Package ‘DeclareDesign’

January 28, 2022

Title Declare and Diagnose Research Designs
Version 0.30.0
Description Researchers can characterize and learn about the properties of research designs before implementation using `DeclareDesign`. Ex ante declaration and diagnosis of designs can help researchers clarify the strengths and limitations of their designs and to improve their properties, and can help readers evaluate a research strategy prior to implementation and without access to results. It can also make it easier for designs to be shared, replicated, and critiqued.

Depends R (>= 3.5.0), randomizr (>= 0.20.0), fabricatr (>= 0.10.0), estimatr (>= 0.20.0)
Imports rlang, generics, methods
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.1.2
Suggests testthat, knitr, markdown, AER, diffobj, dplyr, data.table, tibble, ggplot2, future.apply, broom, MASS, Matching, betareg, biglm, gam, sf, reshape2, DesignLibrary, coin, margins
NeedsCompilation no
Author Graeme Blair [aut, cre] (https://orcid.org/0000-0001-9164-2102), Jasper Cooper [aut] (https://orcid.org/0000-0002-8639-3188), Alexander Coppock [aut] (https://orcid.org/0000-0002-5733-2386), Macartan Humphreys [aut] (https://orcid.org/0000-0001-7029-2326), Neal Fultz [aut]
Maintainer Graeme Blair <graeme.blair@ucla.edu>
Repository CRAN
Date/Publication 2022-01-28 06:10:02 UTC
Obtain the preferred citation for a design

cite_design

cite_design(design, ...)

Index

cite_design

cite_design

Obtain the preferred citation for a design

Usage

cite_design(design, ...)

compare_diagnoses

Arguments

design1 A design or a diagnosis.
design2 A design or a diagnosis.
sims The number of simulations, defaulting to 1000. sims may also be a vector indicating the number of simulations for each step in a design, as described for simulate_design. Used for both designs.
bootstrap_sims Number of bootstrap replicates for the diagnosands to obtain the standard errors of the diagnosands, defaulting to 1000. Set to FALSE to turn off bootstrapping. Used for both designs. Must be greater or equal to 100.
merge_by_estimator A logical. Whether to include estimator in the set of columns used for merging. Defaults to TRUE.
alpha The significance level, 0.05 by default.

Details

The function compare_diagnoses runs a many-to-many merge matching by inquiry and term (if present). If merge_by_estimator equals TRUE, estimator is also included in the merging condition. Any diagnosand that is not included in both designs will be dropped from the merge.

Value

A list with a data.frame of compared diagnoses and both diagnoses.
compare_functions

Examples

design_a <- declare_model(N = 100,
 U = rnorm(N),
 Y_Z_0 = U,
 Y_Z_1 = U + rnorm(N, mean = 2, sd = 2)) +
 declare_assignment(Z = complete_ra(N, prob = 0.5)) +
 declare_inquiry(ATE = mean(Y_Z_1 - Y_Z_0)) +
 declare_measurement(Y = reveal_outcomes(Y ~ Z)) +
 declare_estimator(Y ~ Z, inquiry = "ATE")

design_b <- replace_step(
 design_a, step = "assignment",
 declare_assignment(Z = complete_ra(N, prob = 0.3)))

comparison <- compare_diagnoses(design_a, design_b, sims = 40)

compare_functions Compare two designs

Description

Compare two designs

Usage

compare_designs(
 design1,
 design2,
 format = "ansi8",
 pager = "off",
 context = -1L,
 rmd = FALSE
)

compare_design_code(
 design1,
 design2,
 format = "ansi256",
 mode = "sidebyside",
 pager = "off",
 context = -1L,
 rmd = FALSE
)

compare_design_summaries(
 design1,
 design2,

compare_functions

```r
format = "ansi256",
mode = "sidebyside",
pager = "off",
context = -1L,
rmd = FALSE
)

compare_design_data(
  design1,
design2,
format = "ansi256",
mode = "sidebyside",
pager = "off",
context = -1L,
rmd = FALSE
)

compare_design_estimates(
  design1,
design2,
format = "ansi256",
mode = "auto",
pager = "off",
context = -1L,
rmd = FALSE
)

compare_design_inquiries(
  design1,
design2,
format = "ansi256",
mode = "sidebyside",
pager = "off",
context = -1L,
rmd = FALSE
)

Arguments

- **design1**: A design object, typically created using the + operator
- **design2**: A design object, typically created using the + operator
- **format**: Format (in console or HTML) options from `diffobj::diffChr`
- **pager**: Pager option from `diffobj::diffChr`
- **context**: Context option from `diffobj::diffChr` which sets the number of lines around differences that are printed. By default, all lines of the two objects are shown. To show only the lines that are different, set context = 0; to get one line around differences for context, set to 1.
DeclareDesign

rmd
Set to TRUE use in Rmarkdown HTML output. NB: will not work with LaTeX, Word, or other .Rmd outputs.

mode
Mode options from diffobj::difflr

Examples

design1 <- declare_model(N = 100, u = rnorm(N), potential_outcomes(Y ~ Z + u)) +
declare_inquiry(ATE = mean(Y|Z=1) - Y|Z=0)) +
declare_sampling(S = complete_rs(N, n = 75)) +
declare_assignment(Z = complete_ra(N, m = 50)) +
declare_measurement(Y = reveal_outcomes(Y ~ Z)) +
declare_estimator(Y ~ Z, inquiry = "ATE")

design2 <- declare_model(N = 200, U = rnorm(N),
potential_outcomes(Y ~ 0.5*Z + U)) +
declare_inquiry(ATE = mean(Y|Z=1) - Y|Z=0)) +
declare_sampling(S = complete_rs(N, n = 100)) +
declare_assignment(Z = complete_ra(N, m = 25)) +
declare_measurement(Y = reveal_outcomes(Y ~ Z)) +
declare_estimator(Y ~ Z, model = lm_robust, inquiry = "ATE")

compare_designs(design1, design2)
compare_design_code(design1, design2)
compare_design_summaries(design1, design2)
compare_design_data(design1, design2)
compare_design_estimates(design1, design2)
compare_design_inquiries(design1, design2)

DeclareDesign DeclareDesign package

Description

The four main types of functions are to declare a step, to combine steps into designs, and to manipulate designs and designers (functions that return designs).

Design Steps

declare_model Model step
declare_inquiry Inquiry step
declare_sampling Data strategy step (sampling)
declare_assignment Data strategy step (assignment)
declare_measurement Data strategy step (measurement)
declare_estimator Answer strategy step (Estimator)
declare_test Answer strategy step (Testing function)
**Design Objects**

- Add steps to create a design
  - `redesign` Change design parameters
  - `draw_data` Draw a simulated dataset
  - `run_design` Draw one set of inquiry values and estimates
  - `diagnose_design` Diagnose a design
  - `cite_design` Cite a design

**Design Editing**

- `modify_design` Add, delete or replace a step
- `redesign` Modify local variables within a design (advanced)

**Designers**

- `expand_design` Generate designs from a designer
- `designs` See also the DesignLibrary package for designers to use

---

**declare_assignment**

*Declare Data Strategy: Assignment*

**Description**

Declare Data Strategy: Assignment

**Usage**

```
declare_assignment(..., handler = assignment_handler, label = NULL)
```

```
assignment_handler(data, ..., legacy = FALSE)
```

**Arguments**

- `...` arguments to be captured, and later passed to the handler
- `handler` a tidy-in, tidy-out function
- `label` a string describing the step
- `data` A data.frame.
- `legacy` Use the legacy randomizr functionality. This will be disabled in future; please use legacy = FALSE.

**Value**

A function that takes a data.frame as an argument and returns a data.frame with assignment columns appended.
Examples

# setting up a design stub
design <- declare_model(
  classrooms = add_level(10),
  individuals = add_level(20, female = rbinom(N, 1, 0.5))
) + NULL

# Declare assignment of m units to treatment
design + declare_assignment(Z = complete_ra(N = N, m = 100))

# Declare assignment specifying varying block probabilities
design +
  declare_assignment(Z = block_ra(blocks = female,
                              block_prob = c(1/3, 2/3)))

# Declare assignment of clusters with probability 1/4
design +
  declare_assignment( Z = cluster_ra(prob = 1/4, clusters = classrooms))

# Declare factorial assignment (Approach 1):
# Use complete random assignment to assign Z1
# then block on Z1 to assign Z2.
design +
  declare_assignment(Z1 = complete_ra(N = N, m = 100),
                     Z2 = block_ra(blocks = Z1))

# Declare factorial assignment (Approach 2):
# Assign to four conditions and then split into Z1 and Z2
design +
  declare_assignment(Z = complete_ra(N = N, conditions = 1:4),
                     Z1 = as.numeric(Z %in% 2:3),
                     Z2 = as.numeric(Z %in% 3:4))

# Declare assignment using functions outside randomizr package:
design +
  declare_assignment(Z = rbinom(n = N, size = 1, prob = 0.35))

---

declare_design          Declare a design

Description

Declare a design

Usage

## S3 method for class 'dd'
1hs + rhs
Declare estimator

Arguments

lhs
A step in a research design, beginning with a function that defines the model. Steps are evaluated sequentially. With the exception of the first step, all steps must be functions that take a data.frame as an argument and return a data.frame. Steps are declared using the declare_functions, i.e., declare_model, declare_inquiry, declare_sampling, declare_assignment, declare_measurement, declare_estimator, and declare_test.

rhs
A second step in a research design

Value

a design

Examples

design <-
declare_model(
  N = 500,
  U = rnorm(N),
  potential_outcomes(Y ~ Z + U)
) +
declare_inquiry(ATE = mean(Y_Z_1 - Y_Z_0)) +
declare_sampling(S = complete_rs(N, n = 250)) +
declare_assignment(Z = complete_ra(N, m = 25)) +
declare_measurement(Y = reveal_outcomes(Y ~ Z)) +
declare_estimator(Y ~ Z, inquiry = "ATE")

dat <- draw_data(design)
head(dat)

run_design(design)

# You may wish to have a design with only one step:

design <- declare_model(N = 500, noise = rnorm(N)) + NULL

## Not run:
diagnosis <- diagnose_design(design)
summary(diagnosis)

## End(Not run)
**Description**

Declares an estimator which generates estimates and associated statistics.

Use of `declare_test` is identical to use of `declare_estimator`. Use `declare_test` for hypothesis testing with no specific inquiry in mind; use `declare_estimator` for hypothesis testing when you can link each estimate to an inquiry. For example, `declare_test` could be used for a K-S test of distributional equality and `declare_estimator` for a difference-in-means estimate of an average treatment effect.

**Usage**

```r
declare_estimator(
 ...,
 handler = label_estimator(model_handler),
 label = "estimator"
)

declare_estimators(
 ...,
 handler = label_estimator(model_handler),
 label = "estimator"
)

label_estimator(fn)

model_handler(
 data,
 ...,
 model = estimatr::lm_robust,
 model_summary = tidy_try,
 term = FALSE
)
```

**Arguments**

- `...` arguments to be captured, and later passed to the handler
- `handler` a tidy-in, tidy-out function
- `label` a string describing the step
- `fn` A function that takes a data.frame as an argument and returns a data.frame with the estimates, summary statistics (i.e., standard error, p-value, and confidence interval), and a term column for labeling coefficient estimates.
- `data` a data.frame
- `model` A model function, e.g. `lm` or `glm`. By default, the model is the `lm_robust` function from the `estimatr` package, which fits OLS regression and calculates robust and cluster-robust standard errors.
- `model_summary` A model-in data-out function to extract coefficient estimates or model summary statistics, such as `tidy` or `glance`. By default, the DeclareDesign model summary function `tidy_try` is used, which first attempts to use the available tidy
declare_estimator

method for the model object sent to model, then if not attempts to summarize
coefficients using the coef(summary()) and confint methods. If these do not
exist for the model object, it fails.

term
Symbols or literal character vector of term that represent quantities of interest,
i.e. Z. If FALSE, return the first non-intercept term; if TRUE return all term. To
escape non-standard-evaluation use !!.

Details

declare_estimator is designed to handle two main ways of generating parameter estimates from
data.

In declare_estimator, you can optionally provide the name of an inquiry or an objected created
by declare_inquiry to connect your estimate(s) to inquiry(s).

The first is through label_estimator(model_handler), which is the default value of the handler
argument. Users can use standard modeling functions like lm, glm, or iv_robust. The models are
summarized using the function passed to the model_summary argument. This will usually be a
"tidier" like broom::tidy. The default model_summary function is tidy_try, which applies a tidy
method if available, and if not, tries to make one on the fly.

An example of this approach is:

```
declare_estimator(Y ~ Z + X,model = lm_robust,model_summary = tidy,term = "Z",inquiry
 = "ATE")
```

The second approach is using a custom data-in, data-out function, usually first passed to label_estimator.
The reason to pass the custom function to label_estimator first is to enable clean labeling and
linking to inquiries.

An example of this approach is:

```
my_fun <-function(data){ with(data,median(Y[Z == 1]) -median(Y[Z == 0])) }
declare_estimator(handler = label_estimator(my_fun),inquiry = "ATE")
```

label_estimator takes a data-in-data out function to fn, and returns a data-in-data-out function
that first runs the provided estimation function fn and then appends a label for the estimator and, if
an inquiry is provided, a label for the inquiry.

Value

A function that accepts a data.frame as an argument and returns a data.frame containing the value
of the estimator and associated statistics.

Examples

```R
base design
design <-
declare_model(
 N = 100,
 female = rbinom(N, 1, 0.5),
 U = rnorm(N),
 potential_outcomes(
 Y ~ rbinom(N, 1, prob = pnorm(0.2 * Z + 0.2 * female + 0.1 * Z * female + U)))
) +
```
declare_inquiry(ATE = mean(Y_{Z=1} - Y_{Z=0})) +
declare_assignment(Z = complete_ra(N, m = 50)) +
declare_measurement(Y = reveal_outcomes(Y - Z))

# Most estimators are modeling functions like lm or glm.

# Default statistical model is estimatr::difference_in_means
design + declare_estimator(Y ~ Z, inquiry = "ATE")

# lm from base R (classical standard errors assuming homoskedasticity)
design + declare_estimator(Y ~ Z, model = lm, inquiry = "ATE")

# Use lm_robust (linear regression with heteroskedasticity-robust standard errors)
# from 'estimatr' package

design + declare_estimator(Y ~ Z, model = lm_robust, inquiry = "ATE")

# use 'term' to select particular coefficients

design + declare_estimator(Y ~ Z*female, term = "Z:female", model = lm_robust)

# Use glm from base R

design + declare_estimator(
  Y ~ Z + female,
  family = "gaussian",
  inquiry = "ATE",
  model = glm
)

# If we use logit, we'll need to estimate the average marginal effect with
# margins::margins. We wrap this up in function we'll pass to model_summary

library(margins) # for margins

library(broom) # for tidy

tidy_margins <- function(x) {
  tidy(margins(x, data = x$data), conf.int = TRUE)
}


design +
declare_estimator(
  Y ~ Z + female,
  model = glm,
  family = binomial("logit"),
  model_summary = tidy_margins,
  term = "Z"
)

# Multiple estimators for one inquiry

two_estimators <-
design +
declare_estimator(Y ~ Z,
  model = lm_robust,
Declare inquiry

### Description
Declares inquiries, or the inferential target of interest. Conceptually very close to "estimand" or "quantity of interest".

### Usage
- `declare_inquiry(..., handler = inquiry_handler, label = "inquiry")`
- `declare_inquiries(..., handler = inquiry_handler, label = "inquiry")`
- `declare_estimand(...)`
- `declare_estimands(...)`
- `inquiry_handler(data, ..., subset = NULL, term = FALSE, label)`
Arguments

... arguments to be captured, and later passed to the handler
handle a tidy-in, tidy-out function
label a string describing the step
data a data.frame
subset a subset expression
term TRUE/FALSE

Details

For the default diagnosands, the return value of the handler should have inquiry and estimand columns.

If term is TRUE, the names of ... will be returned in a term column, and inquiry will contain the step label. This can be used as an additional dimension for use in diagnosis.

Value

a function, I(), that accepts a data.frame as an argument and returns a data.frame containing the value of the inquiry, a^m.

Examples

# Set up a design for use in examples:

design <-
declare_model(N = 100,
  X = rnorm(N),
  potential_outcomes(Y ~ (.25 + X) * Z + rnorm(N))) +
declare_assignment(Z = complete_ra(N, m = 50)) +
declare_measurement(Y = reveal_outcomes(Y ~ Z))

design + declare_inquiry(ATE = mean(Y_Z_1 - Y_Z_0))

design + declare_inquiry(ATT = mean(Y_Z_1 - Y_Z_0),
  subset = (Z == 1))

# Add inquiries to a design along with estimators that reference them

design_1 <-
design +
declare_inquiry(ATE = mean(Y_Z_1 - Y_Z_0)) +
declare_estimator(Y ~ Z, inquiry = "ATE")

run_design(design_1)

# Two inquiries, one estimator
design_2 <-
  design +
  declare_inquiry(ATE = mean(Y_Z_1 - Y_Z_0)) +
  declare_inquiry(ATT = mean(Y_Z_1 - Y_Z_0), subset = (Z == 1)) +
  declare_estimator(Y ~ Z, inquiry = c("ATE", "ATT"))
run_design(design_2)

# Two inquirys, two coefficients from one estimator

design_3 <-
  design +
  declare_inquiry(intercept = mean(Y_Z_0),
                  slope = mean(Y_Z_1 - Y_Z_0)) +
  declare_estimator(
    Y ~ Z,
    model = lm_robust,
    term = TRUE,
    inquiry = c("intercept", "slope")
  )
run_design(design_3)

---

declare_measurement  Declare measurement procedure

Description
This function adds measured data columns that can be functions of unmeasured data columns.

Usage
declare_measurement(..., handler = measurement_handler, label = NULL)

measurement_handler(data, ...)

Arguments
...
  arguments to be captured, and later passed to the handler
handler
  a tidy-in, tidy-out function
label
  a string describing the step
data
  A data.frame.

Details
It is also possible to include measured variables in your declare_model call or to add variables using declare_step. However, putting latent variables in declare_model and variables-as-measured in declare_measurement helps communicate which parts of your research design are in M and which parts are in D.
declare_model

Value
A function that returns a data.frame.

Examples

design <-
  declare_model(N = 6,
    U = rnorm(N),
    potential_outcomes(Y ~ Z + U)) +
  declare_assignment(Z = complete_ra(N)) +
  declare_measurement(Y = reveal_outcomes(Y ~ Z))
draw_data(design)

design <-
  declare_model(
    N = 6,
    U = rnorm(N),
    potential_outcomes(Y ~ Z1 + Z2 + U,
      conditions = list(Z1 = c(0, 1), Z2 = c(0, 1)))) +
  declare_assignment(Z1 = complete_ra(N),
    Z2 = block_ra(blocks = Z1),
    legacy = FALSE) +
  declare_measurement(Y = reveal_outcomes(Y ~ Z1 + Z2))
draw_data(design)

---

**declare_model**  
*Declare the size and features of the population*

Description
Declare the size and features of the population

Usage
declare_model(..., handler = fabricate, label = NULL)

Arguments

...  arguments to be captured, and later passed to the handler
handler  a tidy-in, tidy-out function
label  a string describing the step
Value

A function that returns a data.frame.

Examples

# Declare a single-level population with no covariates
declare_model(N = 100)

# declare_model returns a function:
my_model <- declare_model(N = 100)
my_model()

# Declare a single-level population with two covariates
declare_model(
  N = 6,
  female = rbinom(n = N, 1, prob = 0.5),
  height_ft = rnorm(N, mean = 5.67 - 0.33 * female, sd = 0.25)
)

# Declare a single-level population with potential outcomes
declare_model(
  N = 6,
  U = rnorm(N),
  potential_outcomes(Y ~ Z + U))

# Declare a single-level population with two sets of potential outcomes
declare_model(
  N = 6,
  U = rnorm(N),
  potential_outcomes(Y ~ Z1 + Z2 + U,
                    conditions = list(Z1 = c(0, 1), Z2 = c(0, 1))))

# Declare a population from existing data
declare_model(mtcars)

# Resample from existing data
declare_model(N = 100, data = mtcars, handler = resample_data)

# Declare a two-level hierarchical population
# containing cities within regions and a
# pollution variable defined at the city level
declare_model(regions = add_level(N = 5),
cities = add_level(N = 10, pollution = rnorm(N, mean = 5))

# Declare a population using a custom function

# the default handler is fabricatr::fabricate,
# but you can supply any function that returns a data.frame

my_model_function <- function(N) {
  data.frame(u = rnorm(N))
}

declare_model(N = 10, handler = my_model_function)

---

**describe_population**

Declares the size and features of the population

---

**Description**

Deprecated. Please use `declare_model` instead.

**Usage**

```r
declare_population(..., handler = fabricate, label = NULL)
```

**Arguments**

- `...`: arguments to be captured, and later passed to the handler
- `handler`: a tidy-in, tidy-out function
- `label`: a string describing the step

**Value**

A potential outcomes declaration, which is a function that returns a data.frame.

**Examples**

# Declare a single-level population with no covariates
my_population <- declare_population(N = 100)

# Declare a population from existing data
my_population <- declare_population(sleep)

# Declare a single-level population with a covariate
my_population <- declare_population(
  N = 6,
  female = rbinom(n = N, 1, prob = 0.5),
  height_ft = rnorm(N, mean = 5.67 - 0.33 * female, sd = 0.25)
)
Declare potential outcomes

**Declare potential outcomes**

Declare a population from existing data

```r
declare_population(mtcars)
```

# Resample from existing data

```r
declare_population(N = 100, data = mtcars, handler = resample_data)
```

# Declare a two-level hierarchical population
# containing cities within regions and a
# pollution variable defined at the city level

```r
my_population <- declare_model(
 regions = add_level(N = 5),
 cities = add_level(N = 10, pollution = rnorm(N, mean = 5))
)
```

# Declare a population using a custom function

# the default handler is fabricatr::fabricate,
# but you can supply any function that returns a data.frame

```r
my_population_function <- function(N) {
 data.frame(u = rnorm(N))
}
```

```r
my_population_custom <- declare_model(N = 10, handler = my_population_function)
```

---

**Declare potential outcomes**

*Declare potential outcomes*

**Description**

Deprecated. Please use the potential_outcomes function within a declare_model declaration.

**Usage**

```r
declare_potential_outcomes(
 # ...
 handler = potential_outcomes_handler,
 label = NULL
)
```

```r
potential_outcomes_internal.formula(
```
declare_potential_outcomes

formula,
conditions = c(0, 1),
assignment_variables = "Z",
data,
level = NULL,
label = outcome_variable
)

potential_outcomes_internal.NULL(
  formula = stop("Not provided"),
  ..., 
  data,
  level = NULL
)

Arguments

... arguments to be captured, and later passed to the handler
handler a tidy-in, tidy-out function
label a string describing the step
formula a formula to calculate potential outcomes as functions of assignment variables.
conditions see expand_conditions. Provide values (e.g. conditions = 1:4) for a single assignment variable. If multiple assignment variables, provide named list (e.g. conditions = list(Z1 = 0:1, Z2 = 0:1)). Defaults to 0:1 if no conditions provided.
assignment_variables The name of the assignment variable. Generally not required as names are taken from conditions.
data a data.frame
level a character specifying a level of hierarchy for fabricate to calculate at

Details

A declare_potential_outcomes function is used to create outcomes that each unit would express in each possible treatment condition.

Value

a function that returns a data.frame

Examples

# Potential outcomes can be declared in two ways:
# by using a formula or as separate variables.

# Using a formula
### declare_reveal

*Declare a reveal outcomes step*

#### Description

Potential outcomes declarations indicate what outcomes would obtain for different possible values of assignment variables. But realized outcomes need to be "revealed." `declare_reveal` generates these realized outcomes using information on potential outcomes (for instance generated via `declare_potential_outcomes`) and the relevant assignment variables (for example created by `declare_assignment`). Revelation steps are usefully included after declaration of all assignments of conditions required to determine the realized outcome. If a revelation is not declared, Declare-Design will try to guess appropriate revelations. Explicit revelation is recommended however.

#### Usage

```
declare_reveal(..., handler = declare_reveal_handler, label = NULL)
```
declare_reveal_handler(
    data = NULL,
    outcome_variables = Y,
    assignment_variables = Z,
    attrition_variables = NULL,
    ...
)

Arguments

... arguments to be captured, and later passed to the handler
handler a tidy-in, tidy-out function
label a string describing the step
data A data.frame containing columns for assignment and potential outcomes.
outcome_variables The outcome prefix(es) of the potential outcomes.
assignment_variables Unquoted name(s) of the assignment variable(s).
attrition_variables Unquoted name of the attrition variable.

Details

This function was previously called declare_reveal. You can still use either one.

Declare_reveal declares how outcomes should be realized. A “revelation” uses the random assignment to pluck out the correct potential outcomes (Gerber and Green 2012, Chapter 2). Revelation requires that every named outcome variable is a function of every named assignment variable within a step. Thus if multiple outcome variables depend on different assignment variables, multiple revelations are needed.

Examples

design <-
declare_model(
    N = 100,
    U = rnorm(N),
    Y_Z_0 = U,
    Y_Z_1 = U + rnorm(N, mean = 2, sd = 2)
) +
declare_assignment(Z = complete_ra(N, m = 50)) +
declare_measurement(Y = reveal_outcomes(Y ~ Z))

# Declaring multiple assignment variables or multiple outcome variables
design <-
declare_model(
    N = 10,
    potential_outcomes(Y1 ~ Z),
design <-
declare_model(
  N = 100,
  age = sample(18:95, N, replace = TRUE),
  potential_outcomes(Y ~ .25 * Z + .01 * age * Z),
  potential_outcomes(R ~ rbinom(n = N, size = 1, prob = pnorm(Y_Z_0)))
) +
declare_assignment(Z = complete_ra(N, m = 25))
declare_measurement(R = reveal_outcomes(R ~ Z),
  Y = reveal_outcomes(Y ~ Z),
  Y = ifelse(R == 1, Y, NA))

declare_sampling  Declare sampling procedure

Description

Declare sampling procedure

Usage

declare_sampling(..., handler = sampling_handler, label = NULL)

sampling_handler(data, ..., legacy = FALSE)

Arguments

... arguments to be captured, and later passed to the handler
handler a tidy-in, tidy-out function
label a string describing the step
data A data.frame.
legacy Use the legacy randomizr functionality. This will be disabled in future; please use legacy = FALSE.

Value

A sampling declaration, which is a function that takes a data.frame as an argument and returns a data.frame subsetted to sampled observations and (optionally) augmented with inclusion probabilities and other quantities.
Examples

design <- declare_model(
  classrooms = add_level(10),
  individuals = add_level(20, female = rbinom(N, 1, 0.5))
) + NULL

# Complete random sampling

design + declare_sampling(
  S = complete_rs(N = N, n = 50),
  filter = S == 1)

# equivalently, by default filter is set to S == 1

design + declare_sampling(S = complete_rs(N = N, n = 50),
  legacy = FALSE)

# Stratified random sampling

design + declare_sampling(S = strata_rs(strata = female),
  legacy = FALSE)

---

**declare_step**

*Declare a custom step*

Description

With `declare_step`, you can include any function that takes data as one of its arguments and returns data in a design declaration. The first argument is always a "handler", which is the name of the data-in, data-out function. For handy data manipulations use `declare_step(fabricate,...)`.

Usage

```r
declare_step(
 ...,
 handler = function(data, ...f, ...) ...f(data, ...),
 label = NULL
)
```

Arguments

- `...`  arguments to be captured, and later passed to the handler
- `handler` a tidy-in, tidy-out function
- `label` a string describing the step
**Value**

A function that returns a data.frame.

**Examples**

```r
population <- declare_model(N = 5, noise = rnorm(N))
manipulate <- declare_step(fabricate, noise_squared = noise^2, zero = 0)

design <- population + manipulate
draw_data(design)
```

**Description**

Declares an test which generates a test statistic and associated inferential statistics. Use of declare_test is identical to use of declare_estimator. Use declare_test for hypothesis testing with no specific inquiry in mind; use declare_estimator for hypothesis testing when you can link each estimate to an inquiry. For example, declare_test could be used for a K-S test of distributional equality and declare_estimator for a difference-in-means estimate of an average treatment effect.

See declare_estimator help for an explanation of how to use model_handler, which is used identically in both declare_estimator and declare_test. The main difference between declare_estimator and declare_test is that declare_test does not link with an explicit inquiry.

**Usage**

```r
declare_test(..., handler = label_test(model_handler), label = "test")
```

**Arguments**

- `...`: arguments to be captured, and later passed to the handler
- `handler`: a tidy-in, tidy-out function
- `label`: a string describing the step
- `fn`: A function that takes a data.frame as an argument and returns a data.frame with test statistics as columns.

**Details**

`label_test` takes a data-in-data out function to `fn`, and returns a data-in-data-out function that first runs the provided test function `fn` and then appends a label for the test.
Value

A function that accepts a data.frame as an argument and returns a data.frame containing the value of the test statistic and other inferential statistics.

See Also

See `declare_estimator` for documentation of the `model_handler` function.

Examples

```r
Balance test F test
balance_test_design <-
declare_model(
 N = 100,
 cov1 = rnorm(N),
 cov2 = rnorm(N),
 cov3 = rnorm(N)
) +
declare_assignment(Z = complete_ra(N, prob = 0.2)) +
declare_test(Z ~ cov1 + cov2 + cov3, model = lm_robust, model_summary = glance)

Not run:
diagnosis <- diagnose_design(
 design = balance_test_design,
 diagnosands = declare_diagnosands(
 false_positive_rate = mean(p.value <= 0.05)
)
)
End(Not run)

K-S test of distributional equality
ks_test <- function(data) {
 test <- with(data, ks.test(x = Y[Z == 1], y = Y[Z == 0]))
 data.frame(statistic = test$statistic, p.value = test$p.value)
}

distributional_equality_design <-
declare_model(
 N = 100,
 Y_Z_1 = rnorm(N),
 Y_Z_0 = rnorm(N, sd = 1.5)
) +
declare_assignment(Z = complete_ra(N, prob = 0.5)) +
declare_measurement(Y = reveal_outcomes(Y ~ Z)) +
declare_test(handler = label_test(ks_test), label = "ks-test")

Not run:
diagnosis <- diagnose_design(
 design = distributional_equality_design,
)```

diagnosand_handler

```r

diagnosands = declare_diagnosands(power = mean(p.value <= 0.05))

## End(Not run)

# Thanks to Jake Bowers for this example

library(coin)

our_ttest <- function(data) {
  res <- coin::oneway_test(
    outcome ~ factor(Xclus),
    data = data,
    distribution = "asymptotic"
  )
  data.frame(p.value = pvalue(res)[[1]])
}

ttest_design <-
  declare_model(
    N = 100,
    Xclus = rbinom(n = N, size = 1, prob = 0.2),
    outcome = 3 + rnorm(N)) +
  declare_test(handler = label_test(our_ttest), label = "t-test")

## Not run:

diagnosis <- diagnose_design(
  design = ttest_design,
  diagnosands = declare_diagnosands(
    false_positive_rate = mean(p.value <= 0.05))
)

## End(Not run)
```

diagnosand_handler
Declare diagnosands

Description

Declare diagnosands

Usage

```r
diagnosand_handler(data, ..., subset = NULL, alpha = 0.05, label)
declare_diagnosands(..., handler = diagnosand_handler, label = NULL)
```
diagnosand_handler

Arguments

data A data.frame.
... A set of new diagnosands.
subset A subset of the simulations data frame within which to calculate diagnosands
e.g. subset = p.value < .05.
alpha Alpha significance level. Defaults to .05.
label Label for the set of diagnosands.
handler a tidy-in, tidy-out function

Details

If term is TRUE, the names of ... will be returned in a term column, and inquiry will contain the
step label. This can be used as an additional dimension for use in diagnosis.

Diagnosands summarize the simulations generated by diagnose_design or simulate_design.
Typically, the columns of the resulting simulations data.frame include the following variables: es-
timate, std.error, p.value, conf.low, conf.high, and inquiry. Many diagnosands will be a function of
these variables.

Value

a function that returns a data.frame

Examples

design <-
 declare_model(
 N = 500,
 U = rnorm(N),
 Y_Z_0 = U,
 Y_Z_1 = U + rnorm(N, mean = 2, sd = 2)
) +
 declare_assignment(Z = complete_ra(N)) +
 declare_inquiry(ATE = mean(Y_Z_1 - Y_Z_0)) +
 declare_estimator(Y ~ Z, inquiry = my_inquiry) +
 declare_measurement(Y = reveal_outcomes(Y ~ Z))

Not run:
using built-in defaults:
diagnosis <- diagnose_design(design)
diagnosis

End(Not run)

You can choose your own diagnosands instead of the defaults e.g.,

my_diagnosands <-
 declare_diagnosands(median_bias = median(estimate - inquiry))
Not run:
diagnose_design

```r
diagnosis <- diagnose_design(design, diagnosands = my_diagnosands)
diagnosis

## End(Not run)
## Not run:
design <- set_diagnosands(design, diagnosands = my_diagnosands)
diagnosis <- diagnose_design(design)
diagnosis

## End(Not run)

# If you do not specify diagnosands in diagnose_design,
# the function default_diagnosands() is used,
# which is reproduced below.

alpha <- 0.05
default_diagnosands <-
declare_diagnosands(
  mean_estimand = mean(estimand),
  mean_estimate = mean(estimate),
  bias = mean(estimate - estimand),
  sd_estimate = sqrt(pop.var(estimate)),
  rmse = sqrt(mean((estimate - estimand) ^ 2)),
  power = mean(p.value <= alpha),
  coverage = mean(estimand <= conf.high & estimand >= conf.low)
)

# A longer list of potentially useful diagnosands might include:

extended_diagnosands <-
declare_diagnosands(
  mean_estimand = mean(estimand),
  mean_estimate = mean(estimate),
  bias = mean(estimate - estimand),
  sd_estimate = sd(estimate),
  rmse = sqrt(mean((estimate - estimand) ^ 2)),
  power = mean(p.value <= alpha),
  coverage = mean(estimand <= conf.high & estimand >= conf.low),
  mean_se = mean(std.error),
  type_s_rate = mean((sign(estimate) != sign(estimand))[p.value <= alpha]),
  exaggeration_ratio = mean((estimate/estimand)[p.value <= alpha]),
  var_estimate = pop.var(estimate),
  mean_var_hat = mean(std.error^2),
  prop_pos_sig = estimate > 0 & p.value <= alpha,
  mean_ci_length = mean(conf.high - conf.low)
)
```

diagnose_design

Diagnose the design
Description

Generates diagnosands from a design or simulations of a design.

Usage

```r
diagnose_design(
  ..., 
  diagnosands = NULL, 
  sims = 500, 
  bootstrap_sims = 100, 
  make_groups = NULL, 
  add_grouping_variables = NULL 
)

diagnose_designs(
  ..., 
  diagnosands = NULL, 
  sims = 500, 
  bootstrap_sims = 100, 
  make_groups = NULL, 
  add_grouping_variables = NULL 
)

vars(....)
```

Arguments

- `...` A design or set of designs typically created using the `+` operator, or a `data.frame` of simulations, typically created by `simulate_design`.
- `diagnosands` A set of diagnosands created by `declare_diagnosands`. By default, these include bias, root mean-squared error, power, frequentist coverage, the mean and standard deviation of the estimate(s), the "type S" error rate (Gelman and Carlin 2014), and the mean of the inquiry(s).
- `sims` The number of simulations, defaulting to 500. `sims` may also be a vector indicating the number of simulations for each step in a design, as described for `simulate_design`.
- `bootstrap_sims` Number of bootstrap replicates for the diagnosands to obtain the standard errors of the diagnosands, defaulting to 100. Set to `FALSE` to turn off bootstrapping.
- `make_groups` Add group variables within which diagnosand values will be calculated. New variables can be created or variables already in the simulations data frame selected. Type name-value pairs within the function `vars`, i.e. `vars(significant = p.value <= 0.05)`.
- `add_grouping_variables` Deprecated. Please use `make_groups` instead. Variables used to generate groups of simulations for diagnosis. Added to default list: c("design", "estimand_label", "estimator", "term")
Details

If the diagnosand function contains a `group_by` attribute, it will be used to split-apply-combine diagnosands rather than the intersecting column names.

If `sims` is named, or longer than one element, a fan-out strategy is created and used instead.

If the packages `future` and `future.apply` are installed, you can set `plan` to run multiple simulations in parallel.

Value

A list with a data frame of simulations, a data frame of diagnosands, a vector of diagnosand names, and if calculated, a data frame of bootstrap replicates.

Examples

design <-
declare_model(
 N = 500,
 U = rnorm(N),
 Y_Z_0 = U,
 Y_Z_1 = U + rnorm(N, mean = 2, sd = 2)
) +
declare_inquiry(ATE = mean(Y_Z_1 - Y_Z_0)) +
declare_assignment(Z = complete_ra(N)) +
declare_measurement(Y = reveal_outcomes(Y ~ Z)) +
declare_estimator(Y ~ Z, inquiry = "ATE")

Not run:
using built-in defaults:
diagnose_design(design)
reshape_diagnosis(diagnosis, select = "Power")

End(Not run)

Not run:
Adding a group for within group diagnosis:
diagnose_design(design, make_groups = vars(significant = p.value <= 0.05),
)

End(Not run)

using a user-defined diagnosand
my_diagnosand <- declare_diagnosands(absolute_error = mean(abs(estimate - estimand)))

Not run:
diagnosis <- diagnose_design(design, diagnosands = my_diagnosand)
diagnosis

get_diagnosands(diagnosis)

get_simulations(diagnosis)

End(Not run)
Using an existing data frame of simulations
Not run:
simulations <- simulate_design(designs, sims = 2)
diagnosis <- diagnose_design(simulations_df = simulations_df)

End(Not run)

If you do not specify diagnosands, the function default_diagnosands() is used,
which is reproduced below.

alpha <- 0.05
default_diagnosands <-
declare_diagnosands(
 mean_estimand = mean(estimand),
 mean_estimate = mean(estimate),
 bias = mean(estimate - estimand),
 sd_estimate = sqrt(pop.var(estimate)),
 rmse = sqrt(mean((estimate - estimand) ^ 2)),
 power = mean(p.value <= alpha),
 coverage = mean(estimand <= conf.high & estimand >= conf.low)
)

A longer list of useful diagnosands might include:

extended_diagnosands <-
declare_diagnosands(
 mean_estimand = mean(estimand),
 mean_estimate = mean(estimate),
 bias = mean(estimate - estimand),
 sd_estimate = sd(estimate),
 rmse = sqrt(mean((estimate - estimand) ^ 2)),
 power = mean(p.value <= alpha),
 coverage = mean(estimand <= conf.high & estimand >= conf.low),
 mean_se = mean(std.error),
 type_s_rate = mean((sign(estimate) != sign(estimand))[p.value <= alpha]),
 exaggeration_ratio = mean((estimate/estimand)[p.value <= alpha]),
 var_estimate = pop.var(estimate),
 mean_var_hat = mean(std.error^2),
 prop_pos_sig = estimate > 0 & p.value <= alpha,
)
Description
Explore your design diagnosis

Usage
get_diagnosands(diagnosis)
get_simulations(diagnosis)

Arguments

diagnosis A design diagnosis created by diagnose_design.

Examples

design <-
declare_model(
 N = 500,
 U = rnorm(N),
 Y_Z_0 = U,
 Y_Z_1 = U + rnorm(N, mean = 2, sd = 2)
) +
declare_assignment(Z = complete_ra(N)) +
declare_inquiry(ATE = mean(Y_Z_1 - Y_Z_0)) +
declare_measurement(Y = reveal_outcomes(Y ~ Z)) +
declare_estimator(Y ~ Z, inquiry = "ATE")

Not run:
using built-in defaults:
diagnosis <- diagnose_design(design)
diagnosis

End(Not run)

using a user-defined diagnosand
my_diagnosand <- declare_diagnosands(
 absolute_error = mean(abs(estimate - estimand)))

Not run:
diagnosis <- diagnose_design(design, diagnosands = my_diagnosand)
diagnosis
draw_functions

get_diagnosands(diagnosis)

get_simulations(diagnosis)

reshape_diagnosis(diagnosis)

End(Not run)

draw_functions

Draw data, estimates, and inquiries from a design

Description

Draw data, estimates, and inquiries from a design

Usage

draw_data(design, data = NULL, start = 1, end = length(design))

draw_estimand(...)

draw_estimands(...)

draw_estimates(...)

Arguments

design A design object, typically created using the + operator
data A data.frame object with sufficient information to get the data, estimates, inquiries, an assignment vector, or a sample.
start (Defaults to 1) a scalar indicating which step in the design to begin with. By default all data steps are drawn, from step 1 to the last step of the design.
end (Defaults to length(design)) a scalar indicating which step in the design to finish drawing data by.
...

Examples

design <-
declare_model(
 N = 100,
 U = rnorm(N),
 potential_outcomes(Y ~ Z + U)
) +
```r
design <- 
declare_inquiry(ATE = mean(Y_Z_1 - Y_Z_0)) +
design_sampling(S = complete_rs(N, n = 75)) +
design_assignment(Z = complete_ra(N, m = 50)) +
design_measurement(Y = reveal_outcomes(Y ~ Z)) +
design_estimator(Y ~ Z, inquiry = "ATE")

dat <- draw_data(design)
dat_no_sampling <- draw_data(design, end = 3)
draw_estimands(design)
draw_estimates(design)
```

expand_design

Declare a design via a designer

Description

expand_design easily generates a set of designs from a designer function.

Usage

```r
expand_design(designer, ..., expand = TRUE, prefix = "design")
```

Arguments

- **designer**: a function which yields a design
- **...**: Options sent to the designer
- **expand**: boolean - if true, form the crossproduct of the ..., otherwise recycle them
- **prefix**: prefix for the names of the designs, i.e. if you create two designs they would be named prefix_1, prefix_2

Value

if set of designs is size one, the design, otherwise a ‘by’-list of designs. Designs are given a parameters attribute with the values of parameters assigned by expand_design.

Examples

```r
## Not run:

# in conjunction with DesignLibrary

library(DesignLibrary)
```
designs <- expand_design(multi_arm_designer, outcome_means = list(c(3,2,4), c(1,4,1)))

with a custom designer function
designer <- function(N) {
 pop <-
 declare_model(
 N = N,
 U = rnorm(N),
 potential_outcomes(Y ~ 0.20 * Z + U)
)
 assgn <- declare_assignment(Z = complete_ra(N, m = N/2))
 inquiry <- declare_inquiry(ATE = mean(Y_Z_1 - Y_Z_0))
 estimator <- declare_estimator(Y ~ Z, inquiry = inquiry)
 pop + pos + assgn + inquiry + estimator
}

returns list of eight designs
designs <- expand_design(designer, N = seq(30, 100, 10))

diagnose a list of designs created by expand_design or redesign
diagnosis <- diagnose_design(designs, sims = 50)

returns a single design
large_design <- expand_design(designer, N = 200)

diagnose_large_design <- diagnose_design(large_design, sims = 50)

End(Not run)

get_functions

Get estimates, inquiries, assignment vectors, or samples from a design given data

Description

Get estimates, inquiries, assignment vectors, or samples from a design given data

Usage

get_estimates(design, data = NULL, start = 1, end = length(design))

Arguments

design A design object, typically created using the + operator
data A data.frame object with sufficient information to get the data, estimates, inquiries, an assignment vector, or a sample.
(Defaults to 1) a scalar indicating which step in the design to begin with. By default all data steps are drawn, from step 1 to the last step of the design.

end

(Defaults to length(design)) a scalar indicating which step in the design to finish with.

Examples

design <-
 declare_model(
 N = 100,
 U = rnorm(N),
 potential_outcomes(Y ~ Z + U)
) +
 declare_inquiry(ATE = mean(Y_Z_1 - Y_Z_0)) +
 declare_sampling(S = complete_rs(N, n = 75)) +
 declare_assignment(Z = complete_ra(N, m = 50)) +
 declare_measurement(Y = reveal_outcomes(Y ~ Z)) +
 declare_estimator(Y ~ Z, inquiry = "ATE")

dat <- draw_data(design)

draw_data(design, data = dat, start = 2)

get_estimates(design, data = dat)

modify_design

Modify a design after the fact

Description

Insert, delete and replace steps in an (already declared) design object.

Usage

insert_step(design, new_step, before, after)

delete_step(design, step)

replace_step(design, step, new_step)

Arguments

design A design object, usually created using the + operator, expand_design, or the design library.

new_step The new step: Either a function or a partial call.

before The step before which to add steps.

after The step after which to add steps.

step The quoted label of the step to be deleted or replaced.
Details

See `modify_design` for details.

Value

A new design object.

Examples

```r
my_model <-
  declare_model(
    N = 100,
    U = rnorm(N),
    Y_Z_0 = U,
    Y_Z_1 = U + rnorm(N, mean = 2, sd = 2)
  )

my_assignment <- declare_assignment(Z = complete_ra(N, m = 50))
my_assignment_2 <- declare_assignment(Z = complete_ra(N, m = 25))

design <- my_model + my_assignment

design

## Not run:
insert_step(design, declare_step(dplyr::mutate, income = noise^2),
            after = my_assignment)
insert_step(design, declare_step(dplyr::mutate, income = noise^2),
            before = my_assignment)

# If you are using a design created by a designer, for example from
# the DesignLibrary package, you will not have access to the step
# objects. Instead, you can always use the label of the step.

# get the labels for the steps
names(design)

insert_step(design,
            declare_sampling(S = complete_rs(N, n = 50),
                             legacy = FALSE),
            after = "my_pop")

## End(Not run)

delete_step(design, my_assignment)
replace_step(design, my_assignment, declare_step(dplyr::mutate, words = "income"))
```
pop.var

Population variance function

Description

Population variance function

Usage

`pop.var(x, na.rm = FALSE)`

Arguments

- `x`: a numeric vector, matrix or data frame.
- `na.rm`: logical. Should missing values be removed?

Value

numeric scalar of the population variance

Examples

```r
x <- 1:4
var(x) # divides by (n-1)
pop.var(x) # divides by n
```

post_design

Explore your design

Description

Explore your design

Print code to recreate a design

Usage

`print_code(design)`

```r
## S3 method for class 'design'
print(x, verbose = TRUE, ...)

## S3 method for class 'design'
summary(object, verbose = TRUE, ...)
```
Arguments

- `design`: A design object, typically created using the + operator
- `x`: a design object, typically created using the + operator
- `verbose`: an indicator for printing a long summary of the design, defaults to `TRUE`

... optional arguments to be sent to summary function

- `object`: a design object created using the + operator

Examples

```r
design <-
  declare_model(
    N = 500,
    U = rnorm(N),
    potential_outcomes(Y ~ U + Z * rnorm(N, 2, 2))
  ) +
  declare_sampling(S = complete_rs(N, n = 250)) +
  declare_inquiry(ATE = mean(Y_Z_1 - Y_Z_0)) +
  declare_assignment(Z = complete_ra(N, m = 25)) +
  declare_measurement(Y = reveal_outcomes(Y ~ Z)) +
  declare_estimator(Y ~ Z, inquiry = "my_inquiry")

design
df <- draw_data(design)
estimates <- draw_estimates(design)
inquiries <- draw_estimands(design)
print_code(design)

my_population <- declare_model(N = 100)
my_assignment <- declare_assignment(Z = complete_ra(N, m = 50))
my_design <- my_population + my_assignment
print_code(my_design)

my_model <-
  declare_model(
    N = 500,
    noise = rnorm(N),
    Y_Z_0 = noise,
    Y_Z_1 = noise + rnorm(N, mean = 2, sd = 2)
  )

my_sampling <- declare_sampling(S = complete_rs(N, n = 250))
```
my_assignment <- declare_assignment(Z = complete_ra(N, m = 25))
my_inquiry <- declare_inquiry(ATE = mean(Y_Z_1 - Y_Z_0))
my_estimator <- declare_estimator(Y ~ Z, inquiry = my_inquiry)
my_reveal <- declare_measurement(Y = reveal_outcomes(Y ~ Z))

design <- my_model +
 my_sampling +
 my_inquiry +
 my_assignment +
 my_reveal +
 my_estimator

summary(design)

redesign

<table>
<thead>
<tr>
<th>redesign</th>
<th>Redesign</th>
</tr>
</thead>
</table>

Description

redesign quickly generates a design from an existing one by resetting symbols used in design handler parameters in a step’s environment (Advanced).

Usage

redesign(design, ..., expand = TRUE)

Arguments

- design: An object of class design.
- ...: Arguments to redesign e.g., n = 100. If redesigning multiple arguments, they must be specified as a named list.
- expand: If TRUE, redesign using the crossproduct of . . ., otherwise recycle them.

Details

Warning: redesign will edit any symbol in your design, but if the symbol you attempt to change does not exist in a step’s environment no changes will be made and no error or warning will be issued.

Please note that redesign functionality is experimental and may be changed in future versions.

Value

A design, or, in the case of multiple values being passed onto . . ., a ‘by‘-list of designs.
Examples

n <- 500
population <- declare_model(N = 1000)
sampling <- declare_sampling(S = complete_rs(N, n = n),
 legacy = FALSE)
design <- population + sampling

returns a single, modified design
modified_design <- redesign(design, n = 200)

returns a list of six modified designs
design_vary_N <- redesign(design, n = seq(400, 900, 100))

When redesigning with arguments that are vectors,
use list() in redesign, with each list item
representing a design you wish to create
prob_each <- c(.1, .5, .4)
assignment <- declare_assignment(
 Z = complete_ra(prob_each = prob_each),
 legacy = FALSE)
design <- population + assignment

returns two designs

designs_vary_prob_each <- redesign(
 design,
 prob_each = list(c(.2, .5, .3), c(0, .5, .5)))

To illustrate what does and does not get edited by redesign,
consider the following three designs. In the first two, argument
X is called from the step's environment; in the third it is not.
Using redesign will alter the role of X in the first two designs
but not the third one.
X <- 3
f <- function(b, X) b*X
g <- function(b) b*X
design1 <- declare_model(N = 1, A = X) + NULL
design2 <- declare_model(N = 1, A = f(2, X)) + NULL
design3 <- declare_model(N = 1, A = g(2)) + NULL
draw_data(design1)
draw_data(design2)
draw_data(design3)
draw_data(redesign(design1, X=0))
reshape_diagnosis

Clean up a diagnosis object for printing

Description

Take a diagnosis object and returns a pretty output table. If diagnosands are bootstrapped, se's are put in parentheses on a second line and rounded to digits.

Usage

```r
reshape_diagnosis(diagnosis, digits = 2, select = NULL, exclude = NULL)
```

Arguments

- `diagnosis`: A diagnosis object generated by `diagnose_design`.
- `digits`: Number of digits.
- `select`: List of columns to include in output. Defaults to all.
- `exclude`: Set of columns to exclude from output. Defaults to none.

Value

A formatted text table with bootstrapped standard errors in parentheses.

Examples

```r
effect_size <- 0.1
design <-
declare_model(
  N = 100,
  U = rnorm(N),
  X = rnorm(N),
  potential_outcomes(Y ~ effect_size * Z + X + U)
) +
declare_inquiry(ATE = mean(Y_Z_1 - Y_Z_0)) +
declare_assignment(Z = complete_ra(N)) +
declare_measurement(Y = reveal_outcomes(Y ~ Z)) +
declare_estimator(Y ~ Z, inquiry = "ATE", label = "unadjusted") +
declare_estimator(Y ~ Z + X, inquiry = "ATE", label = "adjusted")
diagnosis <- diagnose_design(design, sims = 100)
reshape_diagnosis(diagnosis)
reshape_diagnosis(diagnosis, select = c("Bias", "Power"))
```
run_design

Run a design one time

Description

Run a design one time

Usage

```r
run_design(design)
```

Arguments

- `design` a DeclareDesign object

Examples

```r
design <-
declare_model(
  N = 100, X = rnorm(N),
  potential_outcomes(Y ~ (.25 + X) * Z + rnorm(N))
) +
declare_inquiry(ATE = mean(Y_Z_1 - Y_Z_0)) +
declare_assignment(Z = complete_ra(N, m = 50)) +
declare_measurement(Y = reveal_outcomes(Y ~ Z)) +
declare_estimator(Y ~ Z, inquiry = "ATE")

run_design(design)
```

set_citation

Set the citation of a design

Description

Set the citation of a design

Usage

```r
set_citation(
  design,
  title = NULL,
  author = NULL,
  year = NULL,
  description = "Unpublished research design declaration",
  citation = NULL
)
```
set_diagnosands

Arguments

- **design**
 A design typically created using the `+` operator.

- **title**
 The title of the design, as a character string.

- **author**
 The author(s) of the design, as a character string.

- **year**
 The year of the design, as a character string.

- **description**
 A description of the design in words, as a character string.

- **citation**
 (optional) The preferred citation for the design, as a character string, in which case title, author, year, and description may be left unspecified.

Value

a design object with a citation attribute

Examples

```r
design <-
declare_model(data = sleep) +
  declare_sampling(S = complete_rs(N, n = 10))

design <-
  set_citation(design,
    author = "Lovelace, Ada",
    title = "Notes",
    year = 1953,
    description = "This is a text description of a design")

cite_design(design)
```

Description

A researcher often has a set of diagnosands in mind to appropriately assess the quality of a design. `set_diagnosands` sets the default diagnosands for a design, so that later readers can assess the design on the same terms as the original author. Readers can also use `diagnose_design` to diagnose the design using any other set of diagnosands.

Usage

```r
set_diagnosands(x, diagnosands = default_diagnosands)
```
simulate_design

Arguments

x A design typically created using the + operator, or a simulations data.frame created by simulate_design.
diagnosands A set of diagnosands created by declare_diagnosands

Value

A design object with a diagnosand attribute

Examples

design <-
declare_model(data = sleep) +
declare_inquiry(mean_outcome = mean(extra)) +
declare_sampling(S = complete_rs(N, n = 10)) +
declare_estimator(extra ~ 1, inquiry = "mean_outcome", term = '(Intercept)', model = lm_robust)
diagnosands <- declare_diagnosands(
 median_bias = median(estimate - inquiry))
design <- set_diagnosands(design, diagnosands)

Not run:
diagnose_design(design)
simulations_df <- simulate_design(design)
simulations_df <- set_diagnosands(simulations_df, design)
diagnose_design(simulations_df)

End(Not run)

simulate_design Simulate a design

Description

Runs many simulations of a design and returns a simulations data.frame.

Usage

simulate_design(..., sims = 500)
simulate_designdesigns(..., sims = 500)
simulate_design

Arguments

... A design created using the + operator, or a set of designs. You can also provide a single list of designs, for example one created by expand_design.

sims The number of simulations, defaulting to 500. If sims is a vector of the form c(10, 1, 2, 1) then different steps of a design will be simulated different numbers of times.

Details

Different steps of a design may each be simulated different a number of times, as specified by sims. In this case simulations are grouped into "fans". The nested structure of simulations is recorded in the dataset using a set of variables named "step_x_draw." For example if sims = c(2,1,1,3) is passed to simulate_design, then there will be two distinct draws of step 1, indicated in variable "step_1_draw" (with values 1 and 2) and there will be three draws for step 4 within each of the step 1 draws, recorded in "step_4_draw" (with values 1 to 6).

Examples

```r
my_model <-
  declare_model(
    N = 500,
    U = rnorm(N),
    Y_Z_0 = U,
    Y_Z_1 = U + rnorm(N, mean = 2, sd = 2)
  )

my_assignment <- declare_assignment(Z = complete_ra(N))

my_inquiry <- declare_inquiry(ATE = mean(Y_Z_1 - Y_Z_0))

my_estimator <- declare_estimator(Y ~ Z, inquiry = my_inquiry)

my_reveal <- declare_measurement(Y = reveal_outcomes(Y ~ Z))

design <- my_model +
  my_inquiry +
  my_assignment +
  my_reveal +
  my_estimator

## Not run:
simulations <- simulate_design(designs, sims = 2)
diagnosis <- diagnose_design(simulations_df = simulations)

## End(Not run)

## Not run:
# A fixed population with simulations over assignment only
head(simulate_design(design, sims = c(1, 1, 100, 1)))

## End(Not run)
```
Usage

```r
## S3 method for class 'diagnosis'
tidy(x, conf.int = TRUE, conf.level = 0.95, ...)
```

Arguments

- `x`: A diagnosis object generated by `diagnose_design`.
- `conf.int`: Logical indicating whether or not to include a confidence interval in the tidied output. Defaults to `TRUE`.
- `conf.level`: The confidence level to use for the confidence interval if `conf.int = TRUE`. Must be strictly greater than 0 and less than 1. Defaults to 0.95, which corresponds to a 95 percent confidence interval.
- `...`: Extra arguments (not used)

Value

A data.frame with columns for diagnosand names, estimated diagnosand values, bootstrapped standard errors and confidence intervals

Examples

```r
effect_size <- 0.1
design <-
  declare_model(
    N = 100,
    U = rnorm(N),
    X = rnorm(N),
    potential_outcomes(Y ~ effect_size * Z + X + U)
  ) +
  declare_inquiry(ATE = mean(Y_Z_1 - Y_Z_0)) +
  declare_assignment(Z = complete_ra(N)) +
  declare_measurement(Y = reveal_outcomes(Y ~ Z)) +
  declare_estimator(Y ~ Z, inquiry = "ATE", label = "unadjusted") +
  declare_estimator(Y ~ Z + X, inquiry = "ATE", label = "adjusted")

diagnosis <- diagnose_design(design, sims = 100)
tidy(diagnosis)
```
Description

Tidy function that returns a tidy data.frame of model results and allows filtering to relevant coefficients. The function will attempt to tidy model objects even when they do not have a tidy method available. For best results, first load the broom package via `library(broom)`.

Usage

```r
tidy_try(fit, term = FALSE)
```

Arguments

- `fit`: A model fit, as returned by a modeling function like `lm`, `glm`, or `estimatr::lm_robust`.
- `term`: A character vector of the terms that represent quantities of interest, i.e., "Z". If FALSE, return the first non-intercept term; if TRUE return all terms.

Value

A data.frame with coefficient estimates and associated statistics.

Examples

```r
fit <- lm(mpg ~ hp + disp + cyl, data = mtcars)
tidy_try(fit)
```
Index

+.dd(declare_design), 8
assignment_handler
 (declare_assignment), 7
cite_design, 2, 7
compare_design_code
 (compare_functions), 4
compare_design_data
 (compare_functions), 4
compare_design_estimates
 (compare_functions), 4
compare_design_inquiries
 (compare_functions), 4
compare_design_summaries
 (compare_functions), 4
compare_designs (compare_functions), 4
compare_diagnoses, 3
compare_functions, 4
declare_assignment, 6, 7, 9
declare_design, 8
declare_diagnosands, 30, 46
declare_diagnosands
 (diagnosand_handler), 27
declare_estimand (declare_inquiry), 13
declare_estimands (declare_inquiry), 13
declare_estimator, 6, 9, 9, 10, 25, 26
declare_estimators (declare_estimator), 9
declare_inquiries (declare_inquiry), 13
declare_inquiry, 6, 9, 11, 13
declare_measurement, 6, 9, 15
declare_model, 6, 9, 16
declare_population, 18
declare_potential_outcomes, 19
declare_reveal, 21
declare_reveal_handler
 (declare_reveal), 21
declare_sampling, 6, 9, 23
declare_step, 24
declare_test, 6, 9, 25
DeclareDesign, 6
delete_step (modify_design), 37
diagnosand_handler, 27
diagnose_design, 7, 28, 29, 33
diagnose_designs (diagnose_design), 29
diagnosis_helpers, 33
draw_data, 7
draw_data (draw_functions), 34
draw_estimand (draw_functions), 34
draw_estimands (draw_functions), 34
draw_estimates (draw_functions), 34
draw_functions, 34
estimatr, 10
expand_conditions, 20
expand_design, 7, 35, 37, 47
get_diagnosands (diagnosis_helpers), 33
get_estimates (get_functions), 36
get_functions, 36
get_simulations (diagnosis_helpers), 33
glance, 10

inquiry_handler (declare_inquiry), 13
insert_step (modify_design), 37

label_estimator (declare_estimator), 9
label_test (declare_test), 25
lm_robust, 10
measurement_handler
 (declare_measurement), 15
model_handler (declare_estimator), 9
modify_design, 7, 37, 38

plan, 31
pop.var, 39
post_design, 39
potential_outcomes_internal.formula
 (declare_potential_outcomes), 19
potential_outcomes_internal.NULL
 (declare_potential_outcomes), 19
print.design (post_design), 39
print_code (post_design), 39

redesign, 7, 41
replace_step (modify_design), 37
reshape_diagnosis, 43
run_design, 7, 44

sampling_handler (declare_sampling), 23
set_citation, 44
set_diagnosands, 45
simulate_design, 3, 28, 30, 46
simulate_designs (simulate_design), 46
summary.design (post_design), 39

tidy, 10
tidy.diagnosis, 48
tidy.try, 10, 49

vars (diagnose_design), 29