureType Optional, bool; = TRUE: compact structure of clusters assumed, =FALSE: connected structure of clusters assumed. For the two options for Clusters, see [Thrun, 2018] or Handl et al. 2006

PlotIt Optional, bool, Plots Dendrogramm

ylab Optional, character vector, ylabel of dendrogramm

main Optional, character vector, title of dendrogramm

method Optional, one of 39 distance methods of parDist of package parallelDist, if Data matrix is chosen above

... Further arguments passed on to the parDist function, e.g. user-defined distance functions

Details

The input of the LC parameter depends on the choice of Bestmatches input argument. Usually as the name of the argument states, the Bestmatches of the GeneratePswarmVisualization function are used which is defined in the notation of self-organizing map. In this case please see example one.

However, as written above, clustering and visualization can be applied independently of each other. In this case the places of Lines L and Columns C are switched because Lines is a value slightly above the maximum of the x-coordinates and Columns is a value slightly above the maximum of the y-coordinates of ProjectedPoint. Hence, one should give DBSclustering the argument LC[2,1] as shown in example 2.

Often it is better to mark the outliers manually after the process of clustering and sometimes a clustering can be improved through human interaction [Thrun/Ultsch,2017] <DOI:10.13140/RG.2.2.13124.53124>; use in this case the visualization plotTopographicMap of the package GeneralizedUmatrix. If you would like to mark the outliers interactively in the visualization use the ProjectionBasedClustering package with the function interactiveClustering(), or for full interactive clustering IPBC(). The package is available on CRAN. An example is shown in case of interactiveClustering() function in the third example.

Value

[1:n] numerical vector of numbers defining the classification as the main output of this cluster analysis for the n cases of data corresponding to the n bestmatches. It has k unique numbers representing the arbitrary labels of the clustering. You can use plotTopographicMap(Umatrix, Bestmatches, Cls) for verification.

Note

If you want to verify your clustering result externally, you can use Heatmap or SilhouettePlot of the package DataVisualizations available on CRAN.

Author(s)

Michael Thrun
References

Examples

```r
data("Lsun3D")
Data=Lsun3D$Data
InputDistances=as.matrix(dist(Data))
projection=Pswarm(InputDistances)
## Example One
genUmatriXList=GeneratePswarmVisualization(Data,
projection$ProjectedPoints, projection$LC)
Cls=DBSclustering(k=3, Data,
genUmatriXList$Bestmatches, genUmatriXList$LC, PlotIt=TRUE)

## Example Two
#automatic Clustering without GeneralizedUmatriX visualization
Cls=DBSclustering(k=3, Data,
projection$ProjectedPoints, projection$LC[c(2,1)], PlotIt=TRUE)

## Not run:
## Example Three
## Sometimes an automatic Clustering can be improved
## thorugh an interactive approach,
## e.g. if Outliers exist (see [Thrun/Ultsch, 2017])
library(ProjectionBasedClustering)
Cls2=ProjectionBasedClustering::interactiveClustering(genUmatriXList$Umatrix,
genUmatriXList$Bestmatches, Cls)

## End(Not run)
```

DefaultColorSequence Default color sequence for plots

Description

Defines the default color sequence for plots made within the Projections package.

Usage

```r
data("DefaultColorSequence")
```
Delaunay4Points

Format

A vector with 562 different strings describing colors for plots.

Delaunay4Points Adjacency matrix of the delaunay graph for BestMatches of Points

Description

Calculates the adjacency matrix of the delaunay graph for BestMatches (BMs) in tiled form if
BestMatches are located on a toroid grid.

Usage

Delaunay4Points(Points, IsToroid = TRUE, LC, PlotIt = FALSE, Gabriel = FALSE)

Arguments

Points [1:n,1:3] matrix containing the BMKey, X and Y coordinates of the n, Best-
Matches NEED NOT to be UNIQUE, however, there is an edge in the Deaunay
between duplicate points!

IsToroid Optional, logical, indicating if BM's are on a toroid grid. Default is True

LC Optional, A vector of length 2, containing the number of lines and columns of
the Grid. Lines is a value slightly above the maximum of the x-coordinates and
Columns is a value slightly above the maximum of the y-coordinates of Points.

PlotIt Optional, bool, Plots the graph

Gabriel Optional, bool, default: FALSE, If TRUE: calculates the gabriel graph instead
of the delaunay graph

Value

Delaunay[1:n,1:n] adjacency matrix of the Delaunay-Graph

Author(s)

Michael Thrun

References

[Thrun, 2018] Thrun, M. C.: Projection Based Clustering through Self-Organization and Swarm In-
9783658205409, 2018.
DelaunayClassificationError

Delaunay Classification Error (DCE)

Description

DCE searches for the k-nearest neighbors of the first delaunay neighbors weighted by the Euclidean Distances of the Inputspace. DCE evaluates these neighbors in the Output space. A low value indicates a better two-dimensional projection of the high-dimensional Input space.

Usage

DelaunayClassificationError(Data,ProjectedPoints,Cls,LC)

Arguments

Data [1:n,1:d] Numeric matrix
ProjectedPoints [1:n,1:2]
Cls [1:n,1]
LC Optional, if toroid, please set c(Lines,Columns)

Details

Delaunay classification error (DCE) makes an unbiased evaluation of distance and density-based structure which may be even non-linear separable. First, DCE utilizes the information provided by a prior classification to assess projected structures. Second, DCE applies the insights drawn from graph theory. Details are described in [Thrun/Ultsch, 2018]

Value

list of
DCE DelaunayClassificationError NOTE the rest is just for development purposes
DCEperPoint [1:n] unnormalized DCE of each point: DCE = mean(DCEperPoint)
nn the number of points in a relevant neighborhood: 0.5 * 85percentile(AnzNN)
AnzNN [1:n] the number of points with a delaunay graph neighborhood
NNdists [1:n,1:nn] the distances within the relevant neighborhood, 0 for inner cluster distances
HD [1:nn] HD = HarmonicDecay(nn) i.e weight function for the NNdists: DCEperPoint = HD*NNdists

Note

see also chapter 6 of [Thrun, 2018]
Author(s)
Michael Thrun

References

Examples
data(Hepta)

InputDistances=as.matrix(dist(Hepta$Data))
projection=Pswarm(InputDistances)
DelaunayClassificationError(Hepta$Data,projection$ProjectedPoints,Hepta$Cls,LC=projection$LC)$DCE

Description
Implementation of the main equation for SOM, ESOM or the sESOM algorithms

Usage
Delta3DWeightsC(vx,Datasample)

Arguments
vx array of weights [1:Lines,1:Columns,1:Weights]
Datasample NumericVector of one Datapoint[1:n]

Details
intern function in case of ComputeInR==FALSE in GeneratePswarmVisualization, see chapter 5.3 of [Thrun, 2018] for generalized Umatrix and especially the sESOM4BMUs algorithm.

Value
modified array of weights [1:Lines,1:Columns,1:]

Author(s)
Michael Thrun
Description

Dijkstra’s SSSP (Single source shortest path) algorithm:
gets the shortest path (geodesic distance) from source vertice(point) to all other vertices(points) defined by the edges of the adjacency matrix

Usage

DijkstraSSSP(Adj, Costs, source)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adj</td>
<td>[1:n,1:n] 0/1 adjacency matrix, e.g. from delaunay graph or gabriel graph</td>
</tr>
<tr>
<td>Costs</td>
<td>[1:n,1:n] matrix, distances between n points (normally euclidean)</td>
</tr>
<tr>
<td>source</td>
<td>integer vertice(point) from which to calculate the geodesic distance to all other points</td>
</tr>
</tbody>
</table>

Details

Preallocating space for DataStructures accordingly to the maximum possible number of vertices which is fixed set at the number 10001. This is an internal function of ShortestGraphPathsC, no errors or mis-usage is caught here.

Value

ShortestPaths[1:n] vector, shortest paths (geodesic) to all other vertices including the source vertice itself

Note

runs in O(E*Log(V))

Author(s)

Michael Thrun

References

uses a changed code which is inspired by Shreyans Sheth 28.05.2015, see https://ideone.com/qkmt31

findPossiblePositionsCsingle

Intern function, do not use yourself

Description
Finds all possible jumping position regarding a grid anda Radius for DataBots

Usage
findPossiblePositionsCsingle(RadiusPositi0onsSchablone,
jumplength, alpha, Lines)

Arguments
- RadiusPositi0onsSchablone: NumericMatrix, see setPolarGrid
- jumplength: double radius of databots regarding neighborhood, they can jump to
- alpha: double, zu streichen
- Lines: double, jumpinglength has to smaller than Lines/2 and Lines/2 has to yield to a integer number.

Details
Algorithm is described in [Thrun, 2018, p. 95, Listing 8.1].

Value
- OpenPositions: NumericMatrix, indizes of open positions

Author(s)
Michael Thrun

References

See Also
setPolarGrid
GeneratePswarmVisualization

Generates the Umatrix for Pswarm algorithm

Description

DBS is a flexible and robust clustering framework that consists of three independent modules. The first module is the parameter-free projection method Pswarm, which exploits the concepts of self-organization and emergence, game theory, swarm intelligence and symmetry considerations. The second module is a parameter-free high-dimensional data visualization technique, which generates projected points on a topographic map with hypsometric colors, called the generalized U-matrix. The third module is a clustering method with no sensitive parameters. The clustering can be verified by the visualization and vice versa. The term DBS refers to the method as a whole.

The GeneratePswarmVisualization function generates the special case (please see [Thrun, 2018]) of the generalized U-matrix with the help of an unsupervised neural network (simplified emergent self-organizing map published in [Thrun/Ultsch, 2020]). From the generalized U-matrix a topographic map with hypsometric tints can be visualized. To see this visualization use plotTopographicMap of the package GeneralizedUmatrix.

Usage

GeneratePswarmVisualization(Data, ProjectedPoints, LC, PlotIt=FALSE, ComputeInR=FALSE, Parallel=TRUE)

Arguments

- **Data** [1:n,1:d] array of data: n cases in rows, d variables in columns
- **ProjectedPoints** matrix, ProjectedPoints[1:n,1:2] n by 2 matrix containing coordinates of the projection: A matrix of the fitted configuration. See output of Pswarm for further details
- **LC** size of the grid c(Lines,Columns), number of Lines and Columns automatic calculated by setGridSize in Pswarm
 - Sometimes is better to choose a different grid size, e.g. to to reduce computational effort contrary to SOM, here the grid size defined only the resolution of the visualizations. The real grid size is predefined by Pswarm, but you may choose a factor x*res$LC if you so desire. Therefore, The resulting grid size is given back in the Output.
- **PlotIt** Optional, default(FALSE). If TRUE than uses plotTopographicMap of the package GeneralizedUmatrix is plotted as a topview in the tiled option, see details for explanation.
- **ComputeInR** Optional, =TRUE: Rcode, =FALSE C++ implementation
- **Parallel** Optional, =TRUE: Parallel C++ implementation, =FALSE C++ implementation
Details

Tiled: The topographic map is visualized 4 times because the projection is toroidal. The reason is that there are no borders in the visualizations and clusters (if they exist) are not disrupted by borders of the plot.

If you used Pswarm with distance matrix instead of a data matrix (in the sense that you do not have any data matrix available), you may transform your distances into data by using MDS of the ProjectionBasedClustering package in order to use the GeneratePswarmVisualization function. The correct dimension can be found through the Sheppard diagram or kruskals stress.

Value

list of

Bestmatches Numeric matrix [1:n,1:2], BestMatches of the Umatrix, contrary to ESOM they are always fixed, because predefined by GridPoints.

Umatrix Numeric matrix [1:Lines,1:Columns],

WeightsOfNeurons Numeric 3D array [1:Lines,1:Columns,1:d], d is the dimension of the weights, the same as in the ESOM algorithm

GridPoints Integer matrix [1:n,1:2], quantized projected points: projected points now lie on a predefined grid.

LC c(Lines,Columns), normally equal to grid size of Pswarm, sometimes it a better or a lower resolution for the visualization is better. Therefore here the grid size of the neurons is given back.

PlotlyHandle If PlotIt=FALSE: NULL, otherwise plotly object for plotting topview of topographic map.

Note

If you used pswarm with distance matrix instead of a data matrix you can mds transform your distances into data (see the MDS function of the ProjectionBasedClustering package.). The correct dimension can be found through the Sheppard diagram or kruskals stress.

Note

The extraction of an island out of the generalized Umatrix can be performed using the interactiveGeneralizedUmatrixIsland function in the package ProjectionBasedClustering.

The main code of both functions GeneralizedUmatrix and GeneratePswarmVisualization is the same C++ function sESOM4BMUs which is described in [Thrun/Ultsch, 2020].

Author(s)

Michael Thrun
getCartesianCoordinates

Intern function: Transformation of Databot indizes to coordinates

Description

Transforms Databot indizes to exact cartesian coordinates on an toroid two dimensional grid.

Arguments

- **DataBotsPos**: [1:N] complex vector Two Indizes per Databot describing its positions in an two dimensional grid
- **GridRadius**: [Lines,Columns] Radii Matrix of all possible Positions of DataBots in Grid, see also documentation of setPolarGrid
- **GridAngle**: [Lines,Columns] Angle Matrix of all possible Positions of DataBots in Grid, see also documentation of setPolarGrid
- **Lines**: Defines Size of planar toroid two dimensional grid
- **Columns**: Defines Size of planar toroid two dimensional grid
- **QuadOrHexa**: Optional, FALSE=If DataPos on hexagonal grid, round to 2 decimals after value, Default=TRUE

Examples

```r
data("Lsun3D")
Data=Lsun3D$Data
Cls=Lsun3D$Cls
InputDistances=as.matrix(dist(Data))

projList=Pswarm(InputDistances)
genUmatrixList=GeneratePswarmVisualization(Data,projList$ProjectedPoints,projList$LC)
library(GeneralizedUmatrix)
plotTopographicMap(genUmatrixList$Umatrix,genUmatrixList$Bestmatches,Cls)
```

References

See Also

Pswarm and plotTopographicMap and GeneralizedUmatrix of the package GeneralizedUmatrix
getUmatrix4Projection

Details
Transformation is described in [Thrun, 2018, p. 93].

Value
BestMatchingUnits[1:N,2] coordinates on an two dimensional grid for each databot excluding unique key, such that by using GeneratePswarmVisualization a visualization of the Pswarm projection is possible

Author(s)
Michael Thrun

References

deprecated! see GeneralizedUmatrix()

Usage
getUmatrix4Projection(Data,ProjectedPoints,
PlotIt=TRUE,Cls=NULL,toroid=T,Tiled=F,ComputeInR=F)

Arguments
<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>[1:n,1:d] Numeric matrix: n cases in rows, d variables in columns</td>
</tr>
<tr>
<td>ProjectedPoints</td>
<td>[1:n,2]n by 2 matrix containing coordinates of the Projection: A matrix of the fitted configuration.</td>
</tr>
<tr>
<td>PlotIt</td>
<td>Optional, bool, default=FALSE, if =TRUE: U-Matrix of every current Position of Databots will be shown</td>
</tr>
<tr>
<td>Cls</td>
<td>Optional, For plotting, see plotUmatrix in package Umatrix</td>
</tr>
<tr>
<td>toroid</td>
<td>Optional, Default=FALSE, ==FALSE planar computation ==TRUE: toroid borderless computation, set so only if projection method is also toroidal</td>
</tr>
<tr>
<td>Tiled</td>
<td>Optional,For plotting see plotUmatrix in package Umatrix</td>
</tr>
<tr>
<td>ComputeInR</td>
<td>Optional, =T: Rcode, =F Cpp Code</td>
</tr>
</tbody>
</table>
Hepta

Value

List with

Umatrix [1:Lines,1:Columns] (see ReadUMX in package DataIO)

EsomNeurons [Lines,Columns,weights] 3-dimensional numeric array (wide format), not wts (long format)

Bestmatches [1:n,OutputDimension] GridConverted Projected Points information converted by convertProjectionProjectedPoints() to predefined Grid by Lines and Columns

gplotres Ausgabe von ggplot

unbesetztePositionen

Umatrix[unbesetztePositionen] = NA

Author(s)

Michael Thrun

References

Examples

data("Lsun3D")
Data=Lsun3D$Data
Cls=Lsun3D$Cls
InputDistances=as.matrix(dist(Data))
res=cmdscale(d=InputDistances, k = 2, eig = TRUE, add = FALSE, x.ret = FALSE)
ProjectedPoints=as.matrix(res$points)
Stress = KruskalStress(InputDistances, as.matrix(dist(ProjectedPoints)))
resUmatrix=GeneralizedUmatrix(Data,ProjectedPoints)
plotTopographicMap(resUmatrix$Umatrix,resUmatrix$Bestmatches,Cls)

Hepta is part of the Fundamental Clustering Problem Suit (FCPS) [Thrun/Ultsch, 2020].

Description

clearly defined clusters, different variances

Usage

data("Hepta")
Details
Size 212, Dimensions 3, stored in \texttt{Hepta$Data}
Classes 7, stored in \texttt{Hepta$Cls}

References

Examples
\begin{verbatim}
data(Hepta)
str(Hepta)
\end{verbatim}

\begin{verbatim}
Lsun3D
\end{verbatim}

\texttt{Lsun3D is part of the Fundamental Clustering Problem Suit (FCPS)}
\citep{Thrun/Ultsch, 2020}.

Description
clearly defined clusters, different variances

Usage
\begin{verbatim}
data("Lsun3D")
\end{verbatim}

Details
Size 404, Dimensions 3
Dataset defined discontinuities, where the clusters have different variances. Three main Clusters, and four Outliers (in Cluster 4). See for a more detailed description in [Thrun, 2018].

References

Examples
\begin{verbatim}
data(Lsun3D)
str(Lsun3D)
Cls=Lsun3D$Cls
Data=Lsun3D$Data
\end{verbatim}
plotSwarm

Intern function for plotting during the Pswarm annealing process

Description

Intern function, generates a scatter plot of the progress of the Pswarm algorithm after every Nash equilibrum. Every point symbolizes a Databot. If a prior classification is given (Cls) then the Databots have the colors defined by the class labels.

Usage

plotSwarm(Points, Cls, xlab, ylab, main)

Arguments

Points ProjectedPoints or DataBot positions in cartesian coordinates
Cls optional, Classification as a numeric vector, if given
xlab = 'X', optional, string
ylab = 'Y', optional, string
main = "DataBots", optional, string

Author(s)

Michael Thrun

See Also

Pswarm with PlotIt=TRUE

ProjectedPoints2Grid

Transforms ProjectedPoints to a grid

Description

quantized xy cartesian coordinates of ProjectedPoints

Usage

ProjectedPoints2Grid(ProjectedPoints, Lines, Columns, PlotIt)
Arguments

ProjectedPoints
[1:n,1:2] numeric matrix of cartesian xy coordinates

Lines
double, length of small side of the rectangular grid

Columns
double, length of big side of the rectangular grid

PlotIt
optional, bool, shows the result if TRUE

Details

intern function, described in [Thrun, 2018, p.47]

Value

BestMatches[1:n,1:3] columns in order: Key,Lines,Columns

Author(s)

Michael Thrun

References

See Also

GeneratePswarmVisualization

Pswarm

A Swarm of Databots based on polar coordinates (Polar Swarm).

Description

This projection method is a part of the databionic swarm which uses the nash equilibrium [Thrun/Ultsch, 2021]. Using polar coordinates for agents (here Databots) in two dimensions has many advantages, for further details see [Thrun, 2018] and [Thrun/Ultsch, 2021].

Usage

Pswarm(DataOrDistance,PlotIt=FALSE,Cls=NULL,Silent=TRUE,
Debug=FALSE,LC=c(NULL,NULL),method= "euclidean",Parallel=FALSE,...)
Arguments

DataOrDistance Numeric matrix \([1:n,1:n]\): symmetric matrix of dissimilarities, if variable unsymmetric (Numeric matrix \([1:d,1:n]\)) it is assumed as a dataset and the euclidean distances are calculated of \(d\) variables and \(n\) cases.

PlotIt Optional, bool, default=FALSE, If =TRUE, Plots the projection during the computation process after every Nash equilibrium.

Cls Optional, numeric vector \([1:n]\), given Classification in numbers, only for plotting if PlotIt=TRUE, irrelevant for computations.

Silent Optional, bool, default=FALSE, If =TRUE results in various console messages

Debug Optional, Debug, default=FALSE, =TRUE results in various console messages, deprecicated for CRAN, because cout is not allowed.

LC Optional, grid size \(c(\text{Lines, Columns})\), sometimes it is better to call setGridSize separately.

method Optional, one of 39 distance methods of parDist of package parallelDist, if Data matrix is chosen above

Parallel Optional, =TRUE: Parallel C++ implementation, =FALSE C++ implementation

Further arguments passed on to the parDist function, e.g. user-defined distance functions

Details

DBS is a flexible and robust clustering framework that consists of three independent modules. The first module is the parameter-free projection method Pswarm, which exploits the concepts of self-organization and emergence, game theory, swarm intelligence and symmetry considerations. The second module is a parameter-free high-dimensional data visualization technique, which generates projected points on a topographic map with hypsometric colors, called the generalized U-matrix. The third module is a clustering method with no sensitive parameters DBSclustering. The clustering can be verified by the visualization and vice versa. The term DBS refers to the method as a whole.

Value

List with

ProjectedPoints \([1:n,1:2]\) xy cartesian coordinates of projection

LC number of Lines and Columns in \(c(\text{Lines,Columns})\). Lines is a value slightly above the maximum of the x-coordinates and Columns is a value slightly above the maximum of the y-coordinates of ProjectedPoints

Control List, only for intern debugging

Note

LC is now automatically estimated; LC is the size of the grid \(c(\text{Lines,Columns})\), number of Lines and Columns, default \(c(\text{NULL,NULL})\) and automatic calculation by setGridSize
Author(s)

Michael Thrun

References

Examples

data("Lsun3D")
Data=Lsun3D$Data
Cls=Lsun3D$Cls
InputDistances=as.matrix(dist(Data))
#If not called separately setGridSize() is called in Pswarm
LC=setGridSize(InputDistances)
res=Pswarm(InputDistances,LC=LC,Cls=Cls,PlotIt=TRUE)

PswarmCurrentRadiusC2botsPositive

intern function, do not use yourself

Description

Finds the weak Nash equilibrium for DataBots in one epoch(Radius), requires the setting of constants, grid, and so on in Pswarm

Usage

PswarmCurrentRadiusC2botsPositive(AllDataBotsPosOld, Radius, DataDists, IndPossibleDBPosR, RadiusPositionsschablone, pp, Nullpunkt, Lines, Columns, nBots, limit, steigungsverlaufind, StressConstAditiv, debug)

Arguments

AllDataBotsPosOld
ComplexVector [1:n,1], DataBots position in the last Nash-Equilibrium

Radius
double, Radius of payoff function, neighborhood, where other DatsBots can be smelled

DataDists
NumericMatrix, Inputdistances[1:n,1:n]

IndPossibleDBPosR
ComplexVector, see output of findPossiblePositionsCsingle
RadiusPositionsschablone
 NumericMatrix, see AllowedDBPosR0 in setPolarGrid

pp
 NumericVector, number of jumping simultaneously DataBots of one epoch (per
 nash-equilibirum), this vector is linearly monotonically decreasing

Nullpunkt
 NumericVector, equals which(AllowedDBPosR0==0,arr.ind=T), see see
 AllowedDBPosR0 in setPolarGrid

Lines
 double, small edge length of rectangulare grid

Columns
 double, big edge length of rectangulare grid

nBots
 double, intern constant, equals round(pp[Radius]*DBAnzahl)

limit
 int, intern constant, equals ceiling(1/pp[Radius])

steigungsverlaufind
 int, intern constant

StressConstAditiv
 double, intern constant, sum of payoff of all databots in random condition before
 the algorithm starts

debug
 optional, bool: If TRUE prints status every 100 iterations

Details
 Algorithm is described in [Thrun, 2018, p. 95, Listing 8.1].

Value
 list of

AllDataBotsPos
 ComplexVector, indizes of DataBot Positions after a weak Nash equilibrium is
 found

stressverlauf
 NumericVector, intern result, for debugging only

fokussiertlaufind
 NumericVector, intern result, for debugging only

Author(s)
 Michael Thrun

References
 [Thrun, 2018] Thrun, M. C.: Projection Based Clustering through Self-Organization and Swarm In-
 9783658205409, 2018.
rDistanceToroidCsingle

Intern function for Pswarm

Description

toroid distance calculation

Usage

```
rDistanceToroidCsingle(AllDataBotsPosX, AllDataBotsPosY, AllallowedDBPosR0, Lines, Columns, Nullpunkt)
```

Arguments

- **AllDataBotsPosX**: NumericVector [1:n,1], positions of on grid
- **AllDataBotsPosY**: NumericVector [1:n,1], positions of on grid
- **AllallowedDBPosR0**: NumericMatrix
- **Lines**: double
- **Columns**: double
- **Nullpunkt**: NumericVector

Details

Part of the algorithm described in [Thrun, 2018, p. 95, Listing 8.1].

Value

numeric matrix of toroid Distances[1:n,1:n]

Note

do not use yourself

Author(s)

Michael Thrun

References

Description

Calculates the difference between positive x and y values

Usage

RelativeDifference(X, Y, epsilon = 10^-10,na.rm=FALSE)

Arguments

X
either a value or numerical vector of [1:n]
Y
either a value or numerical vector of [1:n]
epsilon
Optional, If both x and y are approximately zero the output is also zero
na.rm
Optional, function does not work with non finite values. If these cases should be automatically removed, set parameter TRUE

Details

Contrary to other approaches in this cases the range of values lies between [-2,2]. The approach is only valid for positive values of \(X \) and \(Y \). The relative difference \(R \) is defined with

\[
R = \frac{Y - X}{0.5 \times (X + Y)}
\]

Negative value indicate that \(X \) is higher than \(Y \) and positive values that \(X \) is lower than \(Y \).

Value

R

Note

It can be combined with the DelaunayClassificationError if a clear baseline is defined.

Author(s)

Michael Thrun

References

See Also

- DelaunayClassificationError

Examples

```r
x <- c(1:5)
y <- runif(5, min=1, max=10)
RelativeDifference(x, y)
```

Description

RobustNormalization as described in [Milligan/Cooper, 1988].

Usage

```r
RobustNormalization(Data, Centered=FALSE, Capped=FALSE,
na.rm=TRUE, WithBackTransformation=FALSE,
pmin=0.01, pmax=0.99)
```

Arguments

- **Data**
 - `[1:n,1:d]` data matrix of `n` cases and `d` features
- **Centered**
 - centered data around zero by median if `TRUE`
- **Capped**
 - `TRUE`: outliers are capped above 1 or below -1 and set to 1 or -1.
- **na.rm**
 - If `TRUE`, infinite values are disregarded
- **WithBackTransformation**
 - If in the case for forecasting with neural networks a backtransformation is required, this parameter can be set to `TRUE`.
- **pmin**
 - defines outliers on the lower end of scale
- **pmax**
 - defines outliers on the higher end of scale

Details

Normalizes features either between -1 to 1 (Centered=TRUE) or 0-1 (Centered=TRUE) without changing the distribution of a feature itself. For a more precise description please read [Thrun, 2018, p.17].

"[The] scaling of the inputs determines the effective scaling of the weights in the last layer of a MLP with BP neural network, it can have a large effect on the quality of the final solution. At the outset it is best to standardize all inputs to have mean zero and standard deviation 1 [(or at least the range under 1)]. This ensures all inputs are treated equally in the regularization process, and allows to choose a meaningful range for the random starting weights." [Friedman et al., 2012]"
Value

if WithBackTransformation=FALSE: TransformedData[1:n,1:d] i.e., normalized data matrix of n cases and d features

if WithBackTransformation=TRUE: List with

TransformedData

[1:n,1:d] normalized data matrix of n cases and d features

MinX
[1:d] numerical vector used for manual back-transformation of each feature

MaxX
[1:d] numerical vector used for manual back-transformation of each feature

Denom
[1:d] numerical vector used for manual back-transformation of each feature

Center
[1:d] numerical vector used for manual back-transformation of each feature

Author(s)

Michael Thrun

References

See Also

RobustNorm_BackTrafo

Examples

Scaled = RobustNormalization(rnorm(1000, 2, 100), Capped = TRUE)
hist(Scaled)

m = cbind(c(1, 2, 3), c(2, 6, 4))
List = RobustNormalization(m, FALSE, FALSE, FALSE, TRUE)
TransformedData = List$TransformedData

mback = RobustNorm_BackTrafo(TransformedData, List$MinX, List$Denom, List$Center)

sum(m - mback)
RobustNorm_BackTrafo

Transform the Robust Normalization back if Capped=FALSE

Usage

RobustNorm_BackTrafo(TransformedData, MinX, Denom, Center=0)

Arguments

TransformedData [1:n,1:d] matrix
MinX scalar
Denom scalar
Center scalar

Details

For details see RobustNormalization

Value

[1:n,1:d] Data matrix

Author(s)

Michael Thrun

See Also

RobustNormalization

Examples

data(Hepta)
Data = Hepta$Data
TransList = RobustNormalization(Data, Centered = TRUE, WithBackTransformation = TRUE)

HeptaData = RobustNorm_BackTrafo(TransList$TransformedData, TransList$MinX, TransList$Denom, TransList$Center)

sum(HeptaData - Data) #<e-15
sESOM4BMUs

Intern function: Simplified Emergent Self-Organizing Map

Description

Intern function for the simplified ESOM (sESOM) algorithm for fixed BestMatchingUnits.

Usage

sESOM4BMUs(BMUs, Data, esom, toroid, CurrentRadius,
ComputeInR=FALSE, Parallel=TRUE)

Arguments

BMUs [1:Lines,1:Columns], BestMAchingUnits generated by ProjectedPoints2Grid()
Data [1:n,1:d] array of data: n cases in rows, d variables in columns
esom [1:Lines,1:Columns,1:weights] array of NeuronWeights, see ListAsEsomNeurons()
toroid TRUE/FALSE - topology of points
CurrentRadius number between 1 to x
ComputeInR =T: Rcode, =F Cpp Code
number between 1 to x
Parallel Optional, =TRUE: Parallel C++ implementation, =FALSE C++ implementation

Details

Algorithm is described in [Thrun, 2018, p. 48, Listing 5.1].

Value

esom numeric array [1:Lines,1:Columns,1:d], d is the dimension of the weights, the same as in the ESOM algorithm. modified esomneuros regarding a predefined neighborhood defined by a radius

Note

Usually not for seperated usage!

Author(s)

Michael Thrun
setdiffMatrix

References

See Also
GeneratePswarmVisualization

setdiffMatrix

setdiffMatrix shortens Matrix2Curt by those rows that are in both matrices.

Description
setdiffMatrix shortens Matrix2Curt by those rows that are in both matrices.

Arguments

Matrix2Curt [n,k] matrix, which will be shortened by x rows
Matrix2compare [m,k] matrix whose rows will be compared to those of Matrix2Curt x rows in Matrix2compare equal rows of Matrix2Curt (order of rows is irrelevant). Has the same number of columns as Matrix2Curt.

Value
V$CurtedMatrix[n-x,k] Shortened Matrix2Curt

Author(s)
CL, MT 12/2014

setGridSize

Sets the grid size for the Pswarm algorithm

Description
Automatically sets the size of the grid, formula see [Thrun, 2018, p. 93-94].

Usage
setGridSize(InputDistances,minp=0.01,maxp=0.99,alpha=4)
Argument

InputDistances [1:n,1:n] symmetric matrix of input distances
minp default value: 0.01, see quantile, first value in the vector of probs estimates robust minimum of distances
maxp default value: 0.99, see quantile, last value of the vector of probs estimates robust maximum of distances
alpha Do not change! Intern parameter, Only if Java Version of Pswarm instead of C++ version is used.

Details

grid is set such that minimum and maximum distances can be shown on the grid

Value

LC=\text{c}(\text{Lines,Columns}) size of the grid for Pswarm

Author(s)

Michael Thrun, Florian Lerch

References

See Also

automatic choice of LC for Pswarm

Examples

data("Lsun3D")
Data=Lsun3D$Data
Cls=Lsun3D$Cls
InputDistances=as.matrix(dist(Data))
#If not called separately setGridSize() is called in Pswarm
LC=setGridSize(InputDistances)
setPolarGrid

Intern function: Sets the polar grid

Description
Sets a polar grid for a swarm in an rectangular shape

Usage

setPolarGrid(Lines, Columns, QuadOrHexa, PlotIt, global)

Arguments

- **Lines** Integer, hast to be able to be divided by 2
- **Columns** Integer, with Columns>=Lines
- **QuadOrHexa** bool, default(TRUE) If False Hexagonal grid, default quad grid
- **PlotIt** bool, default(FALSE)
- **global** bool, default(TRUE), intern parameter, how shall the radii be calculated?

Details
Part of the Algorithm described in [Thrun, 2018, p. 95, Listing 8.1].

Value

- list of
 - **GridRadii** matrix [1:Lines,1:Columns], Radii Matrix of all possible Positions of DataBots in Grid
 - **GridAngle** matrix [1:Lines,1:Columns], Angle Matrix of all possible Positions of DataBots in Grid
 - **AllallowedDBPosR0** matrix [1:Lines+1,1:Columns+1], Matrix of radii in polar coordinates respecting origin (0,0) of all allowed DataBots Positions in one jump
 - **AllallowedDBPosPhi0** matrix [1:Lines+1,1:Columns+1], # V$AllallowedDBPosPhi0[Lines+1,Lines+1] Matrix of angle in polar coordinates respecting origin (0,0) of all allowed DataBots Positions in one jump

Author(s)
Michael Thrun

References
See Also

Pswarm

setRmin

Intern function: Estimates the minimal radius for the Databot scent

Description

estimates the minimal radius on apolar grid in the automated annealing process of Pswarm, details of how can be read in [Thrun, 2018, p. 97]

Arguments

<table>
<thead>
<tr>
<th>Lines</th>
<th>x-value determining the size of the map, i.e. how many open places for DataBots will be available on the 2-dimensional grid (\text{BEWARE: has to be able to be divided by 2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columns</td>
<td>y-value determining the size of the map, i.e. how many open places for DataBots will be available on the 2-dimensional grid (\text{Columns>Lines})</td>
</tr>
<tr>
<td>AllowedDBPosR0</td>
<td>([1:\text{Lines}+1,1:\text{Lines}+1]) Matrix of radii in polar coordinates respecting origin ((0,0)) of all allowed DataBots Positions in one jump</td>
</tr>
<tr>
<td>(p)</td>
<td>percent of gitterpositions, which should be considered</td>
</tr>
</tbody>
</table>

Value

\(\text{Rmin Minimum Radius}\)

Author(s)

Michael Thrun

References

ShortestGraphPathsC

Shortest GraphPaths = geodesic distances

Description

Dijkstra’s SSSP (Single source shortest path) algorithm, from all points to all points

Usage

ShortestGraphPathsC(Adj, Cost)

Arguments

Adj [1:n,1:n] 0/1 adjacency matrix, e.g. from delanay graph or gabriel graph.
Cost [1:n,1:n] matrix, distances between n points (normally euclidean)

Details

Vertices are the points, edges have the costs defined by weights (normally a distance). The algorithm runs in O(n^2*Log(V)), see also [Jungnickel, 2013, p. 87]. Further details can be found in [Jungnickel, 2013, p. 83-87] and [Thrun, 2018, p. 12].

Value

ShortestPaths[1:n,1:n] vector, shortest paths (geodesic) to all other vertices including the source vertice itself from all vertices to all vertices, stored as a matrix

Note

require C++11 standard (set flag in Compiler, if not set automatically)

Author(s)

Michael Thrun

References

trainstepC

See Also

DijkstraSSSP

trainstepC *Internal function for sESOM*

Description

Does the training for fixed bestmatches in one epoch of the sESOM algorithm (see [Thrun, 2018] for details).

Usage

```r
trainstepC(vx, vy, DataSampled, BMUsampled, Lines, Columns, Radius, toroid)
```

Arguments

- **vx**: array [1:Lines,1:Columns,1:Weights], WeightVectors that will be trained, internally transformed von NumericVector to cube
- **vy**: array [1:Lines,1:Columns,1:2], meshgrid for output distance computation
- **DataSampled**: NumericMatrix, n cases shuffled Dataset[1:n,1:d] by sample
- **BMUsampled**: NumericMatrix, n cases shuffled BestMatches[1:n,1:2] by sample in the same way as DataSampled
- **Lines**: double, Height of the grid
- **Columns**: double, Width of the grid
- **Radius**: double, The current Radius that should be used to define neighbours to the bm
- **toroid**: bool, Should the grid be considered with cyclically connected borders?

Details

Algorithm is described in [Thrun, 2018, p. 48, Listing 5.1].

Value

WeightVectors, array[1:Lines,1:Columns,1:weights] with the adjusted Weights

Note

Usually not for seperated usage!

Author(s)

Michael Thrun
UniquePoints

References

UniquePoints
Unique Points

Description

return only the unique points in Datapoints

Usage

UniquePoints(Datapoints,Eps)

Arguments

Datapoints [1:n,1:d] matrix of Datapoints points of dimension d, the points are in the rows
Eps Optional, scalar above zero that defines minimum non-identical euclidean distance between two points

Details

Euclidean distance is computed and used within. Setting Eps to a very small number results in the identification of unique data points. Setting epsilon to a higher number results in the definition of mesh points within an d-dimensional R-ball graph.

Value

List with

Unique [1:k,1:d] Datapoints points without duplicate points
IsDuplicate [1:n,1:n] matrix, for i!=j IsDuplicate[i,j]== 1 if Datapoints[i,] == Datapoints[j,] IsDuplicate[i,i]==0
UniqueInd [1:k] index vector such that Unique == Datapoints[UniqueInd,], it has k non-consecutive numbers or labels, each label defines a row number within Datapoints[1:n,1:d] of a unique data point
Uniq2DatapointsInd [1:n] index vector. It has k unique index numbers representing the arbitrary labels. Each labels is mapped uniquely to a point in Unique. Logically in a way such that Datapoints == Unique[Uniq2DatapointsInd,] (will not work directly in R this way)

Author(s)

Michael Thrun
Examples

\[
\text{Datapoints2D} = \text{rbind(c(1,2),c(1,2),c(1,3),c(3,1))}
\]
\[
V = \text{UniquePoints(Datapoints2D)}
\]
Index

* Accuracy
 ClusteringAccuracy, 7
* BackTransformation_RobustNormalization
 RobustNorm_BackTrafo, 31
* Classification Error
 DelaunayClassificationError, 12
* Clustering
 ClusteringAccuracy, 7
* DBS
 DatabionicSwarm-package, 3
 DBSclustering, 8
 Pswarm, 23
* DCE
 DelaunayClassificationError, 12
* DR
 DatabionicSwarm-package, 3
 DBSclustering, 8
 Pswarm, 23
* DataBionic
 DatabionicSwarm-package, 3
* Databionic swarm
 GeneratePswarmVisualization, 16
 Pswarm, 23
* Databionic
 DatabionicSwarm-package, 3
* Databionic swarm
 GeneratePswarmVisualization, 16
 Pswarm, 23
* Databionic
 DatabionicSwarm-package, 3
* Databionic swarm
 DBSclustering, 8
* Delaunay Classification Error
 DelaunayClassificationError, 12
* Delaunay Graph
 Delaunay4Points, 11
* Delaunay
 Delaunay4Points, 11
* Dijkstra's SSSP
 DijkstraSSSP, 14
* Dijkstra
 DijkstraSSSP, 14
* Dimensionality Reduction
 DatabionicSwarm-package, 3
* ESOM
 GeneratePswarmVisualization, 16
 sESOM4BMUs, 32
* Evaluation of projection methods
 DelaunayClassificationError, 12
* FCPS
 Hepta, 20
 Lsun3D, 21
* GeneratePswarmVisualization
 ProjectedPoints2Grid, 22
 sESOM4BMUs, 32
* Hepta
 Hepta, 20
* Lsun3D
 Lsun3D, 21
* PSwarm
 Pswarm, 23
* Points
 Delaunay4Points, 11
* Polar Swarm
 Pswarm, 23
* Pswarm
 DatabionicSwarm-package, 3
 plotSwarm, 22
* QM
 DelaunayClassificationError, 12
* Quality measurement
 DelaunayClassificationError, 12
* Quality measure
 DelaunayClassificationError, 12
* RelativeDifference
 RelativeDifference, 28
* RobustNorm_BackTrafo
 RobustNorm_BackTrafo, 31
* RobustNormalization
 RobustNorm_BackTrafo, 31
 RobustNormalization, 29
* SOM
GeneratePswarmVisualization, 16
* SSSP
 DijkstraSSSP, 14
* ShortestGraphPaths
 ShortestGraphPathsC, 37
* ShortestPaths
 ShortestGraphPathsC, 37
* Single source shortest path
 DijkstraSSSP, 14
* U-matrix
 GeneratePswarmVisualization, 16
* U-matrix
 GeneratePswarmVisualization, 16
* Voronoi
 Delaunay4Points, 11
* cluster analysis
 DatabionicSwarm-package, 3
 DBSclustering, 8
 GeneratePswarmVisualization, 16
 Pswarm, 23
* clustering
 DatabionicSwarm-package, 3
 DBSclustering, 8
* cluster
 DBSclustering, 8
* data points
 UniquePoints, 39
* datasets
 Lsun3D, 21
* dataset
 Hepta, 20
* difference
 RelativeDifference, 28
* dimensionality reduction
 Pswarm, 23
* distances
 rDistanceToroidCsingle, 27
* emergence
 DatabionicSwarm-package, 3
* equilibrium
 DatabionicSwarm-package, 3
* game theory
 DatabionicSwarm-package, 3
 Pswarm, 23
* generalized U-matrix
 GeneratePswarmVisualization, 16
* generalized U-matrix
 ProjectedPoints2Grid, 22
* graph
 Delaunay4Points, 11
* grid
 setPolarGrid, 35
* hexagonal
 setPolarGrid, 35
* nash
 DatabionicSwarm-package, 3
 PswarmCurrentRadiusC2botsPositive, 25
* pSwarm
 Pswarm, 23
* package
 DatabionicSwarm-package, 3
* points
 UniquePoints, 39
* polar
 PswarmCurrentRadiusC2botsPositive, 25
* positions
 findPossiblePositionsCsingle, 15
* projection method
 DatabionicSwarm-package, 3
 Pswarm, 23
* projection
 DatabionicSwarm-package, 3
 Pswarm, 23
* pswarm
 Pswarm, 23
* relative
 RelativeDifference, 28
* sESOM
 GeneratePswarmVisualization, 16
* self-organization
 DatabionicSwarm-package, 3
* self-organizing-map
 GeneratePswarmVisualization, 16
* swarm intelligence
 DatabionicSwarm-package, 3
 Pswarm, 23
* swarms
 findPossiblePositionsCsingle, 15
 Pswarm, 23
* swarm
 DatabionicSwarm-package, 3
 DBSclustering, 8
 GeneratePswarmVisualization, 16
 plotSwarm, 22
INDEX

Pswarm, 23
PswarmCurrentRadiusC2botsPositive, 25
setPolarGrid, 35
* toroid
 rDistanceToroidCsingle, 27
* unique
 UniquePoints, 39
* visualization
 DatabionicSwarm-package, 3
 GeneratePswarmVisualization, 16
 Pswarm, 23

ClusteringAccuracy, 7

DatabionicSwarm
 (DatabionicSwarm-package), 3
DatabionicSwarm-package, 3
DBSclustering, 8, 8, 9, 16, 24
DefaultColorSequence, 10
Delaunay4Points, 11
DelaunayClassificationError, 12, 29
Delta3DWeightsC, 13
DijkstraSSSP, 14, 38

findPossiblePositionsCsingle, 15, 25

GeneralizedUmatrix, 18
GeneratePswarmVisualization, 8, 9, 13, 16,
 16, 17, 19, 23, 24, 33
getCartesianCoordinates, 18
getUmatrix4Projection, 19

Hepta, 20

Lsun3D, 21

plotSwarm, 22
plotTopographicMap, 9, 16, 18
ProjectedPoints2Grid, 22
Pswarm, 8, 16–18, 22, 23, 24, 25, 27, 28, 34, 36
pswarm (Pswarm), 23
pswarmCpp (Pswarm), 23
PswarmCurrentRadiusC2botsPositive, 25

quantile, 34

rDistanceToroidCsingle, 27
RelativeDifference, 28
RobustNorm_BackTrafo, 30, 31

RobustNormalization, 29, 31
sESOM4BMUs, 32
setdiffMatrix, 33
setGridSize, 16, 24, 33
setPolarGrid, 15, 18, 26, 35
setRmin, 36
ShortestGraphPathsC, 14, 37

trainstepC, 38
UniquePoints, 39