Package ‘DepLogo’

April 16, 2021

Type Package
Title Dependency Logo
Version 1.2
Maintainer Jan Grau <grau@informatik.uni-halle.de>
Description Plots dependency logos from a set of aligned input sequences.
License GPL-3
NeedsCompilation no
RoxygenNote 7.1.0
VignetteBuilder knitr
Suggests knitr, rmarkdown, testthat
Author Jan Grau [aut, cre],
 Jens Keilwagen [aut],
 Martin Nettling [aut]
Repository CRAN
Date/Publication 2021-04-16 20:10:02 UTC

R topics documented:

<table>
<thead>
<tr>
<th>R package</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alphabet</td>
<td>2</td>
</tr>
<tr>
<td>alphabet.dna</td>
<td>3</td>
</tr>
<tr>
<td>alphabet.dna.gap</td>
<td>3</td>
</tr>
<tr>
<td>alphabet.protein</td>
<td>3</td>
</tr>
<tr>
<td>alphabet.protein.gap</td>
<td>4</td>
</tr>
<tr>
<td>alphabet.rna</td>
<td>4</td>
</tr>
<tr>
<td>alphabet.rna.gap</td>
<td>4</td>
</tr>
<tr>
<td>colorchart</td>
<td>5</td>
</tr>
<tr>
<td>deprects</td>
<td>6</td>
</tr>
<tr>
<td>DLData</td>
<td>7</td>
</tr>
<tr>
<td>filter.by.conservation</td>
<td>8</td>
</tr>
<tr>
<td>filter.by.dependencies</td>
<td>9</td>
</tr>
<tr>
<td>filter.by.gaps</td>
<td>10</td>
</tr>
<tr>
<td>filterColumns</td>
<td>10</td>
</tr>
</tbody>
</table>
Alphabet

Description

builts an object of class Alphabet from the given set of symbols and colors

Usage

Alphabet(chars, cols)

Arguments

chars set of symbols
cols set of colors; one for each symbol

Value

the Alphabet object

Author(s)

Martin Nettling

Examples

DNA <- Alphabet(c("A", "C", "G", "T"), c("green4", "blue", "orange", "red"))
alphabet.dna

Description
DNA alphabet

Usage
alphabet.dna

Format
An object of class list of length 2.

alphabet.dna.gap

Description
DNA alphabet with gaps

Usage
alphabet.dna.gap

Format
An object of class list of length 2.

alphabet.protein

Description
Amino acid alphabet

Usage
alphabet.protein

Format
An object of class list of length 2.
alphabet.protein.gap Amino acid alphabet with gaps

Description
Amino acid alphabet with gaps

Usage
alphabet.protein.gap

Format
An object of class list of length 2.

alphabet.rna RNA alphabet

Description
RNA alphabet

Usage
alphabet.rna

Format
An object of class list of length 2.

alphabet.rna.gap RNA alphabet with gaps

Description
RNA alphabet with gaps

Usage
alphabet.rna.gap

Format
An object of class list of length 2.
colorchart

Plots a colorchart representation of a set of sequences

Description

This function is a low-level plotting function (using image with add=TRUE, internally).

Usage

colorchart(part, yoff, ic.scale = TRUE)

Arguments

part the set of sequences as DLData object
yoff the offset in y-direction within the current plot
ic.scale ignored for colorcharts

Value

the vertical (y) offset after this plot

Author(s)

Jan Grau <grau@informatik.uni-halle.de>

Examples

read data and create DLData object
seqs <- read.table(system.file("extdata", "cjun.txt", package = "DepLogo"),
stringsAsFactors = FALSE)
data <- DLData(sequences = seqs[,1], weights = log1p(seqs[, 2]))

create high-level plot
plot(NULL, xlim = c(1, ncol(data$data) - 1), ylim = c(0, nrow(data$data)),
ylab = nrow(data$data), axes = FALSE)

and add colorchart and axis
colorchart(data, yoff = nrow(data$data))
axis(1)
deprects
Rectangles of averaged colors

Description

Plots a representation of a set of sequences by rectangles of (scaled) averaged color values of the symbols at each position.

Usage

```r
deprects(part, yoff, ic.scale = TRUE)
```

Arguments

- `part`: the set of sequences as `DLData` object.
- `yoff`: the offset in y-direction within the current plot.
- `ic.scale`: if `TRUE`, alpha values of colors will be assigned based on "information content" of the distribution at each position.

Details

This function is a low-level plotting function (using `rect`, internally).

Value

The vertical (y) offset after this plot.

Author(s)

Jan Grau <grau@informatik.uni-halle.de>

Examples

```r
# read data and create DLData object
seqs <- read.table(system.file("extdata", "cjun.txt", package = "DepLogo"), stringsAsFactors = FALSE)
data <- DLData(sequences = seqs[, 1], weights = log1p(seqs[, 2]))

# create high-level plot
plot(NULL, xlim = c(1, ncol(data$data) - 1), ylim = c(0, nrow(data$data)), ylab = nrow(data$data), axes = FALSE)
# and add deprects and axis
deprects(data, yoff = nrow(data$data))
axis(1)
```
Create DLData object

Description

Creates a new DLData object from a set of input sequences.

Usage

```r
DLData(
  sequences,
  weights = NULL,
  symbols = alphabet.dna$alphabet,
  colors = alphabet.dna$colors,
  delim = "",
  sortByWeights = !is.null(weights),
  axis.labels = NULL
)
```

Arguments

- **sequences**: the input sequences, may be provided as i) character vector or ii) a data.frame with sequences organized in rows and one symbol per column
- **weights**: weights associated with the sequences, numeric vector of the same length as sequences has sequences
- **symbols**: the symbols (alphabet) over which the sequences are defined
- **colors**: colors for each of the symbols, not necessarily unique
- **delim**: delimiter between the symbols in the input sequences, ignored if sequences as a data.frame
- **sortByWeights**: if TRUE, sequences will be ordered by their weight in decreasing order
- **axis.labels**: the labels of the individual sequence positions; if NULL, indexes from 1 to total number of positions will be used

Details

Sequences may either be provided as a character vector or as a data.frame. All symbols occurring in these sequences need to be defined and assigned to colors, which are used for plotting later. Colors do not need to be unique, but symbols with identical colors may become indistinguishable in subsequent plots (which might even be desired, for instance, when visualizing protein properties instead of amino acids). Sequences may have an associated weight, which is used to order sequences, e.g., for creating chunks/blocks of sequences in subsequent plots (see chunks parameter of plotDeplogo).

Value

- the DLData object
Author(s)

Jan Grau <grau@informatik.uni-halle.de>

See Also

plotDeplogo

Examples

creating a DLData object using default (DNA) alphabet and colors
from a character vector with two entries
data <- DLData(c("ACGT", "ATTA"))

creating a DLData object using a custom, binary alphabet and custom colors
 symbols = c("A", "B"), colors = c("red", "green"), delim = ",")

creating a DLData object from a data frame
(created from a character vector, in this case)
df <- as.data.frame(t(sapply(vec, function(a){strsplit(a, ",")[[1]]})))
data.df <- DLData(df, symbols = c("A", "B"), colors = c("red", "green"))

creating a DLData object from sequences and weights, read from a tabular file
seqs <- read.table(system.file("extdata", "cjun.txt", package = "DepLogo"),
 stringsAsFactors = FALSE)
data3 <- DLData(sequences = seqs[, 1], weights = log1p(seqs[, 2]))

filter.by.conservation

Filters columns (sequence positions) by conservation

Description

Filters columns based on the relative information content of each column which is the standard
information content normalized to the interval [0,1], where 0 corresponds to uniform distribution
and 1 to perfect conservation of one nucleotide or amino acid, respectively.

Usage

filter.by.conservation(relative.ic)

Arguments

relative.ic the maximum relative information content allowed to retain a position

Value

function that, given a DLData object, returns TRUE for every column that does not exceed the spec-
ified relative information content
filter.by.dependencies

Author(s)
Jan Grau <grau@informatik.uni-halle.de>

Examples
fun <- filter.by.conservation(relative.ic = 0.9)

filter.by.dependencies
Filters columns (sequence positions) by dependency

Description
Filters columns based on the average or maximum mutual information of a column to all other columns. Mutual information is normalized to interval [0,1], where 0 corresponds to independence and 1 to perfect dependence.

Usage
filter.by.dependencies(mi.threshold, use.max = FALSE)

Arguments
mi.threshold the minimum average or maximum mutual information required
use.max if TRUE, the maximum and otherwise the average mutual information will be considered

Value
function that, given a DLData object, returns TRUE for every column that does exceed the specified average mutual information

Author(s)
Jan Grau <grau@informatik.uni-halle.de>

Examples
fun <- filter.by.dependencies(mi.threshold = 0.3)
filter.by.gaps
Filters columns (sequence positions) by gaps

Description
Filters columns (sequence positions) by gaps

Usage

```
filter.by.gaps(percent.gap)
```

Arguments

- `percent.gap`
 the maximum fraction of gaps allowed to retain a column

Value

function that, given a `DLData` object, returns `TRUE` for every column that does not exceed the specified number of gaps

Author(s)

Jan Grau <grau@informatik.uni-halle.de>

Examples

```
fun <- filter.by.gaps(percent.gap = 0.1)
```

filterColumns
Filters data columns by some filter function

Description
Filters the columns of the input data, i.e., positions of input sequences, by a filter function that, given a `DLData` object, returns a list containing i) as element `$selected` a vector with entries `TRUE` for every column that should be retained in the filtered data and ii) as element `$range` the range of values obtained for the filtering criterion.

Usage

```
filterColumns(data, filter.fun)
```

Arguments

- `data`
 the data as `DLData` object
- `filter.fun`
 the filter function
getDeps

Compute dependencies between positions

Description

Computes the dependencies (as measures by mutual information) between all positions (columns) of
discrete data. Specifically, it returns for each pair of positions (i,j) the mutual information $I(X_i,X_j)$
multiplied by the number N of sequences (rows), which may also be used for testing the statistical
significance of mutual information values, as for large N, $2*N*I(X_i,X_j)$ is approximately chi
squared.

Usage

getDeps(data, ...)

Arguments

data the data for computing mutual information. Either a DLData object or a data.frame;
In the latter case, the symbols of the alphabet must be provided as a second pa-
rameter
... the symbols of the alphabet as character vector, only if data is a data.frame

Value

a DLData object containing the filtered columns and the indexes of the remaining in its axis.labels
field

Author(s)

Jan Grau <grau@informatik.uni-halle.de>

See Also

filter.by.gaps
filter.by.dependencies
filter.by.conservation

Examples

read data and create DLData object
seqs <- read.table(system.file("extdata", "cjun.txt", package = "DepLogo"),
 stringsAsFactors = FALSE)
data <- DLData(sequences = seqs[, 1], weights = log1p(seqs[, 2]))

create a filter function based on the percentage of gap symbols (at most 10%)
fun <- filter.by.gaps(percent.gap = 0.1)
data2 <- filterColumns(data, fun)
getPWM

Value

a matrix of the mutual information values, where the diagonal is fixed to zero

Author(s)

Jan Grau <grau@informatik.uni-halle.de>

Examples

data <- DLData(c("ACGT", "ATTA"))
deps <- getDeps(data)

data <- DLData(c("ACGT", "ATTA"))
getPWM(data)
Sequence logo

Description
Plots a representation of a set of sequences as a sequence logo.

Usage
logo(part, yoff, ic.scale = TRUE)

Arguments
- part: the set of sequences as DLData object
- yoff: the offset in y-direction within the current plot
- ic.scale: if TRUE, symbols are scaled by "information content" of the distribution at each position

Details
This function is a low-level plotting function (using polygon, internally).

Value
the vertical (y) offset after this plot

Author(s)
Jan Grau <grau@informatik.uni-halle.de>

Examples
read data and create DLData object
seqs <- read.table(system.file("extdata", "cjun.txt", package = "DepLogo"),
 stringsAsFactors = FALSE)
data <- DLData(sequences = seqs[,1], weights = log1p(seqs[,2]))
create high-level plot
plot(NULL, xlim = c(1, ncol(data$data) - 1), ylim = c(0, nrow(data$data)),
 ylab = nrow(data$data), axes = FALSE)
and add sequence logo and axis
logo(data, yoff = nrow(data$data))
axis(1)
partition

Paritions data by most inter-dependent positions

Description

Partitions data by the nucleotides at the most inter-dependent positions as measures by pairwise mutual information. Partitioning is performed recursively on the resulting subsets until i) the number of sequences in a partition is less then minElements, ii) the average pairwise dependency between the current position and numBestForSorting other positions with the largest mutual information value drops below threshold, or iii) maxNum recursive splits have already been performed. If splitting results in smaller partitions than minElements, these are added to the smallest partition with more than minElements sequences.

Usage

partition(
 data,
 minElements = 10,
 threshold = 0.1,
 numBestForSorting = 3,
 maxNum = 6,
 sortByWeights = NULL,
 partition.by = NULL
)

Arguments

data the data as DLData object
minElements the minimum number of elements to perform a further split
threshold the threshold on the average mutual information value
numBestForSorting the number of dependencies to other positions considered
maxNum the maximum number of recursive splits
sortByWeights if TRUE, partitions are ordered by their average weight value, if false by frequency of symbols at the partitioning position otherwise. If NULL, the $sortByWeights value of the DLData object is used
partition.by specify fixed positions to partition by

Value

the partitions as list of DLData objects

Author(s)

Jan Grau <grau@informatik.uni-halle.de>
Examples

create DLData object
seqs <- read.table(system.file("extdata", "cjun.txt", package = "DepLogo"),
 stringsAsFactors = FALSE)
data <- DLData(sequences = seqs[, 1], weights = log1p(seqs[,2]))

partition data using default parameters
partitions <- partition(data)

partition data using a threshold of 0.3 on the mutual
information value to the most dependent position,
sorting the resulting partitions by weight
partitions2 <- partition(data = data, threshold = 0.3, numBestForSorting = 1, sortByWeights = TRUE)

plotBlocks

Description

Plots the blocks of data in data by successive, vertically arranged sub-plots of the function provided as block.fun. If data is a single DLData object, one block is plotted. Further arguments are provided to block.fun.

Usage

plotBlocks(
 data,
 show.number = TRUE,
 block.fun = deprects,
 ic.scale = TRUE,
 add = FALSE,
 ...
)

Arguments

data the data, a single DLData object or a list of DLData objects
show.number if true, the number of sequences (in total) in data is displayed on the left side of the plot
block.fun the function called for each of the blocks
ic.scale if TRUE, output of block.fun may be scaled by "information content"
add if TRUE, the plot is added to an existing plot
... if add=FALSE forwarded to the internal call to plot

Author(s)

Jan Grau <grau@informatik.uni-halle.de>
plotDeparcs

Plots a graph representation of dependency values

Description

Plots a representation of dependency values as arcs between the sequence positions. Internally, dependency values are computed using getDeps on the data object.

Usage

plotDeparcs(
 data,
 axis.at.bottom = TRUE,
 add.legend = TRUE,
 show.pvals = FALSE,
 axis.labels = NULL,
 threshold = 0.1
)

Arguments

data the DLData object containing the data
axis.at.bottom if TRUE, the x-axis is shown at the bottom (side=1) of the plot, and at the top (side=3) otherwise

See Also
deprects
logo
colorchart

Examples

read data and create DLData object
seqs <- read.table(system.file("extdata", "cjun.txt", package = "DepLogo"),
 stringsAsFactors = FALSE)
data <- DLData(sequences = seqs[, 1], weights = log1p(seqs[, 2]))

plot all data
plotBlocks(data)

partition data
partitions <- partition(data, threshold = 0.3)
and plot partitions
plotBlocks(partitions)

or plot partitions as sequence logos
plotBlocks(partitions, block.fun = logo)
plotDeplogo

add.legend if TRUE a legend of the color scale is added to the plot
show.pvals if TRUE, -log10 p-values (computed by pchisq) are shown instead of mutual information values
axis.labels the labels of the x-axis
threshold threshold in mutual information values, edges below this value are not shown; ignored in show.pvals=TRUE

Author(s)
Jan Grau <grau@informatik.uni-halle.de>

Examples

create DLData object
seqs <- read.table(system.file("extdata", "cjun.txt", package = "DepLogo"), stringsAsFactors = FALSE)
data <- DLData(sequences = seqs[,1], weights = log1p(seqs[,2]))

plot using default parameters
call(plotDeparcs(data))

plot with axis at top, without a legend (color scale), and using p-values
call(plotDeparcs(data, axis.at.bottom = FALSE, add.legend = FALSE, show.pvals = TRUE))
```r
plotDeplogo

Arguments

- **data**
  - the data, currently implemented for DLData objects

- **dep.fun**
  - the function for plotting the representation of dependency values (as computed by `getDeps`)

- **block.fun**
  - the function for plotting a representation of the individual partitions of the data generated in dependency logos.

- **summary.fun**
  - the function for plotting a representation of the summary plot for (one chunk of) the data

- **weight.fun**
  - the function for plotting a representation of the weights values of the sequences within one partition

- **chunks**
  - the size of chunks the data is split into. The sum of the chunk sizes must not be greater than the number of data points in data. The default value of NULL corresponds to one chunk containing all data points

- **chunk.height**
  - the (relative) height of the parts of the plot representing each of the chunks, one height for each chunk

- **summary.height**
  - the (relative) height of the block summaries in the plot

- **minPercent**
  - the minimum percentage of the (sub) data set that may constitute its own partition in the dependency logo

- **threshold**
  - the threshold on the dependency value for further splits

- **numBestForSorting**
  - the number of dependencies between position i and all other positions when computing the dependency value of position i

- **maxNum**
  - the maximum number of splits allowed

- **sortByWeights**
  - are partitions sorted by their average weight (descending)

- **dep.fun.legend**
  - if TRUE, a legend of the color scale used for plotting the dependency values in dep.fun is added to the plot

- **show.dependency.pvals**
  - is TRUE, p-values are used for plotting dependency values in dep.fun instead of mutual information values

- **axis.labels**
  - labels for the x-axis, vector of the same length as the individual sequences

- **weight.ratio**
  - the factor by which the plotting width for the main plot is larger than for weight.fun

- **partition.by**
  - specify fixed positions to partition by

- **...**
  - forwarded to the high-level plot that contains the blocks plotted by block.fun
```
Details

The function dep.fun provided for plotting the representation of dependencies is currently implemented in plotDepars and plotDepmatrix. Custom implementations must have the same signature as these functions and create a single plot without using layout (or similar).

The functions block.fun and summary.fun provided for plotting the representation of individual partitions of the data generated in dependency logos are currently implemented in deprects, colorchart, and logo. Custom implementations must have the same signature as these functions and create a single plot without using layout (or similar).

The function weight.fun for plotting a representation of the weights values of the sequences within one partition is currently implemented in subLines and subBoxes. Custom implementations must have the same signature as these functions and create a single plot without using layout (or similar).

Value

a list of DLData objects with the partitions created for the dependency logo

Author(s)

Jan Grau <grau@informatik.uni-halle.de>

Examples

read data and create DLData object
seqs <- read.table(system.file("extdata", "cjun.txt", package = "DepLogo"),
 stringsAsFactors = FALSE)
data <- DLData(sequences = seqs[, 1], weights = log1p(seqs[, 2]))

plot default dependency logo
plotDeplogo(data)

refine threshold for clearer picture
plotDeplogo(data, threshold = 0.3)

customize different parts of the plot
plotDeplogo(data, threshold = 0.3, dep.fun = plotDepmatrix, block.fun = colorchart)

add plots of the weights
plotDeplogo(data, weight.fun = subBoxes)

plotDepmatrix

Plots a matrix representation of dependency values

Description

Plots a representation of dependency values as a triangular matrix rotated by 45 degrees. Internally, dependency values are computed using getDeps on the data object.
Usage

plotDepmatrix(
 data,
 axis.at.bottom = TRUE,
 add.legend = TRUE,
 show.pvals = FALSE,
 axis.labels = NULL,
 threshold = 0.1
)

Arguments

data the DLData object containing the data
axis.at.bottom if TRUE, the x-axis is shown at the bottom (side=1) of the plot, and at the top (side=3) otherwise
add.legend if TRUE a legend of the color scale is added to the plot
show.pvals if TRUE, -log10 p-values (computed by pchisq) are shown instead of mutual information values
axis.labels the labels of the x-axis
threshold ignored

Author(s)

Jan Grau <grau@informatik.uni-halle.de>

Examples

create DLData object
seqs <- read.table(system.file("extdata", "cjun.txt", package = "DepLogo"),
 stringsAsFactors = FALSE)
data <- DLData(sequences = seqs[, 1], weights = log1p(seqs[, 2]))

plot using default parameters
plotDepmatrix(data)

plot with axis at top, without a legend (color scale), and using p-values
plotDepmatrix(data, axis.at.bottom = FALSE, add.legend = FALSE, show.pvals = TRUE)

replaceColors Replaces colors in DLData object

Description

Replaces colors in DLData object
Usage

replaceColors(data, colors)

Arguments

data the data
colors the new colors

Value

the modified DLData object

Author(s)

Jan Grau <grau@informatik.uni-halle.de>

See Also

replaceColors

Examples

read data and create DLData object
seqs <- read.table(system.file("extdata", "cjun.txt", package = "DepLogo"),
stringsAsFactors = FALSE)
data <- DLData(sequences = seqs[, 1], weights = log1p(seqs[, 2]))

replaceColors(data, c("red", "green", "blue", "yellow"))

Description

Determine the reverse complementary DLData object. Only works for DNA or RNA. Data may include gap symbols.

Usage

revcom(data)

Arguments

data the data

Value

the reverse complement
Author(s)

Jan Grau <grau@informatik.uni-halle.de>

Examples

data <- DLData(c("ACGT", "ATTA"))
revcom(data)

subBoxes

Plots weights as boxplots

Description

Plots a representation of the weights of a list of DLData objects. Each entry of the list is shown as an independent boxplot.

Usage

subBoxes(sub.parts, range, axis.above = TRUE, axis.below = TRUE)

Arguments

sub.parts a list of DLData objects
range the range of values shown in the plot (i.e., the xlim value of the call to plot)
axis.above if TRUE, an axis at the top of the plot (side=3) is shown
axis.below if TRUE, an axis at the bottom of the plot (side=1) is shown

Author(s)

Jan Grau <grau@informatik.uni-halle.de>

Examples

read data and create DLData object
seqs <- read.table(system.file("extdata", "nrsf.txt", package = "DepLogo"),
 stringsAsFactors = FALSE)
data <- DLData(sequences = seqs[, 1], weights = log1p(seqs[, 2]))

create dependency logo with plotted weights
plotDeplogo(data, threshold = 0.03, weight.fun = subBoxes)
subLines

Plots weights as lines

Description

Plots a representation of the weights of a list of DLData objects. Each entry of the list is shown as an independent line with the median value shown as a red vertical line. Plots of list entries are separated by horizontal grey lines.

Usage

subLines(sub.parts, range, axis.above = TRUE, axis.below = TRUE)

Arguments

- `sub.parts`: a list of DLData objects
- `range`: the range of values shown in the plot (i.e., the xlim value of the call to plot)
- `axis.above`: if TRUE, an axis at the top of the plot (side=3) is shown
- `axis.below`: if TRUE, an axis at the bottom of the plot (side=1) is shown

Author(s)

Jan Grau <grau@informatik.uni-halle.de>

Examples

```r
# read data and create DLData object
seqs <- read.table(system.file("extdata", "nrsf.txt", package = "DepLogo"),
                   stringsAsFactors = FALSE)
data <- DLData(sequences = seqs[, 1], weights = log1p(seqs[, 2]))

# create dependency logo with plotted weights
plotDeplogo(data, threshold = 0.03, weight.fun = subLines)
```

suggestColors

Suggests colors for symbols

Description

Suggests colors for the symbols in data based on the co-occurrence of symbols at common positions, weighted by the dependency values at those positions. The idea is to assign similar colors only to symbols that either mostly occur at different positions or that are present at positions with low inter-dependencies to other positions.
Usage
suggestColors(data)

Arguments
data the data

Value
the colors

Author(s)
Jan Grau <grau@informatik.uni-halle.de>

See Also
replaceColors

Examples
read data and create DLData object
seqs <- read.table(system.file("extdata", "cjun.txt", package = "DepLogo"),
stringsAsFactors = FALSE)
data <- DLData(sequences = seqs[, 1], weights = log1p(seqs[, 2]))
suggestColors(data)

summary.DLData
Summarizing DLData objects

Description
summary method for class "DLData". The summary includes the number of sequences, the consensus sequence and the number of sequences in object that match the consensus.

Usage
S3 method for class 'DLData'
summary(object, delete.gaps = FALSE, ...)

Arguments
object an object of class "DLData"
delete.gaps if gaps should be removed from the consensus
... further arguments passed to or from other methods
Value

a list with elements `members` containing the number of sequences, `consensus` containing the consensus sequences, and `equal.consensus` containing the number of sequences in object that are identical to consensus

Author(s)

Jens Keilwagen, Jan Grau <grau@informatik.uni-halle.de>

Examples

```r
seqs <- read.table(system.file("extdata", "cjun.txt", package = "DepLogo"),
                   stringsAsFactors = FALSE)
data <- DLData(sequences = seqs[, 1], weights = log1p(seqs[, 2]))
summary(data)
```
Index

* datasets
 alphabet.dna, 3
 alphabet.dna.gap, 3
 alphabet.protein, 3
 alphabet.protein.gap, 4
 alphabet.rna, 4
 alphabet.rna.gap, 4

Alphabet, 2
alphabet.dna, 3
alphabet.dna.gap, 3
alphabet.protein, 3
alphabet.protein.gap, 4
alphabet.rna, 4
alphabet.rna.gap, 4

colorchart, 5, 16, 19
deprects, 6, 16, 19
DLData, 5, 6, 7, 8–11, 13–16, 18–23

filter.by.conservation, 8, 11
filter.by.dependencies, 9, 11
filter.by.gaps, 10, 11
filterColumns, 10

getDeps, 11, 16, 18, 19
getPWM, 12

image, 5

layout, 19
logo, 13, 16, 19

partition, 14
pchisq, 17, 20
plot, 15, 22, 23
plotBlocks, 15
plotDeparcs, 16, 19
plotDeplogo, 8, 17
plotDepmatrix, 19, 19

polygon, 13
rect, 6
replaceColors, 20, 21, 24
revcom, 21

subBoxes, 19, 22
subLines, 19, 23
suggestColors, 23
summary.DLData, 24