Package ‘DescTools’

March 17, 2019

Type Package
Title Tools for Descriptive Statistics
Version 0.99.28
Date 2019-03-17

Maintainer Andri Signorell <andri@signorell.net>

Description A collection of miscellaneous basic statistic functions and convenience wrappers for efficiently describing data. The author’s intention was to create a toolbox, which facilitates the (notoriously time consuming) first descriptive tasks in data analysis, consisting of calculating descriptive statistics, drawing graphical summaries and reporting the results. The package contains furthermore functions to produce documents using MS Word (or PowerPoint) and functions to import data from Excel. Many of the included functions can be found scat-
R topics documented:

- DescTools-package
- Abind
- Abstract
- AddMonths
- AddMonthsYM
- Agree
- AllDuplicated
- AndersonDarlingTest
- Append
- Arrow
- as.matrix.xtabs
- AscToChar
- Asp
- Association measures
- Assocs
- Atkinson
- AUC
- AxisBreak
- axTicks.POSIXct
- BarnardTest
- BartelsRankTest

The topics documented were extracted from various sources and consolidated, primarily to have them available in a single package (R) instead of scattered across dozens of packages. The focus was on maintaining a consistent interface for functions and arguments, NA handling, and recycling rules. Google style guides were used to standardize naming conventions. Functions borrowed from contributed packages were adapted using a 'camel style' naming convention.

- **Suggests**: RDCOMClient, tcltk
- **Depends**: base, stats, R (>= 3.3.0)
- **Imports**: graphics, grDevices, methods, MASS, utils, boot, manipulate, mnorm, foreign, expm, Rcpp (>= 0.12.10)
- **LinkingTo**: Rcpp, BH
- **License**: GPL (>= 2)
- **LazyLoad**: yes
- **LazyData**: yes
- **AdditionalRepositories**: http://www.omegahat.net/R
- **SystemRequirements**: C++11
- **NeedsCompilation**: yes
- **Repository**: CRAN
- **Date/Publication**: 2019-03-17 19:23:30 UTC
R topics documented:

BarText .. 51
Base Conversions .. 52
Benford ... 53
Between, Outside .. 55
BinomCI ... 57
BinomDiffCI ... 59
BinomRatioCI .. 62
BinTree ... 65
BootCI ... 66
BoxCox .. 67
BoxCoxLambda .. 69
BoxedText ... 70
BreslowDayTest .. 71
BreuschGodfreyTest ... 73
BrierScore .. 75
BubbleLegend ... 77
Canvas ... 78
CartToPol ... 79
CatTable ... 80
CCC ... 81
Clockwise ... 84
Closest ... 85
Coalesce ... 86
CochranArmitageTest .. 87
CochranQTest ... 89
CoefVar ... 91
CohenD ... 92
CohenKappa .. 94
CollapseTable .. 96
ColorDlg .. 98
ColorLegend ... 99
ColPicker ... 101
ColToGrey .. 102
ColToHex ... 103
ColToHsv ... 104
ColToRgb ... 105
ColumnWrap .. 106
CombPairs .. 107
ConDisPairs ... 108
Conf ... 109
ConnLines .. 112
ConoverTest ... 113
Contrasts .. 116
ConvUnit ... 117
Cor ... 119
CorPart ... 122
CorPolychor .. 124
CountCompCases .. 125
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CourseData</td>
<td>126</td>
</tr>
<tr>
<td>CramerVonMisesTest</td>
<td>127</td>
</tr>
<tr>
<td>CronbachAlpha</td>
<td>129</td>
</tr>
<tr>
<td>Cross</td>
<td>130</td>
</tr>
<tr>
<td>CrossN</td>
<td>131</td>
</tr>
<tr>
<td>Cstat</td>
<td>132</td>
</tr>
<tr>
<td>CutQ</td>
<td>133</td>
</tr>
<tr>
<td>d.countries</td>
<td>135</td>
</tr>
<tr>
<td>d.diamonds</td>
<td>136</td>
</tr>
<tr>
<td>d.periodic</td>
<td>137</td>
</tr>
<tr>
<td>d.pizza</td>
<td>138</td>
</tr>
<tr>
<td>d.whisky</td>
<td>139</td>
</tr>
<tr>
<td>Datasets for Simulation</td>
<td>141</td>
</tr>
<tr>
<td>Date Functions</td>
<td>141</td>
</tr>
<tr>
<td>day.name</td>
<td>144</td>
</tr>
<tr>
<td>DegToRad</td>
<td>145</td>
</tr>
<tr>
<td>DenseRank</td>
<td>146</td>
</tr>
<tr>
<td>Depreciation</td>
<td>147</td>
</tr>
<tr>
<td>Desc</td>
<td>148</td>
</tr>
<tr>
<td>DescTools Aliases</td>
<td>155</td>
</tr>
<tr>
<td>DescTools Palettes</td>
<td>156</td>
</tr>
<tr>
<td>DescToolsOptions</td>
<td>157</td>
</tr>
<tr>
<td>DigitSum</td>
<td>160</td>
</tr>
<tr>
<td>dir.choose</td>
<td>161</td>
</tr>
<tr>
<td>DivCoef</td>
<td>162</td>
</tr>
<tr>
<td>DivCoefMax</td>
<td>163</td>
</tr>
<tr>
<td>Divisors</td>
<td>165</td>
</tr>
<tr>
<td>DoBy</td>
<td>165</td>
</tr>
<tr>
<td>DoCall</td>
<td>167</td>
</tr>
<tr>
<td>Dot</td>
<td>168</td>
</tr>
<tr>
<td>DrawArc</td>
<td>169</td>
</tr>
<tr>
<td>DrawBand</td>
<td>171</td>
</tr>
<tr>
<td>DrawBezier</td>
<td>172</td>
</tr>
<tr>
<td>DrawCircle</td>
<td>173</td>
</tr>
<tr>
<td>DrawEllipse</td>
<td>175</td>
</tr>
<tr>
<td>DrawRegPolygon</td>
<td>176</td>
</tr>
<tr>
<td>Dummy</td>
<td>178</td>
</tr>
<tr>
<td>DunnettTest</td>
<td>180</td>
</tr>
<tr>
<td>DunnTest</td>
<td>182</td>
</tr>
<tr>
<td>DurbinWatsonTest</td>
<td>184</td>
</tr>
<tr>
<td>Entropy</td>
<td>186</td>
</tr>
<tr>
<td>Eps</td>
<td>188</td>
</tr>
<tr>
<td>ErrBars</td>
<td>189</td>
</tr>
<tr>
<td>EtaSq</td>
<td>191</td>
</tr>
<tr>
<td>ExpFreq</td>
<td>193</td>
</tr>
<tr>
<td>Extremes</td>
<td>194</td>
</tr>
<tr>
<td>ExtrVal</td>
<td>195</td>
</tr>
<tr>
<td>Factorize</td>
<td>197</td>
</tr>
</tbody>
</table>
R topics documented:

FctArgs ... 198
Fibonacci ... 198
FileOpenCmd ... 199
FindColor .. 201
FindCorr .. 202
FisherZ ... 204
FixToTable ... 205
Format ... 206
Frac ... 210
Frechet ... 211
Freq ... 212
Freq2D ... 214
GCD, LCM ... 215
GenExtrVal .. 217
GenPareto .. 218
GeomSn ... 219
GeomTrans .. 220
GetCurrWrd .. 221
GetNewWrd .. 222
GetNewXL .. 224
Gini ... 225
GiniSimpson .. 228
Gmean ... 229
Gompertz ... 231
GoodmanKruskalGamma .. 232
GoodmanKruskalTau .. 234
GTest ... 236
Gumbel .. 238
Herfindahl .. 239
HexToCol ... 240
HexToRgb ... 242
Hmean ... 243
HmsToSec ... 244
HodgesLehmann ... 245
HoeffD ... 246
HosmerLemeshowTest .. 248
HotellingsT2Test .. 249
HuberM .. 251
ICC ... 252
identify.formula ... 255
IdentifyA ... 256
ImportFileDlg .. 257
InDots ... 258
IsDate ... 258
IsDichotomous ... 259
IsEuclid .. 260
IsOdd ... 261
IsPrime ... 262
R topics documented:

IsValidWrd .. 263
JarqueBeraTest ... 263
JonckheereTerpstraTest 265
KappaM .. 267
KendallTauA .. 269
KendallTauB .. 270
KendallW .. 272
Keywords ... 274
KrippAlpha .. 275
Label, Unit ... 276
Lambda .. 277
Lc ... 279
LehmacherTest .. 283
LeveneTest ... 284
LillieTest ... 286
lines.lm .. 288
lines.loess ... 289
LineToUser ... 291
LinScale ... 292
List Variety Of Objects 293
LOCF ... 294
LOF ... 295
Logit ... 296
LogSt ... 297
MAD .. 299
Mar ... 300
matpow .. 301
Mean .. 302
MeanAD .. 303
MeanCI ... 304
MeanDiffCI .. 306
MeanSE .. 308
Measures of Accuracy 309
Measures of Shape .. 312
Median .. 314
MedianCI .. 316
MHChisqTest ... 317
Midx ... 318
MixColor .. 319
Mode ... 320
MosesTest ... 321
MoveAvg .. 323
MultinomCI ... 324
NemenyiTest ... 326
NPV ... 328
OddsRatio ... 330
Order ... 332
ORToRelRisk ... 334
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outlier</td>
<td>335</td>
</tr>
<tr>
<td>PageTest</td>
<td>336</td>
</tr>
<tr>
<td>PairApply</td>
<td>339</td>
</tr>
<tr>
<td>ParseFormula</td>
<td>341</td>
</tr>
<tr>
<td>ParseSASDatalines</td>
<td>342</td>
</tr>
<tr>
<td>PasswordDlg</td>
<td>344</td>
</tr>
<tr>
<td>PDFManual</td>
<td>345</td>
</tr>
<tr>
<td>PearsonTest</td>
<td>345</td>
</tr>
<tr>
<td>PercTable</td>
<td>347</td>
</tr>
<tr>
<td>Perm</td>
<td>350</td>
</tr>
<tr>
<td>Phrase</td>
<td>352</td>
</tr>
<tr>
<td>PlotACF</td>
<td>353</td>
</tr>
<tr>
<td>PlotArea</td>
<td>354</td>
</tr>
<tr>
<td>PlotBag</td>
<td>356</td>
</tr>
<tr>
<td>PlotBubble</td>
<td>359</td>
</tr>
<tr>
<td>PlotCandlestick</td>
<td>361</td>
</tr>
<tr>
<td>PlotCashFlow</td>
<td>363</td>
</tr>
<tr>
<td>PlotCirc</td>
<td>363</td>
</tr>
<tr>
<td>PlotCorr</td>
<td>365</td>
</tr>
<tr>
<td>PlotDev</td>
<td>367</td>
</tr>
<tr>
<td>PlotDot</td>
<td>369</td>
</tr>
<tr>
<td>PlotECDF</td>
<td>371</td>
</tr>
<tr>
<td>PlotFaces</td>
<td>373</td>
</tr>
<tr>
<td>PlotFdist</td>
<td>375</td>
</tr>
<tr>
<td>PlotFun</td>
<td>378</td>
</tr>
<tr>
<td>PlotLinesA</td>
<td>381</td>
</tr>
<tr>
<td>PlotLog</td>
<td>383</td>
</tr>
<tr>
<td>PlotMarDens</td>
<td>384</td>
</tr>
<tr>
<td>PlotMiss</td>
<td>385</td>
</tr>
<tr>
<td>PlotMonth</td>
<td>386</td>
</tr>
<tr>
<td>PlotMosaic</td>
<td>387</td>
</tr>
<tr>
<td>PlotMultiDens</td>
<td>388</td>
</tr>
<tr>
<td>PlotPch</td>
<td>390</td>
</tr>
<tr>
<td>PlotPolar</td>
<td>391</td>
</tr>
<tr>
<td>PlotPyramid</td>
<td>394</td>
</tr>
<tr>
<td>PlotQQ</td>
<td>397</td>
</tr>
<tr>
<td>PlotTernary</td>
<td>399</td>
</tr>
<tr>
<td>PlotTreemap</td>
<td>400</td>
</tr>
<tr>
<td>PlotVenn</td>
<td>402</td>
</tr>
<tr>
<td>PlotViolin</td>
<td>403</td>
</tr>
<tr>
<td>PlotWeb</td>
<td>406</td>
</tr>
<tr>
<td>PMT</td>
<td>407</td>
</tr>
<tr>
<td>PoissonCI</td>
<td>409</td>
</tr>
<tr>
<td>PolarGrid</td>
<td>410</td>
</tr>
<tr>
<td>PostHocTest</td>
<td>412</td>
</tr>
<tr>
<td>power.chisq.test</td>
<td>415</td>
</tr>
<tr>
<td>PowerPoint Interface</td>
<td>416</td>
</tr>
<tr>
<td>pRevGumbel</td>
<td>418</td>
</tr>
</tbody>
</table>
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primes</td>
<td>420</td>
</tr>
<tr>
<td>PseudoR2</td>
<td>421</td>
</tr>
<tr>
<td>PtInPoly</td>
<td>423</td>
</tr>
<tr>
<td>Quantile</td>
<td>424</td>
</tr>
<tr>
<td>Range</td>
<td>425</td>
</tr>
<tr>
<td>Recode</td>
<td>426</td>
</tr>
<tr>
<td>Recycle</td>
<td>428</td>
</tr>
<tr>
<td>RelRisk</td>
<td>429</td>
</tr>
<tr>
<td>Rename</td>
<td>430</td>
</tr>
<tr>
<td>reorder.factor</td>
<td>431</td>
</tr>
<tr>
<td>Rev</td>
<td>433</td>
</tr>
<tr>
<td>RevWeibull</td>
<td>434</td>
</tr>
<tr>
<td>RgbToCol</td>
<td>435</td>
</tr>
<tr>
<td>RndPairs</td>
<td>437</td>
</tr>
<tr>
<td>RobScale</td>
<td>438</td>
</tr>
<tr>
<td>RomanToInt</td>
<td>439</td>
</tr>
<tr>
<td>Rotate</td>
<td>440</td>
</tr>
<tr>
<td>RoundTo</td>
<td>441</td>
</tr>
<tr>
<td>RunsTest</td>
<td>443</td>
</tr>
<tr>
<td>Sample</td>
<td>446</td>
</tr>
<tr>
<td>SampleTwins</td>
<td>447</td>
</tr>
<tr>
<td>SaveAsDlg</td>
<td>448</td>
</tr>
<tr>
<td>ScheffeTest</td>
<td>449</td>
</tr>
<tr>
<td>SD</td>
<td>450</td>
</tr>
<tr>
<td>SelectVarDlg</td>
<td>451</td>
</tr>
<tr>
<td>SetAlpha</td>
<td>453</td>
</tr>
<tr>
<td>SetNames</td>
<td>454</td>
</tr>
<tr>
<td>Shade</td>
<td>455</td>
</tr>
<tr>
<td>ShapiroFranciaTest</td>
<td>456</td>
</tr>
<tr>
<td>SiegelTukeyTest</td>
<td>457</td>
</tr>
<tr>
<td>SignTest</td>
<td>460</td>
</tr>
<tr>
<td>SmoothSpline</td>
<td>463</td>
</tr>
<tr>
<td>Some</td>
<td>465</td>
</tr>
<tr>
<td>Some numeric checks</td>
<td>466</td>
</tr>
<tr>
<td>SomersDelta</td>
<td>468</td>
</tr>
<tr>
<td>Sort</td>
<td>469</td>
</tr>
<tr>
<td>SortMixed</td>
<td>471</td>
</tr>
<tr>
<td>SpearmanRho</td>
<td>473</td>
</tr>
<tr>
<td>split.formula</td>
<td>475</td>
</tr>
<tr>
<td>SplitAt</td>
<td>476</td>
</tr>
<tr>
<td>SplitPath</td>
<td>477</td>
</tr>
<tr>
<td>SpreadOut</td>
<td>478</td>
</tr>
<tr>
<td>Stamp</td>
<td>479</td>
</tr>
<tr>
<td>StdCoef</td>
<td>480</td>
</tr>
<tr>
<td>Str</td>
<td>482</td>
</tr>
<tr>
<td>StrAbbr</td>
<td>483</td>
</tr>
<tr>
<td>StrAlign</td>
<td>484</td>
</tr>
<tr>
<td>Strata</td>
<td>485</td>
</tr>
<tr>
<td>R topics documented:</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>StrCap</td>
<td>487</td>
</tr>
<tr>
<td>StrChop</td>
<td>488</td>
</tr>
<tr>
<td>StrCountW</td>
<td>489</td>
</tr>
<tr>
<td>StrDist</td>
<td>490</td>
</tr>
<tr>
<td>StrExtract</td>
<td>492</td>
</tr>
<tr>
<td>StrIsNumeric</td>
<td>493</td>
</tr>
<tr>
<td>StrLeft, StrRight</td>
<td>494</td>
</tr>
<tr>
<td>StrPad</td>
<td>495</td>
</tr>
<tr>
<td>StrPos</td>
<td>496</td>
</tr>
<tr>
<td>StrRev</td>
<td>497</td>
</tr>
<tr>
<td>StrTrim</td>
<td>497</td>
</tr>
<tr>
<td>StrTrunc</td>
<td>498</td>
</tr>
<tr>
<td>StrVal</td>
<td>499</td>
</tr>
<tr>
<td>StuartMaxwellTest</td>
<td>501</td>
</tr>
<tr>
<td>StuartTauC</td>
<td>502</td>
</tr>
<tr>
<td>SysInfo</td>
<td>504</td>
</tr>
<tr>
<td>TextContrastColor</td>
<td>504</td>
</tr>
<tr>
<td>TextToTable</td>
<td>506</td>
</tr>
<tr>
<td>TheiU</td>
<td>507</td>
</tr>
<tr>
<td>TitleRect</td>
<td>508</td>
</tr>
<tr>
<td>TMod</td>
<td>509</td>
</tr>
<tr>
<td>ToLong, ToWide</td>
<td>511</td>
</tr>
<tr>
<td>TOne</td>
<td>512</td>
</tr>
<tr>
<td>ToWrd</td>
<td>514</td>
</tr>
<tr>
<td>Trim</td>
<td>517</td>
</tr>
<tr>
<td>TTestA</td>
<td>519</td>
</tr>
<tr>
<td>TukeyBiweight</td>
<td>521</td>
</tr>
<tr>
<td>TwoGroups</td>
<td>522</td>
</tr>
<tr>
<td>UncertCoef</td>
<td>523</td>
</tr>
<tr>
<td>UnirootAll</td>
<td>525</td>
</tr>
<tr>
<td>Untable</td>
<td>527</td>
</tr>
<tr>
<td>Unwhich</td>
<td>529</td>
</tr>
<tr>
<td>VarCI</td>
<td>530</td>
</tr>
<tr>
<td>VarTest</td>
<td>531</td>
</tr>
<tr>
<td>VecRot</td>
<td>533</td>
</tr>
<tr>
<td>VIF</td>
<td>534</td>
</tr>
<tr>
<td>Vigenere</td>
<td>536</td>
</tr>
<tr>
<td>VonNeumannTest</td>
<td>537</td>
</tr>
<tr>
<td>wdConst</td>
<td>538</td>
</tr>
<tr>
<td>Winsorize</td>
<td>539</td>
</tr>
<tr>
<td>WoolfTest</td>
<td>540</td>
</tr>
<tr>
<td>WrdCaption</td>
<td>541</td>
</tr>
<tr>
<td>WrdCellRange</td>
<td>542</td>
</tr>
<tr>
<td>WrdFont</td>
<td>543</td>
</tr>
<tr>
<td>WrdFormatCells</td>
<td>544</td>
</tr>
<tr>
<td>WrdInsertBookmark</td>
<td>546</td>
</tr>
<tr>
<td>WrdMergeCells</td>
<td>547</td>
</tr>
<tr>
<td>WrdPageBreak</td>
<td>548</td>
</tr>
</tbody>
</table>
DescTools-package

WrdParagraphFormat . 549
WrdPlot . 551
WrdSaveAs . 553
WrdStyle . 554
WrdTable . 555
WrdTableBorders . 556
XLDateToPOSIXct . 557
XLGetRange . 558
XLView . 560
Xplore . 563
YuenTTest . 564
ZeroIfNA . 566
Zodiac . 567
ZTest . 568
%like% . 570
%nin% . 571
%overlaps% . 572
%c% . 574

Index 575

DescTools-package

Description

DescTools is an extensive collection of miscellaneous basic statistics functions and comfort wrappers not available in the R basic system for efficient description of data. The author’s intention was to create a toolbox, which facilitates the (notoriously time consuming) first descriptive tasks in data analysis, consisting of calculating descriptive statistics, drawing graphical summaries and reporting the results. The package contains furthermore functions to produce documents using MS Word (or PowerPoint) and functions to import data from Excel.

A considerable part of the included functions can be found scattered in other packages and other sources written partly by Titans of R. The reason for collecting them here, was primarily to have them consolidated in ONE instead of dozens of packages (which themselves might depend on other packages which are not needed at all), and to provide a common and consistent interface as far as function and arguments naming, NA handling, recycling rules etc. are concerned. Google style guides were used as naming rules (in absence of convincing alternatives). The ’CamelStyle’ was consequently applied to functions borrowed from contributed R packages as well.

Feedback, feature requests, bugreports and other suggestions are welcome! Please report problems to Stack Overflow mentioning DescTools or directly to the maintainer.
Details

A grouped list of the functions:

Operators, calculus, transformations:

- `%()%` Between operators determine if a value lies within a range \([a,b]\)
- `%(%)` Outside operators: `%(%, %)[%, %][%, %]`
- `%nin%` "not in" operator
- `%overlaps%` Do two collections have common elements?
- `%like%, %like any%` Simple operator to search for a specified pattern
- `%%^%` Powers of matrices
- `Interval` The number of days of the overlapping part of two date periods
- `AUC` Area under the curve
- `Primes` Find all primes less than \(n\)
- `Factorize` Prime factorization of integers
- `Divisors` All divisors of an integer
- `GCD` Greatest common divisor
- `LCM` Least common multiple
- `Permn` Determine all possible permutations of a set
- `Fibonacci` Generates single Fibonacci numbers or a Fibonacci sequence
- `DigitSum` Digit sum of a number
- `Frac` Return the fractional part of a numeric value
- `Ndec` Count decimal places of a number
- `MaxDigits` Maximum used digits for a vector of numbers
- `Prec` Precision of a number
- `BoxCox, BoxCoxInv` Box Cox transformation and its inverse transformation
- `BoxCoxLambda` Return the optimal lambda for a BoxCox transformation
- `LogSt, LogStInv` Calculate started logarithmic transformation and its inverse
- `Logit, LogitInv` Generalized logit and inverse logit function
- `LinScale` Simple linear scaling of a vector \(x\)
- `Winsorize` Data cleaning by winsorization
- `Trim` Trim data by omitting outlying observations
- `CutQ` Cut a numeric variable into quartiles or other quantiles
- `Recode` Recode a factor with altered levels
- `Rename` Change name(s) of a named object
- `Sort` Sort extension for matrices and data.frames
- `SortMixed, OrderMixed` Mixed sort order
- `DenseRank` Calculate ranks in consecutive order (no ties)
- `PercentRank` Calculate the percent rank
- `RoundTo` Round to a multiple
- `Large, Small` Returns the \(k\)th largest, resp. smallest values
- `HighLow` Combines \texttt{Large} and \texttt{Small}
- `Rev` Reverses the order of rows and/or columns of a matrix or a data.frame
- `Untable` Recreates original list based on a \(n\)-dimensional frequency table
- `CollapseTable` Collapse some rows/columns in a table.
- `Dummy` Generate dummy codes for a factor
FisherZ, FisherZInv
Fisher’s z-transformation and its inverse
Midx
Calculate sequentially the midpoints of the elements of a vector
Unwhich
Inverse function to which, create a logical vector/matrix from indices
Vigenere
Implements a Vigenere cypher, both encryption and decryption
BinTree, PlotBinTree
Create and plot a binary tree structure with a given length

Information and manipulation functions:

- AllDuplicated
Find all values involved in ties
- Closest
Return the value in a vector being closest to a given one
- Coalesce
Return the first value in a vector not being NA
- ZerolNA, NAIfZero
Replace NAs by 0, resp. vice versa
- Impute
Replace NAs by the median or another value
- LOCF
Imputation of datapoints following the "last observation carried forward" rule
- CombN
Returns the number of subsets out of a list of elements
- CombSet
Generates all possible subsets out of a list of elements
- CombPairs
Generates all pairs out of one or two sets of elements
- SampleTwins
Create sample using stratifying groups
- RndPairs
Create pairs of correlated random numbers
- RndWord
Produce random combinations of characters
- IsNumeric
Check a vector for being numeric, zero Or a whole number
- IsWhole
Is x a whole number?
- IsDichotomous
Check if x contains exactly 2 values
- IsOdd
Is x even or odd?
- IsPrime
Is x a prime number?
- IsZero
Is numeric(x) == 0, say x < machine.eps?
- IsEuclid
Check if a distance matrix is euclidean
- Label, Unit
Get or set the label, resp. unit, attribute of an object
- Abind
Bind matrices to n-dimensional arrays
- Append
Append elements to several classes of objects
- VecRot, VecShift
Shift the elements of a vector in a circular mode to the right or to the left by n characters.
- Clockwise
Transform angles from counter clock into clockwise mode
- split.formula
A formula interface for the base function split
- reorder.factor
Reorder the levels of a factor
- ToLong, ToWide
Simple reshaping of a vector
- SetNames
Set the names, rownames or columnnames in an object and return it
- Some
Return some randomly chosen elements of an object
- SplitAt
Split a vector into several pieces at given positions
- SplitPath
Split a path string in drive, path, filename
- Str
Compactly display the structure of any R object
- TextToTable
Converts a string to a table

String functions:

- StrCountW
Count the words in a string
- StrTrim
Delete white spaces from a string
DescTools-package

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>StrTrunc</td>
<td>Truncate string on a given length and add ellipses if it really was truncated</td>
</tr>
<tr>
<td>StrLeft, StrRight</td>
<td>Returns the left/right part or the a string.</td>
</tr>
<tr>
<td>StrAlign</td>
<td>Align strings to the left/right/center or to a given character</td>
</tr>
<tr>
<td>StrAbbr</td>
<td>Abbreviates a string</td>
</tr>
<tr>
<td>StrCap</td>
<td>Capitalize the first letter of a string</td>
</tr>
<tr>
<td>StrPad</td>
<td>Fill a string with defined characters to fit a given length</td>
</tr>
<tr>
<td>StrRev</td>
<td>Reverse a string</td>
</tr>
<tr>
<td>StrChop</td>
<td>Split a string by a fixed number of characters.</td>
</tr>
<tr>
<td>StrExtract</td>
<td>Extract a part of a string, defined as regular expression.</td>
</tr>
<tr>
<td>StrVal</td>
<td>Extract numeric values from a string</td>
</tr>
<tr>
<td>StrIsNumeric</td>
<td>Check whether a string does only contain numeric data</td>
</tr>
<tr>
<td>StrPos</td>
<td>Find position of first occurrence of a string in another one</td>
</tr>
<tr>
<td>StrDist</td>
<td>Compute Levenshtein or Hamming distance between strings</td>
</tr>
<tr>
<td>FixToTable</td>
<td>Create table out of a running text, by using columns of spaces as delimiter</td>
</tr>
</tbody>
</table>

Conversion functions:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AscToChar, CharToAsc</td>
<td>Converts ASCII codes to characters and vice versa</td>
</tr>
<tr>
<td>DecToBin, BinToDec</td>
<td>Converts numbers from binmode to decimal and vice versa</td>
</tr>
<tr>
<td>DecToHex, HexToDec</td>
<td>Converts numbers from hexmode to decimal and vice versa</td>
</tr>
<tr>
<td>DecToOct, OctToDec</td>
<td>Converts numbers from octmode to decimal and vice versa</td>
</tr>
<tr>
<td>DegToRad, RadToDeg</td>
<td>Convert degrees to radians and vice versa</td>
</tr>
<tr>
<td>CartToPol, PolToCart</td>
<td>Transform cartesian to polar coordinates and vice versa</td>
</tr>
<tr>
<td>CartToSph, SphToCart</td>
<td>Transform cartesian to spherical coordinates and vice versa</td>
</tr>
<tr>
<td>RomanToInt</td>
<td>Convert roman numerals to integers</td>
</tr>
<tr>
<td>RgbToLong, LongToRgb</td>
<td>Convert a rgb color to a long number and vice versa</td>
</tr>
<tr>
<td>ColToGray, ColToGrey</td>
<td>Convert colors to ggrey/grayscale</td>
</tr>
<tr>
<td>ColToHex, HexToCol</td>
<td>Convert a color into hex string</td>
</tr>
<tr>
<td>HexToRgb</td>
<td>Convert a hexnumber to an RGB-color</td>
</tr>
<tr>
<td>ColToHsv</td>
<td>R color to HSV conversion</td>
</tr>
<tr>
<td>ColToRgb, RgbToCol</td>
<td>Color to RGB conversion and back</td>
</tr>
<tr>
<td>ConvUnit</td>
<td>Return the most common unit conversions</td>
</tr>
</tbody>
</table>

Colors:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SetAlpha</td>
<td>Add transperancy (alpha channel) to a color.</td>
</tr>
<tr>
<td>ColorDlg</td>
<td>Display the system’s color dialog to choose a color</td>
</tr>
<tr>
<td>ColPicker</td>
<td>Display R colors in a dialog including a locator for selection</td>
</tr>
<tr>
<td>ColorLegend</td>
<td>Add a color legend to a plot</td>
</tr>
<tr>
<td>FindColor</td>
<td>Get color on a defined color range</td>
</tr>
<tr>
<td>MixColor</td>
<td>Get the mix of two colors</td>
</tr>
<tr>
<td>TextContrastColor</td>
<td>Choose textcolor depending on background color</td>
</tr>
<tr>
<td>Pal</td>
<td>Some custom color palettes</td>
</tr>
</tbody>
</table>

Plots (low level):

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canvas</td>
<td>Canvas for geometric plotting</td>
</tr>
</tbody>
</table>
DescTools-package

Mar
Asp
LineToUser
lines.loess
lines.smooth.spline
BubbleLegend
TitleRect
BarText
ErrBars
DrawArc, DrawRegPolygon
DrawCircle, DrawEllipse
DrawBezier
DrawBand
BoxedText
Rotate
SpreadOut
IdentifyA
identify.formula
PtnPoly
ConnLines
AxisBreak
Shade
Stamp

Plots (high level):
PlotACF, PlotGACF
PlotMonth
PlotArea
PlotBag
PlotBagPairs
PlotBubble
PlotCandlestick
PlotCirc
PlotCorr
PlotDot
PlotFaces
PlotFdist
PlotMarDens
PlotMultiDens
PlotPolar
PlotFun
PolarGrid

Set margins more comfortably.
Return aspect ratio of the current plot
Convert line coordinates to user coordinates
Add a loess smoother and its CIs to an existing plot
Add the prediction of linear model and its CIs to a plot
Add the prediction of a smooth.spline and its CIs to a plot
Add a legend for bubbles to a bubble plot
Add a main title to a plot surrounded by a rectangular box
Add the value labels to a barplot
Add horizontal or vertical error bars to an existing plot
Draw elliptic, circular arc(s) or regular polygon(s)
Draw a circle, a circle annulus or a sector or an annulus
Draw a Bezier curve
Draw confidence band
Add text surrounded by a box to a plot
Rotate a geometric structure
Spread out a vector of numbers so that there is a minimum
interval between any two elements. This can be used
to place textlabels in a plot so that they do not overlap.
Helps identifying all the points in a specific area.
Formula interface for identify.
Identify all the points within a polygon.
Calculate and insert connecting lines in a barplot
Place a break mark on an axis
Produce a shaded curve
Stamp the current plot with Date/Time/Directory or any other expression

Create a combined plot of a time series including its
autocorrelation and partial autocorrelation
Plot seasonal effects of a univariate time series
Create an area plot
Create a two-dimensional boxplot
Produce pairwise 2-dimensional boxplots (bagplot)
Draw a bubble plot
Plot candlestick chart
Create a circular plot
Plot a correlation matrix
Plot a dotchart with confidence intervals
Produce a plot of Chernoff faces
Frequency distribution plot, combination of histogram,
boxplot and ecdf.plot
Scatterplot with marginal densities
Plot multiple density curves
Plot values on a circular grid
Plot mathematical expression or a function
Plot a grid in polar coordinates
PlotPyramid
PlotTreemap
PlotVenn
PlotViolin
PlotQQ
PlotWeb
PlotTernary
PlotMiss
PlotDev
PlotECDF
PlotLinesA
PlotLog
PlotMosaic

Distributions:
 _Benf Benford distribution, including qBenf, dBenf, rBenf
 _ExtrVal Extreme value distribution (dExtrVal)
 _Frechet Frechet distribution (dFrechet)
 _GenExtrVal Generalized Extreme Value Distribution (dGenExtrVal)
 _GenPareto Generalized Pareto Distribution (dGenPareto)
 _Gompertz Gompertz distribution (dGompertz)
 _Gumbel Gumbel distribution (dGumbel)
 _NegWeibull Negative Weibull distribution (dNegWeibull)
 _Order Distributions of Order Statistics (dOrder)
 _RevGumbel Reverse Gumbel distribution (dRevGumbel),
 _RevGumbelExp Expontial reverse Gumbel distribution (quantile only)
 _RevWeibull Reverse Weibull distribution (dRevWeibull)

Statistics:
 Freq Univariate frequency table
 PercTable Bivariate percentage table
 Margins (Extended) margin tables of a table
 ExpFreq Expected frequencies of a n-dimensional table
 Mode Mode, the most frequent value
 Gmean, Gsd Geometric mean and geometric standard deviation
 Hmean Harmonic Mean
 Median Extended median function supporting weights and ordered factors
 HuberM, TukeyBiweight Huber M-estimator of location and Tukey’s biweight robust mean
 HodgesLehmann the Hodges-Lehmann estimator
 HoeffD Hoeffding’s D statistic
 MeanSE Standard error of mean
 MeanCI, MedianCI Confidence interval for the mean and median
 MeanDiffCI Confidence interval for the difference of two means
 MoveAvg Moving average
 MeanAD Mean absolute deviation
 VarCI Confidence interval for the variance
DescTools-package

- CoefVar: Coefficient of variation and its confidence interval
- RobScale: Robust data standardization
- Range: (Robust) range
- BinomCI, MultinomCI: Confidence intervals for binomial and multinomial proportions
- BinomDiffCI: Calculate confidence interval for a risk difference
- BinomRatioCI: Calculate confidence interval for the ratio of binomial proportions.
- PoissonCI: Confidence interval for a Poisson lambda
- Skew, Kurt: Skewness and kurtosis
- YuleQ, YuleY: Yule’s Q and Yule’s Y
- TschuprowT: Tschuprow’s T
- Phi, ContCoef, CramerV: Phi, Pearson’s Contingency Coefficient and Cramer’s V
- GoodmanKruskalGamma: Goodman Kruskal’s gamma
- KendallTauA: Kendall’s tau-a
- KendallTauB: Kendall’s tau-b
- StuartTauC: Stuart’s tau-c
- SomersDelta: Somers’ delta
- Lambda: Goodman Kruskal’s lambda
- GoodmanKruskalTau: Goodman Kruskal’s tau
- UncertCoef: Uncertainty coefficient
- Entropy, MutInf: Shannon’s entropy, mutual information
- DivCoef, DivCoefMax: Rao’s diversity coefficient (“quadratic entropy”)
- TheilU: Theil’s U1 and U2 coefficient
- Assocs: Combines the association measures above.
- OddsRatio, RelRisk: Odds ratio and relative risk
- ORToRelRisk: Transform odds ratio to relative risk
- CohenKappa, KappaM: Cohen’s Kappa, weighted Kappa and Kappa for more than 2 raters
- CronbachAlpha: Cronbach’s alpha
- ICC: Intraclass correlations
- KrippAlpha: Return Kripp’s alpha coefficient
- KendallW: Compute the Kendall coefficient of concordance
- Lc: Calculate and plot Lorenz curve
- Gini, Atkinson: Gini- and Atkinson coefficient
- Herfindahl, Rosenbluth: Herfindahl- and Rosenbluth coefficient
- GiniSimpson: Compute Gini-Simpson Coefficient
- CorCI: Confidence interval for Pearson’s correlation coefficient
- CorPart: Find the correlations for a set x of variables with set y removed
- CorPolychor: Polychoric correlation coefficient
- SpearmanRho: Spearman rank correlation and its confidence intervals
- ConDisPairs: Return concordant and discordant pairs of two vectors
- FindCorr: Determine highly correlated variables
- CohenD: Cohen’s Effect Size
- EtaSq: Effect size calculations for ANOVAs
- Contrasts: Generate pairwise contrasts for using in a post-hoc test
- Strata: Stratified sampling with equal/unequal probabilities
- Outlier: Outliers following Tukey’s boxplot definition
- LOF: Local outlier factor
- BrierScore: Brier score, assessing the quality of predictions of binary events
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cstat</td>
<td>C statistic, equivalent to the area under the ROC curve)</td>
</tr>
<tr>
<td>CCC</td>
<td>Lin’s concordance correlation coef for agreement on a continuous measure</td>
</tr>
<tr>
<td>MAE</td>
<td>Mean absolute error</td>
</tr>
<tr>
<td>MAPE, SMAPE</td>
<td>Mean absolute and symmetric mean absolute percentage error</td>
</tr>
<tr>
<td>MSE, RMSE</td>
<td>Mean squared error and root mean squared error</td>
</tr>
<tr>
<td>NMAE, NMSE</td>
<td>Normalized mean absolute and mean squared error</td>
</tr>
<tr>
<td>Conf</td>
<td>Confusion matrix, a cross-tabulation of observed and predicted classes with associated statistics</td>
</tr>
<tr>
<td>Sens, Spec</td>
<td>Sensitivity and specificity</td>
</tr>
<tr>
<td>PseudoR2</td>
<td>Variants of pseudo R squared statistics: McFadden, Aldrich-Nelson, Nagelkerke, CoxSnell, Effron, McKelvey-Zavoina, Tjur</td>
</tr>
<tr>
<td>Mean, SD, Var</td>
<td>Variants of base statistics, allowing to define weights: Mean, standard deviation, variance, quantile, mad, correlation</td>
</tr>
<tr>
<td>Quantile, MAD, Cor</td>
<td>Variance inflation factors and standardised coefficients for linear models</td>
</tr>
<tr>
<td>VIF, StdCoef</td>
<td></td>
</tr>
</tbody>
</table>

Tests:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SignTest</td>
<td>Sign test to test whether two groups are equally sized</td>
</tr>
<tr>
<td>ZTest</td>
<td>Z–test for known population variance</td>
</tr>
<tr>
<td>TTestA</td>
<td>Student’s t-test based on sample statistics</td>
</tr>
<tr>
<td>JonckheereTerpstraTest</td>
<td>Jonckheere-Terpstra trend test for medians</td>
</tr>
<tr>
<td>PageTest</td>
<td>Page test for ordered alternatives</td>
</tr>
<tr>
<td>CochranQTest</td>
<td>Cochran’s Q-test to find differences in matched sets of three or more frequencies or proportions.</td>
</tr>
<tr>
<td>VarTest</td>
<td>ChiSquare test for one variance and F test for two variances</td>
</tr>
<tr>
<td>SiegelTukeyTest</td>
<td>Siegel-Tukey test for equality in variability</td>
</tr>
<tr>
<td>SiegelTukeyRank</td>
<td>Calculate Siegel-Tukey’s ranks (auxiliary function)</td>
</tr>
<tr>
<td>LeveneTest</td>
<td>Levene’s test for homogeneity of variance</td>
</tr>
<tr>
<td>MosesTest</td>
<td>Moses Test of extreme reactions</td>
</tr>
<tr>
<td>RunsTest</td>
<td>Runs test for detecting non-randomness</td>
</tr>
<tr>
<td>DurbinWatsonTest</td>
<td>Durbin-Watson test for autocorrelation</td>
</tr>
<tr>
<td>BartelsRankTest</td>
<td>Bartels rank test for randomness</td>
</tr>
<tr>
<td>JarqueBeraTest</td>
<td>Jarque-Bera Test for normality</td>
</tr>
<tr>
<td>AndersonDarlingTest</td>
<td>Anderson-Darling test for normality</td>
</tr>
<tr>
<td>CramerVonMisesTest</td>
<td>Cramer-von Mises test for normality</td>
</tr>
<tr>
<td>LillieTest</td>
<td>Lilliefors (Kolmogorov-Smirnov) test for normality</td>
</tr>
<tr>
<td>PearsonTest</td>
<td>Pearson chi-square test for normality</td>
</tr>
<tr>
<td>ShapiroFranceaTest</td>
<td>Shapiro-Francia test for normality</td>
</tr>
<tr>
<td>MHChisqTest</td>
<td>Mantel-Haenszel Chisquare test</td>
</tr>
<tr>
<td>StuartMaxwellTest</td>
<td>Stuart-Maxwell marginal homogeneity test</td>
</tr>
<tr>
<td>LehmacherTest</td>
<td>Lehmacher marginal homogeneity test</td>
</tr>
<tr>
<td>CochranArmitageTest</td>
<td>Cochran-Armitage test for trend in binomial proportions</td>
</tr>
<tr>
<td>BreslowDayTest, WoolfTest</td>
<td>Test for homogeneity on 2x2xk tables over strata</td>
</tr>
<tr>
<td>PostHocTest</td>
<td>Post hoc tests by Scheffe, LSD, Tukey for a aov-object</td>
</tr>
<tr>
<td>ScheffeTest</td>
<td>Multiple comparisons Scheffe test</td>
</tr>
<tr>
<td>DunnTest</td>
<td>Dunn’s test of multiple comparisons</td>
</tr>
<tr>
<td>DunnettTest</td>
<td>Dunnett’s test of multiple comparisons</td>
</tr>
<tr>
<td>ConoverTest</td>
<td>Conover’s test of multiple comparisons (following a kruskal test)</td>
</tr>
</tbody>
</table>
DescTools-package

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NemenyiTest</td>
<td>Nemenyi’s test of multiple comparisons</td>
</tr>
<tr>
<td>HotellingsT2Test</td>
<td>Hotelling’s T2 test for the one and two sample case</td>
</tr>
<tr>
<td>YuenTTest</td>
<td>Yuen’s robust t-Test with trimmed means and winsorized variances</td>
</tr>
<tr>
<td>BarnardTest</td>
<td>Barnard’s test for 2x2 tables</td>
</tr>
<tr>
<td>BreuschGodfreyTest</td>
<td>Breusch-Godfrey test for higher-order serial correlation.</td>
</tr>
<tr>
<td>GTest</td>
<td>Chi-squared contingency table test and goodness-of-fit test</td>
</tr>
<tr>
<td>HosmerLemeshowTest</td>
<td>Hosmer-Lemeshow goodness of fit tests</td>
</tr>
<tr>
<td>VonNeumannTest</td>
<td>Von Neumann’s successive difference test</td>
</tr>
</tbody>
</table>

Date functions:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>day.name, day.abb</td>
<td>Defined names of the days</td>
</tr>
<tr>
<td>AddMonths, AddMonthsYM</td>
<td>Add a number of months to a given date</td>
</tr>
<tr>
<td>IsDate</td>
<td>Check whether x is a date object</td>
</tr>
<tr>
<td>IsWeekend</td>
<td>Check whether x falls on a weekend</td>
</tr>
<tr>
<td>IsLeapYear</td>
<td>Check whether x is a leap year</td>
</tr>
<tr>
<td>LastDayOfMonth</td>
<td>Return the last day of the month of the date x</td>
</tr>
<tr>
<td>DiffDays360</td>
<td>Calculate the difference of two dates using the 360-days system</td>
</tr>
<tr>
<td>Date</td>
<td>Create a date from numeric representation of year, month, day</td>
</tr>
<tr>
<td>Day, Month, Year</td>
<td>Extract part of a date</td>
</tr>
<tr>
<td>Hour, Minute, Second</td>
<td>Extract part of time</td>
</tr>
<tr>
<td>Week, Weekday</td>
<td>Returns ISO week and weekday of a date</td>
</tr>
<tr>
<td>Quarter</td>
<td>Quarter of a date</td>
</tr>
<tr>
<td>Timezone</td>
<td>Timezone of a POSIXct/POSIXlt date</td>
</tr>
<tr>
<td>YearDay, YearMonth</td>
<td>The day in the year of a date</td>
</tr>
<tr>
<td>Now, Today</td>
<td>Get current date or date-time</td>
</tr>
<tr>
<td>HmsToSec, SecToHms</td>
<td>Convert h:m:s times to seconds and vice versa</td>
</tr>
<tr>
<td>Overlap</td>
<td>Determine if and how extensively two date ranges overlap</td>
</tr>
</tbody>
</table>
| Zodiac | The zodiac sign of a date :-|)

Finance functions:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPR</td>
<td>One period returns (simple and log returns)</td>
</tr>
<tr>
<td>NPV</td>
<td>Net present value</td>
</tr>
<tr>
<td>NPVFixBond</td>
<td>Net present value for fix bonds</td>
</tr>
<tr>
<td>IRR</td>
<td>Internal rate of return</td>
</tr>
<tr>
<td>YTM</td>
<td>Return yield to maturity for a bond</td>
</tr>
<tr>
<td>SLN, DB, SYD</td>
<td>Several methods of depreciation of an asset</td>
</tr>
</tbody>
</table>

GUI-Helpers:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FileOpenCmd</td>
<td>Get path of a data file to be opened</td>
</tr>
<tr>
<td>ImportFileDlg</td>
<td>Dialog for importing SPSS, Stata, SAS, Minitab or Systat files</td>
</tr>
<tr>
<td>SaveAsDlg</td>
<td>Save a data object by dialog</td>
</tr>
<tr>
<td>ModelDlg</td>
<td>Helps to compose a model formula in a dialog</td>
</tr>
<tr>
<td>SelectVarDlg</td>
<td>Select elements of a set by click</td>
</tr>
<tr>
<td>PasswordDlg</td>
<td>Display a dialog containing an edit field, showing only ***.</td>
</tr>
<tr>
<td>PlotPar</td>
<td>Display the R plot parameters in a dialog</td>
</tr>
</tbody>
</table>
PlotPch
Xplore

Reporting, InOut:
CatTable
Format, Fmt
Desc
Abstract
TMod
TOne
GetNewWrd, GetNewXL, GetNewPP
GetCurrWrd, GetCurrXL, GetCurrPP
WrdKill, XLKill
IsValidWrd
WrdCaption
WrdFont
WrdParagraphFormat
WrdTable
WrdCellRange
WrdMergeCells
WrdFormatCells
WrdTableBorders
ToWrd, ToXL
WrdPlot
WrdInsertBookmark
WrdGoto
WrdUpdateBookmark
WrdSaveAs
WrdStyle
XLDateToPOSIXct
XLGetRange
XLGetWorkbook
XLView
PpPlot
PpAddSlide
PpText
ParseSASDatalines

Tools:
PairApply
LsFct, LsObj
FctArgs
InDots
ParseFormula
Recycle
Keywords

Plot point characters for information
A breeze of interactive plotting

Print a table with the option to have controlled linebreaks
Easy format for numbers and dates
Produce a rich description of an object
Display compact overview of the structure of a data frame
Create comparison table for (general) linear models
Create "Table One" describing baseline characteristics
Create a new Word, Excel or PowerPoint Instance
Get a handle to a running Word, Excel or PowerPoint instance
Ends a (possibly hidden) Word/Excel process
Check if the handle to a Word instance is valid or outdated
Insert a title in Word
Get and set the font for the current selection in Word
Get and set the paragraph format
Create a table in Word
Select a cell range of a table in Word
Merge cells of a table in Word
Format selected cells of a table in word
Set or edit table border style of a table in Word
Mord flexible wrapper to send diverse objects to Word, resp. Excel
Insert the active plot to Word
Insert a new bookmark in a Word document
Place cursor to a specific bookmark, or another text position.
Update the text of a bookmark’s range
Saves documents in Word
Get and set the style of a paragraph in Word
Convert XL-Date format to POSIXct format
Get the values of one or several cell range(s) in Excel
Get the values of all sheets of an Excel workbook
Use Excel as viewer for a data.frame
Insert active plot to PowerPoint
Adds a slide to a PowerPoint presentation
Adds a textbox with text to a PP-presentation
Parse a SAS "datalines" statement to read data

Helper for calculating functions pairwise
List the functions (or the data, all objects) of a package
Retrieve the arguments of a functions
Check if an argument is contained in … argument and return it's value
Parse a formula and return the splitted parts of if
Recycle a list of elements to the maximal found dimension
Get the keywords of a man page
SysInfo
DescToolsOptions
PDFManual

Get some more information about system and environment
Get the DescTools specific options
Get the pdf-manual of any package on CRAN and open it

Data:
d.pizza
 Synthetic dataset created for testing the description
 of Scotch Single Malts
d.whisky

Reference Data:
d.units, d.prefix
 Unit conversion factors and metric prefixes
d.periodic
 Periodic table of elements
d.countries
 ISO 3166-1 country codes
roulette, cards, tarot
 Datasets for probabilistic simulation

Warning
This package is still under development. Although the code seems meanwhile quite stable, until release of version 1.0 (which is expected in hmm: spring 2019? ... you don’t believe it anymore?) you should be aware that everything in the package might be subject to change. Backward compatibility is not yet guaranteed. Functions may be deleted or renamed and new syntax may be inconsistent with earlier versions. By release of version 1.0 the "deprecated-defunct process" will be installed.

MS-Office
To make use of MS-Office features you must have Office in one of its variants installed. All Wrd*, XL* and Pp* functions require as well the package RDCOMClient to be installed. Hence the use of these functions is restricted to Windows systems. RDCOMClient can be installed with:
install.packages("RDCOMClient", repos="http://www.omegahat.net/R")
RDCOMClient does not exist for Mac or Linux, sorry.

Author(s)
Andri Signorell
Helsana Versicherungen AG, Health Sciences, Zurich
HWZ University of Applied Sciences in Business Administration Zurich.

R is a community project. This can be seen from the fact that this package includes R source code and/or documentation previously published by (in alphabetical order):

Abind

Special thanks go to Beat Bruengger, Mathias Frueh, Daniel Wollschlaeger for their valuable contributions and testing.

The good things come from all these guys, any problems are likely due to my tweaking. Thank you all!

Maintainer: Andri Signorell <andri@signorell.net>

Examples

```r
# ********************************************************************************
# There are no examples defined here. But see the demos:
#
# demo(describe)
# demo(plots))
```

Abind

Combine Multidimensional Arrays

Description

Base R functions `cbind` and `rbind` bind columns and rows, but there’s no built-in function for binding higher dimensional data structures like matrices. *Abind* takes a sequence of vectors, matrices, or arrays and produces a single array of the same or higher dimension.

Usage

```r
Abind(..., along = N, rev.along = NULL, new.names = NULL, force.array = TRUE,
      make.names = FALSE, use.first.dimnames = FALSE, hier.names = FALSE,
      use.dnns = FALSE)
```
Arguments

... Any number of vectors, matrices, arrays, or data frames. The dimensions of all the arrays must match, except on one dimension (specified by along=). If these arguments are named, the name will be used for the name of the dimension along which the arrays are joined. Vectors are treated as having a dim attribute of length one.

Alternatively, there can be one (and only one) list argument supplied, whose components are the objects to be bound together. Names of the list components are treated in the same way as argument names.

along The dimension along which to bind the arrays. The default is the last dimension, i.e., the maximum length of the dim attribute of the supplied arrays. along= can take any non-negative value up to the minimum length of the dim attribute of supplied arrays plus one. When along= has a fractional value, a value less than 1, or a value greater than N (N is the maximum of the lengths of the dim attribute of the objects to be bound together), a new dimension is created in the result. In these cases, the dimensions of all arguments must be identical.

rev.along Alternate way to specify the dimension along which to bind the arrays: along = N + 1 - rev.along. This is provided mainly to allow easy specification of along = N + 1 (by supplying rev.along=0). If both along and rev.along are supplied, the supplied value of along is ignored.

new.names If new.names is a list, it is the first choice for the dimnames attribute of the result. It should have the same structure as a dimnames attribute. If the names for a particular dimension are NULL, names for this dimension are constructed in other ways.

If new.names is a character vector, it is used for dimension names in the same way as argument names are used. Zero length (""") names are ignored.

force.array If FALSE, rbind or cbind are called when possible, i.e., when the arguments are all vectors, and along is not 1, or when the arguments are vectors or matrices or data frames and along is 1 or 2. If rbind or cbind are used, they will preserve the data.frame classes (or any other class that r/cbind preserve). Otherwise, Abind will convert objects to class array. Thus, to guarantee that an array object is returned, supply the argument force.array=TRUE. Note that the use of rbind or cbind introduces some subtle changes in the way default dimension names are constructed: see the examples below.

make.names If TRUE, the last resort for dimnames for the along dimension will be the deparsed versions of anonymous arguments. This can result in cumbersome names when arguments are expressions.
<cp>The default is FALSE.

use.first.dimnames When dimension names are present on more than one argument, should dimension names for the result be take from the first available (the default is to take them from the last available, which is the same behavior as rbind and cbind.)

hier.names If TRUE, dimension names on the concatenated dimension will be composed of the argument name and the dimension names of the objects being bound. If a single list argument is supplied, then the names of the components serve as the argument names. hier.names can also have values "before" or "after"; these
Abind

determine the order in which the argument name and the dimension name are put together (TRUE has the same effect as "before").

use.dnns
(default FALSE) Use names on dimensions, e.g., so that names(dimnames(x)) is non-empty. When there are multiple possible sources for names of dimnames, the value of use.first.dnns determines the result.

Details

The dimensions of the supplied vectors or arrays do not need to be identical, e.g., arguments can be a mixture of vectors and matrices. Abind coerces arguments by the addition of one dimension in order to make them consistent with other arguments and along=. The extra dimension is added in the place specified by along=.

The default action of Abind is to concatenate on the last dimension, rather than increase the number of dimensions. For example, the result of calling Abind with vectors is a longer vector (see first example below). This differs from the action of rbind and cbind which is to return a matrix when called with vectors. Abind can be made to behave like cbind on vectors by specifying along=2, and like rbind by specifying along=0.

The dimnames of the returned object are pieced together from the dimnames of the arguments, and the names of the arguments. Names for each dimension are searched for in the following order: new.names, argument name, dimnames (or names) attribute of last argument, dimnames (or names) attribute of second last argument, etc. (Supplying the argument use.first.dnns=TRUE changes this to cause Abind to use dimnames or names from the first argument first. The default behavior is the same as for rbind and cbind: use dimnames from later arguments.) If some names are supplied for the along dimension (either as argument names or dimnames in arguments), names are constructed for anonymous arguments unless makenames=FALSE.

Value

An array with a dim attribute calculated as follows.

Let \(r_{\text{Min}} = \min(\text{sapply}(\text{list}(\ldots), \text{function}(x) \text{ length}(\text{dim}(x)))) \) and \(r_{\text{Max}} = \max(\text{sapply}(\text{list}(\ldots), \text{function}(x) \text{ length}(\text{dim}(x)))) \) (where the length of the dimensions of a vector are taken to be 1). Then \(r_{\text{Max}} \) should be equal to or one greater than \(r_{\text{Min}} \).

If along refers to an existing dimension, then the length of the dim attribute of the result is \(r_{\text{Max}} \). If along does not refer to an existing dimension, then \(r_{\text{Max}} \) should equal \(r_{\text{Min}} \) and the length of the dim attribute of the result will be \(r_{\text{Max}}+1 \).

rbind or cbind are called to compute the result if (a) force.array=FALSE; and (b) the result will be a two-dimensional object.

Note

It would be nice to make Abind() an S3 generic, but S3 generics cannot dispatch off anonymous arguments.

The ability of Abind() to accept a single list argument removes much of the need for constructs like do.call("Abind", list.of.arrays). Instead, just do Abind(list.of.arrays). The direct construct is preferred because do.call() construct can sometimes consume more memory during evaluation.
Author(s)

Tony Plate <tplate@acm.org> and Richard Heiberger

See Also

rbind, cbind, array

Examples

Five different ways of binding together two matrices
x <- matrix(1:12, 3, 4)
y <- x + 100
dim(Abind(x, y, along=0)) # binds on new dimension before first
dim(Abind(x, y, along=1)) # binds on first dimension
dim(Abind(x, y, along=1.5))
dim(Abind(x, y, along=2))
dim(Abind(x, y, along=3))
dim(Abind(x, y, rev.along=1)) # binds on last dimension
dim(Abind(x, y, rev.along=0)) # binds on new dimension after last

Unlike cbind or rbind in that the default is to bind
along the last dimension of the inputs, which for vectors
means the result is a vector (because a vector is
treated as an array with length(dim(x))==1).
Abind(x=1:4, y=5:8)

Like cbind
Abind(x=1:4, y=5:8, along=2)
Abind(x=1:4, matrix(5:20, nrow=4), along=2)
Abind(1:4, matrix(5:20, nrow=4), along=2)

Like rbind
Abind(x=1:4, matrix(5:20, nrow=4), along=1)
Abind(1:4, matrix(5:20, nrow=4), along=1)

Create a 3-d array out of two matrices
Abind(x=matrix(1:16, nrow=4), y=matrix(17:32, nrow=4), along=3)

Use of hier.names
Abind(x=cbind(a=1:3, b=4:6), y=cbind(a=7:9, b=10:12), hier.names=TRUE)

Use a list argument
Abind(list(x=x, y=x), along=3)
Use lapply(...) get to get the objects
an <- c('x', 'y')
names(an) <- an
Abind(lapply(an, get), along=3)
Abstract

Display Compact Abstract of a Data Frame

Description

Compactly display the content and structure of a data.frame, including variable labels. `str` is optimised for lists and its output is relatively technical, when it comes to e.g. attributes. `summary` on the other side already calculates some basic statistics.

Usage

Abstract(x, sep = "", zero.form = ".", maxlevels = 5, trunc = TRUE, list.len = 999)

Arguments

- **x** a data.frame to be described
- **sep** the separator for concatenating the levels of a factor
- **zero.form** a symbol to be used, when a variable has zero NAs.
- **maxlevels** integer, defining how many factor levels are to be displayed. Default is 12. Set this to Inf, if all levels are needed.
- **trunc** logical, defining if level names exceeding the column with should be truncated. Default is TRUE.
- **list.len** numeric; maximum number of list elements to display.

Details

The levels of a factor and describing variable labels (as created by `Label`) will be wrapped within the columns.

The first 4 columns are printed with the needed fix width, the last 2 (Levels and Labels) are wrapped within the column. The width is calculated depending on the width of the screen as given by `getOption("width").`

ToWord has an interface for the class `abstract`.

Value

an object of class `abstract`, essentially a character matrix with 5 or 6 columns containing a sequential nr (Nr), the name of the column (ColName), the class (Class), the number of NAs (NAs), the levels if the variable is a factor (Levels) and - if there are any - descriptive labels for the column (Labels).

Author(s)

Andri Signorell <andri@signorell.net>
AddMonths

See Also

str, summary, ColumnWrap

Examples

d.mydata <- d.pizza
let's use some labels
Label(d.mydata) <- "Lorem ipsum dolor sit amet, consetetur sadipscing elitr,
sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat,
sed diam voluptua. At vero eos et accusam."

Label(d.mydata$temperature) <- "Amet, consetetur sadipscing elitr, sed diam nonumy "

Abstract(d.mydata)

AddMonths

Description

Clueless adding numbers of months to a date will in some cases lead to invalid dates, think of e.g. 2012-01-30 + 1 month. AddMonths ensures that the result is always a valid date, e.g. as.Date("2013-01-31") + 1 month will be "2013-02-28". If number n is negative, the months will be subtracted.

Usage

AddMonths(x, n, ...)

Arguments

x a Date object (or something which can be coerced by as.Date(x,...) to such an object) to which a number of months has to be added.

n the number of months to be added. If n is negative the months will be subtracted.

... the dots are passed to as.Date, e.g. for supplying origin.

Details

All parameters will be recycled if necessary.

Value

a vector of class Date with the same dimension as x, containing the transformed dates.

Author(s)

Andri Signorell <andri@signorell.net>, based on code by Roland Rapold and Antonio
AddMonthsYM

References

Thanks to Antonio: http://stackoverflow.com/questions/14169620/add-a-month-to-a-date

See Also

AddMonthsYM; Date functions: Year, Month, etc.

Examples

characters will be coerced to Date
AddMonths("2013-01-31", 1)

negative n
AddMonths(as.Date("2013-03-31"), -1)

Arguments will be recycled
(with warning if the longer is not a multiple of length of shorter)
AddMonths(c("2013-01-31", "2013-03-31", "2013-10-31", "2013-12-31"), c(1,-1))

x <- as.POSIXct(c("2015-01-31", "2015-08-31"))
n <- c(1, 3)
AddMonths(x, n)

mind the origin if x supplied as numeric ...
x <- as.numeric(as.Date(x))
AddMonths(x, n, origin=as.Date("1970-01-01"))

AddMonthsYM Add a Month to a Date in YearMonth Format

Description

The representation of year and month information in YYYYYMM format as an integer is sometimes a useful and efficient data structure. Adding a number of months to such a date is not quite catchy, however, since the date structure is to be retained. For example, 201201 - 2 [months] is expected to result in 201111 instead of 201199. AddMonthsYM does this job.

Usage

AddMonthsYM(x, n)

Arguments

x a vector of integers, representing the dates in the format YYYYYMM, to which a number of months has to be added.

n the number of months to be added. If n is negative the months will be subtracted.
Details

All parameters will be recycled if necessary. The therefore used function `mapply` will display a warning, if the longer argument is not a multiple of the length of the shorter one.

Value

a vector of class `integer` with the same dimension as `x`, containing the transformed dates.

Author(s)

Andri Signorell <andri@signorell.net>, based on code by Roland Rapold

See Also

`AddMonths`; Date functions, like `Year`, `Month`, etc.

Examples

```r
AddMonthsYM(201511, 5)
AddMonthsYM(c(201511, 201302), c(5, 15))
AddMonthsYM(c(201511, 201302), c(5, -4))
```

Agree

Raw Simple And Extended Percentage Agreement

Description

Computes raw simple and extended percentage agreement among raters.

Usage

```r
Agree(x, tolerance = 0, na.rm = FALSE)
```

Arguments

- `x` a data.frame or a `k × m` matrix, `k` subjects (in rows) `m` raters (in columns).
- `tolerance` number of successive rating categories that should be regarded as rater agreement (see details).
- `na.rm` logical, indicating whether NA values should be stripped before the computation proceeds. If set to TRUE only the complete cases of the ratings will be used. Defaults to FALSE.

Details

Using extended percentage agreement (`tolerance != 0`) is only possible for numerical values. If tolerance equals 1, for example, raters differing by one scale degree are interpreted as agreeing.
Value

numeric value of coefficient of interrater reliability

The number of finally (potentially after omitting missing values) used subjects and raters are returned as attributes:

subjects the number of subjects examined.
raters the number of raters.

Author(s)

Matthias Gamer <m.gamer@uke.uni-hamburg.de>, some editorial amendments Andri Signorell <andri@signorell.net>

See Also

CohenKappa, KappaM

Examples

categ <- c("V", "N", "P")
lvls <- factor(categ, levels=categ)
trr1 <- rep(lvls, c(60, 30, 10))
trr2 <- rep(rep(lvls, nlevels(lvls)), c(53, 5, 2, 11, 14, 5, 1, 6, 3))
trr3 <- rep(rep(lvls, nlevels(lvls)), c(48, 8, 3, 15, 10, 7, 3, 4, 2))

Agree(cbind(trr1, trr2)) # Simple percentage Agreement
Agree(data.frame(trr1, trr2)) # can be a data.frame
Agree(cbind(trr1, trr2, trr3)) # Simple percentage Agreement

Agree(cbind(trr1, trr2, 1)) # Extended percentage Agreement

AllDuplicated

Index Vector of All Values Involved in Ties

Description

The function duplicated returns a logical vector indicating which elements x are duplicates, but will not include the very first appearance of subsequently duplicated elements. AllDuplicated returns an index vector of ALL the values in x which are involved in ties. So !AllDuplicated can be used to determine all elements of x, which appear exactly once (thus with frequency 1).

Usage

AllDuplicated(x)
Arguments

x vector of any type.

Value

logical vector of the same dimension as x.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

unique returns a unique list of all values in x
duplicated returns an index vector flagging all elements, which appeared more than once (leaving out the first appearance!)
union(A, B) returns a list with the unique values from A and B
intersect returns all elements which appear in A and in B
setdiff(A, B) returns all elements appearing in A but not in B
setequal(A, B) returns TRUE if A contains exactly the same elements as B
split(A, A) returns a list with all the tied values in A (see examples)

Examples

x <- c(1:10, 4:6)
AllDuplicated(x)

compare to:
duplicated(x)

x[!AllDuplicated(x)]

union, intersect and friends...
A <- c(sort(sample(1:20, 9)),NA)
B <- c(sort(sample(3:23, 7)),NA)

all elements from A and B (no duplicates)
union(A, B)
all elements appearing in A and in B
intersect(A, B)
elements in A, but not in B
setdiff(A, B)
elements in B, but not in A
setdiff(B, A)
Does A contain the same elements as B?
setequal(A, B)

Find ties in a vector x
AndersonDarlingTest

Anderson-Darling Test of Goodness-of-Fit

Description

Performs the Anderson-Darling test of goodness-of-fit to a specified continuous univariate probability distribution.

Usage

AndersonDarlingTest(x, null = "punif", ..., nullname)

Arguments

x numeric vector of data values.
null a function, or a character string giving the name of a function, to compute the cumulative distribution function for the null distribution.
... additional arguments for the cumulative distribution function.
nullname optional character string describing the null distribution.
The default is "uniform distribution".

Details

This command performs the Anderson-Darling test of goodness-of-fit to the distribution specified by the argument null. It is assumed that the values in x are independent and identically distributed random values, with some cumulative distribution function \(F \). The null hypothesis is that \(F \) is the function specified by the argument null, while the alternative hypothesis is that \(F \) is some other function.
Append

Value

An object of class "htest" representing the result of the hypothesis test.

Author(s)

Original C code by George Marsaglia and John Marsaglia. R interface by Adrian Baddeley.

References

See Also

`shapiro.test` and all other tests for normality.

Examples

```r
x <- rnorm(10, mean=2, sd=1)
AndersonDarlingTest(x, "pnorm", mean=2, sd=1)
```

Append Elements to Objects

Description

Append elements to a number of various objects as vectors, matrices, data.frames and lists. In a matrix either rows or columns can be inserted at any position. In data frames any vectors can be inserted. values will be recycled to the necessary length.

Usage

```r
Append(x, values, after = NULL, ...)

# S3 method for class 'matrix'
Append(x, values, after = NULL, rows = FALSE, names = NULL, ...)

# S3 method for class 'data.frame'
Append(x, values, after = NULL, names = NULL, ...)

# Default S3 method:
Append(x, values, after = NULL, ...)
```
Append

Arguments

- **x**: object for the elements to be inserted
- **values**: the elements to be inserted
- **after**: a subscript, after which the values are to be appended. If it’s missing the values will be appended after the last element (or column/row).
- **rows**: logical, defining if vector should be added as row or as column. Default is column (rows=FALSE).
- **names**: the dimension names for the inserted elements(s)
- **...**: further arguments (not used here)

Details

The vector `x` will be recycled to a length of the next multiple of the number of rows (or columns) of the matrix `m` and will be inserted such that the first inserted row (column) has the index `i`. If the dimnames are given, they will be used no matter if the matrix `m` has already dimnames defined or not.

Value

An object containing the values in `x` with the elements of values appended after the specified element of `x`.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

`rbind`, `cbind`, `append`

Examples

```r
Append(1:5, 0:1, after = 3)  # the same as append

# Insert columns and rows
x <- matrix(runif(25), 5)

Append(x, values=1:10, after=2, names = c("X","Y"))
Append(x, values=1:10, after=2)

Append(x, values=1:10, after=2, names = c("X","Y"))
Append(x, values=1:10, after=2)

# append to a data.frame
d.frn <- data.frame(id = c(1,2,3),
                   code = c("AAA", "BBB", "CCC"),
                   val = c(111, 222, 333))
z <- c(10, 20, 30)

Append(d.frn, z, after=2, names="ZZZ")
```
Arrow

Insert an Arrow Into a Plot

Description

Places an arrow into a plot. Two additional arrow heads are implemented.

Usage

```r
Arrow(x0, y0, x1, y1, col = par("bg"), border = par("fg"), head = 1,
      cex = 1, lwd = 1, lty = 1)
```

Arguments

- `x0, y0` coordinates of points **from** which to draw.
- `x1, y1` coordinates of points **to** which to draw. At least one must be supplied.
- `col` the color of the line and background color of the arrow head.
- `border` color of the arrow head.
- `head` type of head, can be one out of 1:3.
- `cex` extension factor for the arrow head.
- `lwd` line width
- `lty` line type

Value

Nothing returned

Author(s)

Andri Signorell <andri@signorell.net>

See Also

arrows

Examples

Canvas()

`Arrow(1, 1, 0, 0)`
Description

This function converts an xtabs object to a matrix.

Usage

```r
## S3 method for class 'xtabs'
as.matrix(x, ...)
```

Arguments

- `x`: an object of class xtabs
- `...`: additional arguments to be passed to or from methods.

Details

An xtabs object is indeed already a matrix, but won’t be converted to a pure matrix by `as.matrix.default` function, as its class definition will remain unchanged. Some functions expecting a pure matrix may fail, when fed with a xtabs object. `as.matrix.xtabs` will drop the classes and the call attribute. Note that `unclass` would as well discard the classes xtabs and table, but retain the “call” attribute.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

- `as.matrix`, `xtabs`, `unclass`

Examples

```r
tab <- xtabs(~ driver + operator, data=d.pizza)
str(tab)
class(tab)

str(as.matrix(tab))
class(as.matrix(tab))
```
Description

AscToChar returns a character for each ASCII code (integer) supplied. CharToAsc returns integer codes in \(0:255\) for each (one byte) character in all strings in \(x\).

Usage

```
AscToChar(i)
CharToAsc(x)
```

Arguments

- \(i\) numeric (integer) vector of values in \(1:255\).
- \(x\) vector of strings.

Details

Only codes in \(1:127\) make up the ASCII encoding which should be identical for all R versions, whereas the ‘upper’ half is often determined from the ISO-8859-1 (aka “ISO-Latin 1”) encoding, but may well differ, depending on the locale setting, see also `Sys.setlocale`. Note that \(\emptyset\) is no longer allowed since, R does not allow \(\emptyset\) aka `nul` characters in a string anymore.

Value

AscToChar returns a vector of the same length as \(i\). CharToAsc returns a list of numeric vectors of character length of each string in \(x\).

Author(s)

unknown guy out there, help text partly taken from M. Maechler’s `sfsmisc`.

See Also

`charToRaw`

Examples

```
(x <- CharToAsc("Silvia"))

# will be pasted together
AscToChar(x)

# use strsplit if the single characters are needed
strsplit(AscToChar(x), split=NULL)
```
Asp

Get Aspect Ratio of the Current Plot

Description

Returns the aspect ratio of the current plot in user coordinates.

Usage

Asp()

Details

The aspect ratio of the plot is calculated as

\[
\text{asp} = \frac{w}{h}
\]

where

\[
w = \frac{\text{par("pin")}[1]}{\text{diff(par("usr")}[1:2])}
\]

\[
h = \frac{\text{par("pin")}[2]}{\text{diff(par("usr")}[3:4])}
\]

Author(s)

Andri Signorell <andri@signorell.net>

Examples

Asp()

Association measures

- Cramer’s V, Pearson’s Contingency Coefficient and Phi Coefficient
- Yule’s Q and Y, Tschuprow’s T

Description

Calculate Cramer’s V, Pearson’s contingency coefficient and phi, Yule’s Q and Y and Tschuprow’s T of x, if x is a table. If both, x and y are given, then the according table will be built first.
Usage

Phi(x, y = NULL, ...)
ContCoef(x, y = NULL, correct = FALSE, ...)
CramerV(x, y = NULL, conf.level = NA,
 method = c("ncchisq", "ncchisqadj", "fisher", "fisheradj"), ...)
YuleQ(x, y = NULL, ...)
YuleY(x, y = NULL, ...)
TschuprowT(x, y = NULL, ...)

Arguments

x
can be a numeric vector, a matrix or a table.

y
NULL (default) or a vector with compatible dimensions to x. If y is provided, table(x, y, ...) is calculated.

conf.level
confidence level of the interval. This is only implemented for Cramer’s V. If set to NA (which is the default) no confidence interval will be calculated. See examples for calculating bootstrap intervals.

method
string defining the method to calculate confidence intervals for Cramer’s V. One out of "ncchisq" (using noncentral chisquare), "ncchisqadj", "fisher" (using fisher z transformation), "fisheradj" (using fisher z transformation and bias correction). Default is "ncchisq".

correct
logical. This argument only applies to ContCoef and indicates, whether the Sakoda’s adjusted Pearson’s C should be returned. Default is FALSE.

...
further arguments are passed to the function table, allowing i.e. to set useNA.

Details

For x either a matrix or two vectors x and y are expected. In latter case table(x, y, ...) is calculated. The function handles NAs the same way the table function does, so tables are by default calculated with NAs omitted.

A provided matrix is interpreted as a contingency table, which seems in the case of frequency data the natural interpretation (this is e.g. also what chisq.test expects).

Use the function PairApply (pairwise apply) if the measure should be calculated pairwise for all columns. This allows matrices of association measures to be calculated the same way cor does. NAs are by default omitted pairwise, which corresponds to the pairwise.complete option of cor. Use complete.cases, if only the complete cases of a data.frame are to be used. (see examples)

The maximum value for Phi is \(\sqrt{\min(r,c) - 1} \). The contingency coefficient goes from 0 to \(\sqrt{\frac{\min(r,c) - 1}{\min(r,c)}} \). For the corrected contingency coefficient and for Cramer’s V the range is 0 to 1. A Cramer’s V in the range of [0, 0.3] is considered as weak, [0.3,0.7] as medium and > 0.7 as strong. The minimum value for all is 0 under statistical independence.
Association measures

Value

a single numeric value if no confidence intervals are requested,
and otherwise a numeric vector with 3 elements for the estimate, the lower and the upper confidence interval

Author(s)

Andri Signorell <andri@signorell.net>,
Michael Smithson <michael.smithson@anu.edu.au> (confidence intervals for Cramer V)

References

Agresti, Alan (1996) Introduction to categorical data analysis. NY: John Wiley and Sons

See Also

table, PlotCorr, PairApply, Assocs

Examples

tab <- table(d.pizza$driver, d.pizza$wine_delivered)
Phi(tab)
ContCoeff(tab)
CramerV(tab)
TschuprowT(tab)

just x and y
CramerV(d.pizza$driver, d.pizza$wine_delivered)

data.frame
PairApply(d.pizza[,c("driver","operator","area")], CramerV, symmetric = TRUE)

useNA is passed to table
PairApply(d.pizza[,c("driver","operator","area")], CramerV, useNA="ifany", symmetric = TRUE)

d.frm <- d.pizza[,c("driver","operator","area")]
PairApply(d.frm[complete.cases(d.frm),], CramerV, symmetric = TRUE)
m <- as.table(matrix(c(2,4,1,7), nrow=2))
YuleQ(m)
YuleY(m)

Bootstrap confidence intervals for Cramer's V

tab <- as.table(rbind(
 c(26,26,23,18, 9),
 c(6, 7, 9,14,23)))
d.frm <- untangle(tab)

n <- 1000
idx <- matrix(sample(nrow(d.frm), size=nrow(d.frm) * n, replace=TRUE), ncol=n, byrow=FALSE)
v <- apply(idx, 2, function(x) CramerV(d.frm[x,1], d.frm[x,2]))
quantile(v, probs=c(0.025,0.975))

compare this to the analytical ones
CramerV(tab, conf.level=0.95)

Description

Collects a number of association measures for nominal and ordinal data.

Usage

`Assocs(x, conf.level = 0.95, verbose = NULL)`

`## S3 method for class 'Assocs'
print(x, digits = 4, ...)`

Arguments

- **x**: a 2 dimensional contingency table or a matrix.
- **conf.level**: confidence level of the interval. If set to NA no confidence interval will be calculated. Default is 0.95.
- **verbose**: integer out of 3(2, 1, 3) defining the verbosity of the reported results. 2 (default) means medium, 1 less and 3 extensive results. Applies only to tables and is ignored else.
- **digits**: integer which determines the number of digits used in formatting the measures of association.
- **...**: further arguments to be passed to or from methods.
Details

This function wraps the association measures phi, contingency coefficient, Cramer’s V, Goodman
Kruskal’s Gamma, Kendall’s Tau-b, Stuart’s Tau-c, Somers’ Delta, Pearson and Spearman correlation,
Guttman’s Lambda, Theil’s Uncertainty Coefficient and the mutual information.

Value

numeric matrix, dimension [1:17, 1:3]
the first column contains the estimate, the second the lower confidence interval, the third the upper
one.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

Phi, ContCoef, CramerV, GoodmanKruskalGamma, KendallTauB, StuartTauC, SomersDelta, SpearmanRho,
Lambda, UncertCoef, MutInf

Examples

Hair-Eye-Color pp. 1816

 tob <- as.table(matrix(c(
 69, 28, 68, 51, 6,
 69, 38, 55, 37, 0,
 90, 47, 94, 94, 16
), nrow=3, byrow=TRUE,
 dimnames=list(eye=c("blue","green","brown"),
 hair=c("fair","red","medium","dark","black")))
 Desc(tob)
 Assocs(tob)

pp. 1349

 pain <- as.table(matrix(c(
 26, 6,
 26, 7,
 23, 9,
 18, 14,
 9, 23
), ncol=2, byrow=TRUE))
 Desc(pain)
 Assocs(pain)
Atkinson Index - A Measure of Inequality.

Description

The Atkinson index is an inequality measure and is useful in determining which end of the distribution contributed most to the observed inequality.

Usage

Atkinson(x, n = rep(1, length(x)), parameter = 0.5, na.rm = FALSE)

Arguments

x a vector containing at least non-negative elements.

n a vector of frequencies, must be same length as x.

parameter parameter of the inequality measure (if set to NULL the default parameter of the respective measure is used).

na.rm logical. Should missing values be removed? Defaults to FALSE.

Value

the value of the Akinson Index.

Note

This function was previously published as ineq() in the ineq package and has been integrated here without logical changes, but with some extensions for NA-handling and the use of weights.

Author(s)

Achim Zeileis <Achim.Zeileis@R-project.org>

References

See Also

See Herfindahl, Rosenbluth for concentration measures and ineq() in the package ineq for additional inequality measures.
Examples

generate vector (of incomes)
x <- c(541, 1463, 2445, 3438, 4437, 5401, 6392, 8304, 11904, 22261)

compute Atkinson coefficient with parameter=0.5
Atkinson(x, parameter=0.5)

Description

Calculate the area under the curve with a naive algorithm and with a more elaborated spline approach. The curve must be given by vectors of xy-coordinates.

Usage

AUC(x, y, method = c("trapezoid", "step", "spline"), na.rm = FALSE)

Arguments

x, y the xy-points of the curve
method can be "trapezoid" (default), "step" or "spline".
na.rm logical, indicating whether NA values should be stripped before the computation proceeds. In this case only the complete.cases of x and y will be used. na.rm defaults to FALSE.

Details

If method is set to "trapezoid" then the curve is formed by connecting all points by a direct line (composite trapezoid rule). If "step" is chosen then a stepwise connection of two points is used. For calculating the area under a spline interpolation the splinefun function is used in combination with integrate.

The AUC function will handle unsorted x values (by sorting x) and ties for the x values (by ignoring duplicates).

Value

Numeric value of the area under the curve.

Author(s)

Andri Signorell <andri@signorell.net>, spline part by Claus Ekstrom <claus@rprimer.dk>

See Also

integrate, splinefun
Examples

```r
auc(x=c(1,3), y=c(1,1))

AUC(x=c(1,2,3), y=c(1,2,4), method="trapezoid")
AUC(x=c(1,2,3), y=c(1,2,4), method="step")

plot(x=c(1,2,2.5), y=c(1,2,4), type="l", col="blue", ylim=c(0,4))
lines(x=c(1,2,2.5), y=c(1,2,4), type="s", col="red")

x <- seq(0, pi, length.out=200)
AUC(x=x, y=sin(x))
AUC(x=x, y=sin(x), method="spline")
```

Description

Places a break mark on an axis on an existing plot.

Usage

```r
AxisBreak(axis = 1, breakpos = NULL, pos = NA, bgcol = "white",
          breakcol = "black", style = "slash", brw = 0.02)
```

Arguments

- `axis`: which axis to break.
- `breakpos`: where to place the break in user units.
- `pos`: position of the axis (see `axis`).
- `bgcol`: the color of the plot background.
- `breakcol`: the color of the "break" marker.
- `style`: Either 'gap', 'slash' or 'zigzag'.
- `brw`: break width relative to plot width.

Details

The 'pos' argument is not needed unless the user has specified a different position from the default for the axis to be broken.

Note

There is some controversy about the propriety of using discontinuous coordinates for plotting, and thus axis breaks. Discontinuous coordinates allow widely separated groups of values or outliers to appear without devoting too much of the plot to empty space.

The major objection seems to be that the reader will be misled by assuming continuous coordinates. The 'gap' style that clearly separates the two sections of the plot is probably best for avoiding this.
Compute Axis Tickmark Locations (For POSIXct Axis)

Description
Compute pretty tickmark locations, the same way as R does internally. By default, gives the at values which axis.POSIXct(side, x) would use.

Usage
axTicks.POSIXct(side, x, at, format, labels = TRUE, ...)
axTicks.Date(side = 1, x, ...)

Arguments
- side: See axis.
- x, at: A date-time or date object.
- format: See strptime.
- labels: Either a logical value specifying whether annotations are to be made at the tickmarks, or a vector of character strings to be placed at the tickpoints.
- ...: Further arguments to be passed from or to other methods.

Details
axTicks has no implementation for POSIXct axis. This function fills the gap.

Value
numeric vector of coordinate values at which axis tickmarks can be drawn.

Author(s)
Andri Signorell <andri@signorell.net> simply copying R-Core code
Barnard's Unconditional Test

Barnard's unconditional test for superiority applied to 2×2 contingency tables using Score or Wald statistics for the difference between two binomial proportions.

Usage

```r
BarnardTest(x, y = NULL, alternative = c("two.sided", "less", "greater"), dp = 0.001, pooled = TRUE)
```

Arguments

- **x**: a numeric vector or a two-dimensional contingency table in matrix form. x and y can also both be factors.
- **y**: a factor object; ignored if x is a matrix.
- **dp**: The resolution of the search space for the nuisance parameter
- **pooled**: Z statistic with pooled (Score) or unpooled (Wald) variance
- **alternative**: a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". You can specify just the initial letter.
Details

If \(x \) is a matrix, it is taken as a two-dimensional contingency table, and hence its entries should be nonnegative integers. Otherwise, both \(x \) and \(y \) must be vectors of the same length. Incomplete cases are removed, the vectors are coerced into factor objects, and the contingency table is computed from these.

For a 2x2 contingency table, such as \(X = [n_1, n_2; n_3, n_4] \), the normalized difference in proportions between the two categories, given in each column, can be written with pooled variance (Score statistic) as

\[
T(X) = \frac{\hat{p}_2 - \hat{p}_1}{\sqrt{\hat{p}(1 - \hat{p})\left(\frac{1}{c_1} + \frac{1}{c_2}\right)}}.
\]

where \(\hat{p} = (n_1 + n_3)/(n_1 + n_2 + n_3 + n_4) \), \(\hat{p}_2 = n_2/(n_2 + n_4) \), \(\hat{p}_1 = n_1/(n_1 + n_3) \), \(c_1 = n_1 + n_3 \) and \(c_2 = n_2 + n_4 \). Alternatively, with unpooled variance (Wald statistic), the difference in proportions can we written as

\[
T(X) = \frac{\hat{p}_2 - \hat{p}_1}{\sqrt{\frac{p_1(1-p_1)}{c_1} + \frac{p_2(1-p_2)}{c_2}}}.
\]

The probability of observing \(X \) is

\[
P(X) = \frac{c_1!c_2!}{n_1!n_2!n_3!n_4!}p^{n_1 + n_2}(1-p)^{n_3 + n_4},
\]

where \(p \) is the unknown nuisance parameter.

Barnard’s test considers all tables with category sizes \(c_1 \) and \(c_2 \) for a given \(p \). The p-value is the sum of probabilities of the tables having a score in the rejection region, e.g. having significantly large difference in proportions for a two-sided test. The p-value of the test is the maximum p-value calculated over all \(p \) between 0 and 1.

Value

A list with class "htest" containing the following components:

- \(\text{p.value} \) the p-value of the test.
- \(\text{estimate} \) an estimate of the nuisance parameter where the p-value is maximized.
- \(\text{alternative} \) a character string describing the alternative hypothesis.
- \(\text{method} \) the character string "Barnards Unconditional 2x2-test".
- \(\text{data.name} \) a character string giving the names of the data.
- \(\text{statistic.table} \) The contingency tables considered in the analysis represented by ’n1’ and ’n2’, their scores, and whether they are included in the one-sided (1), two-sided (2) tests, or not included at all (0)
- \(\text{nuisance.matrix} \) Nuisance parameters, \(p \), and the corresponding p-values for both one- and two-sided tests

Author(s)

Kamil Erguler, <k.erguler@cyi.ac.cy>, Peter Calhoun <calhoun.peter@gmail.com>, Rodrigo Duprat, Andri Signorell <andri@signorell.net> (interface)
References

See Also

fisher.test

Examples

```r
tab <- as.table(matrix(c(8, 14, 1, 3), nrow=2,
                dimnames=list(treat=c("I","II"), out=c("I","II"))))
BarnardTest(tab)

# Plotting the search for the nuisance parameter for a one-sided test
bt <- BarnardTest(tab)
plot(bt$n nuisance.matrix[, 1:2],
     t="l", xlab="nuisance parameter", ylab="p-value")

# Plotting the tables included in the p-value
ttab <- as.table(matrix(c(40, 14, 10, 30), nrow=2,
                        dimnames=list(treat=c("I","II"), out=c("I","II"))))
bt <- BarnardTest(ttab)
bts <- bt$statistic.table
plot(bts[, 1], bts[, 2],
     col= hsv(bts[, 4] / 4, 1, 1),
     t="p", xlab="n1", ylab="n2")

# Plotting the difference between pooled and unpooled tests
bts <- BarnardTest(ttab, pooled=TRUE)$statistic.table
btw <- BarnardTest(ttab, pooled=FALSE)$statistic.table
plot(bts[, 1], btw[, 2],
     col=c("black", "white") [1 + as.numeric(bts[, 4]==btw[, 4])],
     t="p", xlab="n1", ylab="n2")
```
Bartels Rank Test of Randomness

Description
Perform the Bartels rank test of randomness, which tests if a sample is sampled randomly from an underlying population. Data must at least be measured on an ordinal scale.

Usage
BartelsRankTest(x, alternative = c("two.sided", "trend", "oscillation"),
 method = c("normal", "beta", "auto"))

Arguments
x a numeric vector containing the observations
alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
 (default), "trend" or "oscillation".
method a character string specifying the method used to compute the p-value. Must be one of normal (default), beta or auto.

Details
The RVN test statistic is
\[RVN = \frac{\sum_{i=1}^{n-1} (R_i - R_{i+1})^2}{\sum_{i=1}^{n} (R_i - (n+1)/2)^2}\]
where \(R_i = \text{rank}(X_i), i = 1, \ldots, n \). It is known that \((RVN - 2)/\sigma\) is asymptotically standard normal, where \(\sigma^2 = \frac{4(n-2)(5n^2 - 2n - 9)}{5n(n+1)(n-1)^2} \).

By using the alternative "trend" the null hypothesis of randomness is tested against a trend. By using the alternative "oscillation" the null hypothesis of randomness is tested against a systematic oscillation.

Missing values are silently removed.
Bartels test is a rank version of von Neumann’s test.

Value
A list with class "htest" containing the components:

- statistic the value of the normalized statistic test.
- parameter, n the size of the data, after the remotion of consecutive duplicate values.
- p.value the p-value of the test.
- alternative a character string describing the alternative hypothesis.
- method a character string indicating the test performed.
- data.name a character string giving the name of the data.
rvn the value of the RVN statistic (not show on screen).
rm the value of the NM statistic, the numerator of RVN (not show on screen).
mu the mean value of the RVN statistic (not show on screen).
var the variance of the RVN statistic (not show on screen).

Author(s)
Frederico Caeiro <fac@fct.unl.pt>

References

See Also
rank.test, RunsTest

Examples
Example 5.1 in Gibbons and Chakraborti (2003), p.98.
Annual data on total number of tourists to the United States for 1970-1982.
years <- 1970:1982
tourists <- c(12362, 12739, 13057, 13955, 14123, 15698, 17523, 18610, 19842, 20310, 22500, 23088, 21916)
plot(years, tourists, pch=20)
BartelsRankTest(tourists, alternative="trend", method="beta")

Bartels Ratio Test
#
data: tourists
statistic = -3.6453, n = 13, p-value = 1.21e-08
alternative hypothesis: trend

Example in Bartels (1982).
Changes in stock levels for 1968-1969 to 1977-1978 (in $A million), deflated by the
x <- c(528, 348, 264, -20, -167, 575, 410, -4, 430, -122)
BartelsRankTest(x, method="beta")
BarText

Add the Value Labels to a Barplot

Description
Place text either in the middle of the stacked bars of a barplot or on top of a side by side barplot.

Usage
BarText(height, b, labels = height, beside = FALSE, horiz = FALSE, cex = par("cex"), adj = NULL, top = TRUE, ...)

Arguments
height either a vector or matrix of values describing the bars which make up the plot exactly as used for creating the barplot.
b the returned mid points as returned by b <- barplot(...).
labels the labels to be placed on the bars.
beside a logical value. If FALSE, the columns of height are portrayed as stacked bars, and if TRUE the columns are portrayed as juxtaposed bars.
horiz a logical value. If FALSE, the bars are drawn vertically with the first bar to the left. If TRUE, the bars are drawn horizontally with the first at the bottom.
cex numeric character expansion factor; multiplied by par("cex") yields the final character size. NULL and NA are equivalent to 1.0.
adj one or two values in [0, 1] which specify the x (and optionally y) adjustment of the labels. On most devices values outside that interval will also work.
top logical, defining if the labels should be placed on top of the bars (id beside is set to TRUE). Will be ignored if beside is FALSE.
... the dots are passed to the text.

Details
It sometimes makes sense to place the data values directly on the bars. The x coordinates of the labels can be found by using barplot() result, if they are to be centered at the top of each bar. BarText() calculates the rest. Notice that when the labels are placed on top of the bars, they may be clipped. This can be avoided by setting xpd=TRUE.

Author(s)
Andri Signorell <andri@signorell.net>

See Also
help
Examples

```r
# simple vector
x <- c(453, 44, 56, 34)
b <- barplot(x)
BarText(x, b, x)

# more complicated
b <- barplot(VADeaths, horiz = FALSE, col="hblue", beside = TRUE)
BarText(VADeaths, b=b, horiz = FALSE, beside = TRUE, cex=0.8)
BarText(VADeaths, b=b, horiz = FALSE, beside = TRUE, cex=0.8, top=FALSE)

b <- barplot(VADeaths, horiz = TRUE, col="hblue", beside = TRUE)
BarText(VADeaths, b=b, horiz = TRUE, beside = TRUE, cex=0.8)

b <- barplot(VADeaths)
BarText(VADeaths, b=b)

b <- barplot(VADeaths, horiz = TRUE)
BarText(VADeaths, b=b, horiz = TRUE, col="red", cex=1.5)
```

Description

These functions convert numbers from one base to another. There are several solutions for this problem out there, but the naming is quite heterogeneous and so consistent function names might be helpful.

Usage

```r
BinToDec(x)
DecToBin(x)
OctToDec(x)
DecToOct(x)
HexToDec(x)
DecToHex(x)
```

Arguments

- `x` a vector of numbers, resp. alphanumerical representation of numbers (hex), to be converted.

Details

BinToDec converts numbers from binary mode into decimal values. DecToBin does it the other way round.
Oct means octal system and hex hexadecimal.
Benford

Value

A numeric or character vector of the same length as x containing the converted values. Binary, octal and decimal values are numeric, hex-values are returned as class hexmode.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

strtoi

Examples

```r
dectobinHc(17, 25))
BinToDec(c(101, 11101))

DecToOct(c(17, 25))
OctToDec(c(11, 77))

DecToHex(c(17, 25))
HexToDec(c("FF", "AA", "ABC"))
```

Benford

Benford’s Distribution

Description

Density, distribution function, quantile function, and random generation for Benford’s distribution.

Usage

```r
dBenf(x, ndigits = 1, log = FALSE)
pBenf(q, ndigits = 1, log.p = FALSE)
qBenf(p, ndigits = 1)
rBenf(n, ndigits = 1)
```

Arguments

- `x, q` Vector of quantiles. See `ndigits`.
- `p` vector of probabilities.
- `n` number of observations. A single positive integer. Else if `length(n) > 1 `then the length is taken to be the number required.
- `ndigits` Number of leading digits, either 1 or 2. If 1 then the support of the distribution is \{1,...,9\}, else \{10,...,99\}.
- `log, log.p` Logical. If `log.p = TRUE `then all probabilities `p `are given as `log(p)`.
Benford’s Law (aka the significant-digit law) is the empirical observation that in many naturally occurring tables of numerical data, the leading significant (nonzero) digit is not uniformly distributed in \{1, 2, \ldots, 9\}. Instead, the leading significant digit (= \(D\), say) obeys the law
\[
P(D = d) = \log_{10} \left(1 + \frac{1}{d} \right)
\]
for \(d = 1, \ldots, 9\). This means the probability the first significant digit is 1 is approximately 0.301, etc.

Benford’s Law was apparently first discovered in 1881 by astronomer/mathematician S. Newcombe. It started by the observation that the pages of a book of logarithms were dirtiest at the beginning and progressively cleaner throughout. In 1938, a General Electric physicist called F. Benford rediscovered the law on this same observation. Over several years he collected data from different sources as different as atomic weights, baseball statistics, numerical data from Reader’s Digest, and drainage areas of rivers.

Applications of Benford’s Law has been as diverse as to the area of fraud detection in accounting and the design computers.

Value
 dBenf gives the density, pBenf gives the distribution function, and qBenf gives the quantile function, and rBenf generates random deviates.

Author(s)
 T. W. Yee

Source
 These functions were previously published as dbenf() etc. in the VGAM package and have been integrated here without logical changes.

References

Examples
 dBenf(x <- c(0:10, NA, NaN, -Inf, Inf))
 pBenf(x)

 ## Not run:
 xx <- 1:9
 barplot(dBenf(xx), col = "lightblue", las = 1, xlab = "Leading digit",
 ylab = "Probability", names.arg = as.character(xx),
 main = "Barplot of Benford's Distribution")
main = paste("Benford's distribution", sep = "")

hist(rBenf(n = 1000), border = "blue", prob = TRUE,
 main = "1000 random variates from Benford's distribution",
 xlab = "Leading digit", sub="Red is the true probability",
 breaks = 0:9 + 0.5, ylim = c(0, 0.35), xlim = c(0, 10.0))
lines(xx, dBenf(xx), col = "red", type = "h")
points(xx, dBenf(xx), col = "red")

End(Not run)

Between, Outside

Operators To Check, If a Value Lies Within Or Outside a Given Range

Description

The between and outside operators are used to check, whether a vector of given values \(x \) lie within a defined range (or outside respectively). The values can be numbers, text or dates. Ordered factors are supported.

Usage

\[
\begin{align*}
& x \%\% rng \\
& x \%\{\} rng \\
& x \%\[] rng \\
& x \%\{\} \% rng
\end{align*}
\]

Arguments

- **x** is a variable with at least ordinal scale, usually a numeric value, but can be an ordered factor or a text as well. Texts would be treated alphabetically.
- **rng** a vector of two values or a matrix with 2 columns, defining the minimum and maximum of the range for \(x \).

 If \(rng \) is a matrix, \(x \) or \(rng \) will be recycled.

Details

The between operators basically combine two conditional statements into one and simplify so the query process.

They are merely a wrapper for: \(x \geq \text{rng}[1] \; \& \; x \leq \text{rng}[2] \), where the round bracket \((\) means "strictly greater than >" and the square bracket \([\) means "\(\geq \). Numerical values of \(x \) will be handled by C-code, which is significantly faster than two comparisons in R (especially when \(x \) is huge).
%] is the negation of %(), meaning all values lying outside the given range. Elements on the limits will return TRUE.
Both arguments will be recycled to the highest dimension, which is either the length of the vector or the number of rows of the matrix.
See also the routines used to check, whether two ranges overlap (Overlap, Interval).

Value
A logical vector of the same length as x.

Author(s)
Andri Signorell <andri@signorell.net> based on C-code by Kevin Ushey <kevinushey@gmail.com>

See Also
if, ifelse, Comparison, Overlap, Interval

Examples
x <- 1:9
x %][% c(3,5)

outside
x <- 1:9
x %][% c(3,5)
c(x,NA) %][% c(3,5)
x %][] c(3,5)

no result when from > to:
x %][% c(5,3)
x %][% c(5,5)

no problem:
ordered(x) %][% c(3,5)

not meaningful:
factor(x) %][% c(3,5)

characters
letters[letters %][% c("d","h")]
data(d.pizza)
x <- levels(d.pizza$driver)
x %][% c("C","G")

select diamonds with a price between 2400 and 2510
data(d.diamonds)
d.diamonds[d.diamonds$price %][% c(2400,2510),]
BinomCI

Confidence Intervals for Binomial Proportions

Description

Compute confidence intervals for binomial proportions following the most popular methods. (Wald, Wilson, Agresti-Coull, Jeffreys, Clopper-Pearson etc.)

Usage

```r
BinomCI(x, n, conf.level = 0.95, sides = c("two.sided", "left", "right"),
       method = c("wilson", "wald", "agresti-coull", "jeffreys",
                  "modified wilson", "wilsoncc", "modified jeffreys",
                  "clopper-pearson", "arcsine", "logit", "witting", "pratt"),
       rand = 123)
```

Arguments

- **x**: number of successes.
- **n**: number of trials.
- **conf.level**: confidence level, defaults to 0.95.
- **sides**: a character string specifying the side of the confidence interval, must be one of "two.sided" (default), "left" or "right". You can specify just the initial letter. "left" would be analogue to a hypothesis of "greater" in a \(t \) test.
- **method**: character string specifying which method to use; this can be one out of: "wald", "wilson", "wilsoncc", "agresti-coull", "jeffreys", "modified wilson", "modified jeffreys", "clopper-pearson", "arcsine", "logit", "witting" or "pratt". Defaults to "wilson". Abbreviation of method are accepted. See details.
- **rand**: seed for random number generator; see details.
Details

All arguments are being recycled.

The **Wald** interval is obtained by inverting the acceptance region of the Wald large-sample normal test.

The **Wilson** interval, which is the default, was introduced by Wilson (1927) and is the inversion of the CLT approximation to the family of equal tail tests of \(p = p_0 \). The Wilson interval is recommended by Agresti and Coull (1998) as well as by Brown et al (2001).

The **Agresti-Coull** interval was proposed by Agresti and Coull (1998) and is a slight modification of the Wilson interval. The Agresti-Coull intervals are never shorter than the Wilson intervals; cf. Brown et al (2001).

The **Jeffreys** interval is an implementation of the equal-tailed Jeffreys prior interval as given in Brown et al (2001).

The **modified Wilson** interval is a modification of the Wilson interval for \(x \) close to 0 or \(n \) as proposed by Brown et al (2001).

The **Wilson cc** interval is a modification of the Wilson interval adding a continuity correction term.

The **modified Jeffreys** interval is a modification of the Jeffreys interval for \(x = 0 \mid x = 1 \) and \(x = n-1 \mid x = n \) as proposed by Brown et al (2001).

The **Clopper-Pearson** interval is based on quantiles of corresponding beta distributions. This is sometimes also called exact interval.

The **arcsine** interval is based on the variance stabilizing distribution for the binomial distribution.

The **logit** interval is obtained by inverting the Wald type interval for the log odds.

The **Pratt** interval is obtained by extremely accurate normal approximation. (Pratt 1968)

Some approaches for the confidence intervals can potentially yield negative results or values beyond 1. These would be reset such as not to exceed the range of \([0, 1]\).

And now, which interval should we use? The Wald interval often has inadequate coverage, particularly for small \(n \) and values of \(p \) close to 0 or 1. Conversely, the Clopper-Pearson Exact method is very conservative and tends to produce wider intervals than necessary. Brown et al. recommends the Wilson or Jeffreys methods for small \(n \) and Agresti-Coull, Wilson, or Jeffreys, for larger \(n \) as providing more reliable coverage than the alternatives. Also note that the point estimate for the Agresti-Coull method is slightly larger than for other methods because of the way this interval is calculated.

Value

A vector with 3 elements for estimate, lower confidence intervall and upper for the upper one.

Note

The base of this function was `binomCI()` in the SLmisc package. In the meantime the code has been updated on several occasions and has undergone some additions and bugfixes.
Author(s)
Matthias Kohl <Matthias.Kohl@stamats.de>, Rand R. Wilcox (Pratt’s method), Andri Signorell <andri@signorell.net> (interface issues)

References

See Also
binom.test, binconf, MultinomCI, BinomDiffCI, BinomRatioCI

Examples
BinomCI(x=37, n=43, method=c("wald", "wilson", "agresti-coull", "jeffreys", "modified wilson", "modified jeffreys", "clopper-pearson", "arcsine", "logit", "witting", "pratt")
)

the confidence interval computed by binom.test
corresponds to the Clopper-Pearson interval
BinomCI(x=42, n=43, method="clopper-pearson")
binom.test(x=42, n=43)$conf.int

all arguments are being recycled:
BinomCI(x=c(42, 35, 23, 22), n=43, method="wilson")
BinomCI(x=c(42, 35, 23, 22), n=c(50, 60, 70, 80), method="jeffreys")

BinomDiffCI
Confidence Interval for a Difference of Binomials

Description
Several confidence intervals for the difference between proportions are available, but they can produce markedly different results. Traditional approaches, such as the Wald interval do not perform well unless the sample size is large. Better intervals are available. These include the Agresti/Caffo method (2000), Newcombe Score method (1998) and a more computing intensive ones as by Miettinen and Nurminen (1985) or Mee (1984).
Usage

BinomDiffCI(x1, n1, x2, n2, conf.level = 0.95, sides = c("two.sided","left","right"),
method = c("wald", "waldcc", "ac", "score", "scorecc", "mn",
"mee", "blj", "ha", "beal"))

Arguments

x1 number of successes for the first group.
n1 number of trials for the first group.
x2 number of successes for the second group.
n2 number of trials for the second group.
conf.level confidence level, defaults to 0.95.
sides a character string specifying the side of the confidence interval, must be one of "two.sided" (default), "left" or "right". You can specify just the initial letter. "left" would be analogue to a hypothesis of "greater" in a t-test.
method one of "wald", "waldcc", "ac", "score", "scorecc", "mn", "mee", "blj", "ha", "beal".

Details

All arguments are being recycled.

We estimate the difference between proportions using the sample proportions:

\[\hat{\delta} = \hat{p}_1 - \hat{p}_2 = \frac{x_1}{n_1} - \frac{x_2}{n_2} \]

The traditional Wald confidence interval for the difference of two proportions \(\delta \) is based on the asymptotic normal distribution of \(\hat{\delta} \).

The Corrected Wald interval uses a continuity correction included in the test statistic. The continuity correction is subtracted from the numerator of the test statistic if the numerator is greater than zero; otherwise, the continuity correction is added to the numerator. The value of the continuity correction is \((1/n_1 + 1/n_2)/2\).

The Agresti-Caffo (code "ac") is equal to the Wald interval with the adjustment according to Agresti, Caffo (2000) for difference in proportions and independent samples. It adds 1 to \(x_1 \) and \(x_2 \) and adds 2 to \(n_1 \) and \(n_2 \) and performs surprisingly well.

Newcombe (code "scorecc") proposed a confidence interval for the difference based on the Wilson score confidence interval for a single proportion. A variant uses a continuity correction for the Wilson interval (code "scorecc").

Miettinen and Nurminen showed that the restricted maximum likelihood estimates for \(p_1 \) and \(p_2 \) can be obtained by solving a cubic equation and gave unique closed-form expressions for them. The Miettinen-Nurminen confidence interval is returned with code "mn".

The Mee (code "mee") interval proposed by Mee (1984) and Farrington-Manning (1990) is using the same maximum likelihood estimators as Miettinen-Nurminen but with another correcting factor.

The Brown, Li's Jeffreys (code "blj") interval was proposed by Brown, Li's Jeffreys (2005).

The Hauck-Anderson (code "ha") interval was proposed by Hauck-Anderson (1986).
The **Beal** (code "beal") interval is described in Beal (1987).
Some approaches for the confidence intervals can potentially yield negative results or values beyond [-1, 1]. These would be reset such as not to exceed the range of [-1, 1].
Which of the methods to use is currently still the subject of lively discussion and has not yet been conclusively clarified. See e.g. Fagerland (2011).

Value
A vector with 3 elements for estimate, lower confidence intervall and upper for the upper one.

Author(s)
Andri Signorell <andri@signorell.net>

References
Fagerland M W, Lydersen S and Laake P (2011) Recommended confidence intervals for two independent binomial proportions, *Statistical Methods in Medical Research* 0(0) 1-31

See Also
BinomCI, MultinomCI, binom.test, prop.test, BinomRatioCI

Examples
```r
x1 <- 56; n1 <- 70; x2 <- 48; n2 <- 80
xci <- BinomDiffCI(x1, n1, x2, n2, method=c("wald", "waldcc", "ac", "score", "scorecc", "mn", "mee", "blj", "ha"))
Format(xci[,-1], digits=4)
```
x1 <- 9; n1 <- 10; x2 <- 3; n2 <- 10
yci <- BinomRatCI(x1, n1, x2, n2, method=c("wald", "waldcc", "ac", "score",
 "scorecc", "mn", "mee", "blj", "ha"))
Format(yci[, -1], digits=4)

BinomRatioCI

Confidence Intervals for the Ratio of Binomial and Multinomial Proportions

Description

A number of methods have been developed for obtaining confidence intervals for the ratio of two binomial proportions. These include the Wald/Katz-log method (Katz et al. 1978), adjusted-log (Walter 1975, Pettigrew et al. 1986), Koopman asymptotic score (Koopman 1984), Inverse hyperbolic sine transformation (Newman 2001), the Bailey method (Bailey (1987), and the Noether (1957) procedure. Koopman results are found iteratively for most intervals using root finding.

Usage

```r
BinomRatioCI(x1, n1, x2, n2, conf.level = 0.95, method = "katz.log",
  bonf = FALSE, tol = .Machine$double.eps^0.25, R = 1000, r = length(x1))
```

Arguments

- `x1`: The ratio numerator number of successes. A scalar or vector.
- `n1`: The ratio numerator number of trials. A scalar or vector of length(y1).
- `x2`: The ratio denominator number of successes. A scalar or vector of length(y1).
- `n2`: The ratio denominator number of trials. A scalar or vector of length(y1).
- `conf.level`: The level of confidence, i.e. 1 - P(type I error).
- `method`: Confidence interval method. One of "adj.log", "bailey", "boot", "katz.log",
 "koopman", "sinh-1" or "noether". Partial distinct names can be used.
- `bonf`: Logical, indicating whether or not Bonferroni corrections should be applied for
 simultaneous inference if y1, y2, n1 and n2 are vectors.
- `tol`: The desired accuracy (convergence tolerance) for the iterative root finding
 procedure when finding Koopman intervals. The default is taken to be the smallest
 positive floating-point number of the workstation implementing the function,
 raised to the 0.25 power, and will normally be approximately 0.0001.
- `R`: If method "boot" is chosen, the number of bootstrap iterations.
- `r`: The number of ratios to which family-wise inferences are being made. Assumed
 to be length(y1).
Details

Let Y_1 and Y_2 be multinomial random variables with parameters n_1, π_{1i}, and n_2, π_{2i}, respectively; where $i = \{1, 2, 3, \ldots, r\}$. This encompasses the binomial case in which $r = 1$. We define the true selection ratio for the ith resource of r total resources to be:

$$\theta_i = \frac{\pi_{1i}}{\pi_{2i}}$$

where π_{1i} and π_{2i} represent the proportional use and availability of the ith resource, respectively. Note that if $r = 1$ the selection ratio becomes relative risk. The maximum likelihood estimators for π_{1i} and π_{2i} are the sample proportions:

$$\hat{\pi}_{1i} = \frac{y_{1i}}{n_1},$$

and

$$\hat{\pi}_{2i} = \frac{y_{2i}}{n_2}$$

where y_{1i} and y_{2i} are the observed counts for use and availability for the ith resource. The estimator for θ_i is:

$$\hat{\theta}_i = \frac{\hat{\pi}_{1i}}{\hat{\pi}_{2i}}.$$

Method

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Katz-log</td>
<td>$\hat{\theta}i \times \exp(\pm z_1 - \alpha/2\hat{\sigma}W)$, where $\hat{\sigma}W^2 = \left(\frac{1-\hat{\pi}{1i}}{\hat{\pi}{1i} n_1} + \frac{1-\hat{\pi}{2i}}{\hat{\pi}_{2i} n_2}\right)$.</td>
</tr>
<tr>
<td>Adjusted-log</td>
<td>$\hat{\theta}_{Ai} \times \exp(\pm z_1 - \alpha/2\hat{\sigma}_A)$, where $\hat{\sigma}A^2 = \left(\frac{y{2i} (n_1 + 0.5)}{n_1 n_2 + 0.5} - \frac{1}{n_1 + 0.5} + \frac{1}{n_2 + 0.5} - \frac{1}{n_2 + 0.5}\right)$.</td>
</tr>
<tr>
<td>Bailey</td>
<td>$\hat{\theta}i \left[\frac{1}{\hat{\pi}{1i}} \left(\pi_{1i} y_{1i} + \pi_{2i} y_{2i} - z_1 - (\alpha/2)^2 \pi_{1i} \pi_{2i} y_{1i} y_{2i} \right)\right]^{1/2}$, where $\hat{\pi}{1i} = 1 - \hat{\pi}{1i}$, and $\hat{\pi}{2i} = 1 - \hat{\pi}{2i}$,</td>
</tr>
<tr>
<td>Inv. hyperbolic sine</td>
<td>$\ln(\hat{\theta}i) \pm 2\sinh^{-1}\left(\frac{\hat{\pi}{1i}}{2}\right)^2 \left(\frac{1}{y_{1i}} - \frac{1}{n_1} + \frac{1}{y_{2i}} - \frac{1}{n_2}\right)$.</td>
</tr>
<tr>
<td>Koopman</td>
<td>Find $X^2(\theta_0) = \chi^2(1 - \alpha)$, where $\hat{\pi}{1i} = \frac{y{1i} (n_1 + y_{2i}) + y_{1i} + n_2 - [\theta_0 y_{1i} y_{2i} + y_{1i} + n_2] - 4\theta_0 y_{1i} y_{2i} y_{1i} + y_{1i} + n_2]^{0.5}}{2(n_1 + n_2)}$, $\hat{\pi}{2i} = \frac{\hat{\pi}{1i}}{\theta_0}$, and $X^2(\theta_0) = \frac{(y_{1i} - n_1 \hat{\pi}{1i})^2}{n_1 \hat{\pi}{1i}(1 - \hat{\pi}{1i})} \left{1 + \frac{n_1 (\theta_0 - \hat{\pi}{1i})}{n_2 (1 - \hat{\pi}_{1i})}\right}$.</td>
</tr>
<tr>
<td>Noether</td>
<td>$\hat{\theta}_i \pm z_1 - \alpha/2\hat{\sigma}_N$, where $\hat{\sigma}N^2 = \hat{\theta}i^2 \left(\frac{1}{y{1i}} - \frac{1}{n_1} + \frac{1}{y{2i}} - \frac{1}{n_2}\right)$.</td>
</tr>
</tbody>
</table>
Exception handling strategies are generally necessary in the cases $y_1 = 0$, $n_1 = y_1$, $y_2 = 0$, and $n_2 = y_2$ (see Aho and Bowyer, in review).

The bootstrap method currently employs percentile confidence intervals.

Value

Returns a list of class = "ci". Default output is a matrix with the point and interval estimate.

Author(s)

Ken Aho <kenaho1@gmail.com>

References

See Also

BinomCI, BinomDiffCI

Examples

```
# From Koopman (1984)
BinomRatioCI(x1 = 36, n1 = 40, x2 = 16, n2 = 80, method = "katz")
BinomRatioCI(x1 = 36, n1 = 40, x2 = 16, n2 = 80, method = "koop")
```
BinTree

Binary Tree

Description

Create a binary tree of a given number of nodes \(n \). Can be used to organize a sorted numeric vector as a binary tree.

Usage

```r
BinTree(n)
```

```r
PlotBinTree(x, main="Binary tree", horiz=FALSE, cex=1.0, col=1, ...)
```

Arguments

- **n**: integer, size of the tree
- **x**: numeric vector to be organized as binary tree.
- **main**: main title of the plot.
- **horiz**: logical, should the plot be oriented horizontally or vertically. The latter is default.
- **cex**: character extension factor for the labels.
- **col**: color of the line segments of the plot.
- **...**: the dots are sent to `Canvas`.

Details

If we index the nodes of the tree as 1 for the top, 2–3 for the next horizontal row, 4–7 for the next, … then the parent-child traversal becomes particularly easy. The basic idea is that the rows of the tree start at indices 1, 2, 4, ….

BinTree(13) yields the vector `c(8, 4, 9, 2, 10, 5, 11, 1, 12, 6, 13, 3, 7)` meaning that the smallest element will be in position 8 of the tree, the next smallest in position 4, etc.

Value

an integer vector of length \(n \)

Author(s)

Terry Therneau <therneau.terry@mayo.edu>
Andri Signorell <andri@signorell.net> (plot)

Examples

\[
\text{BinTree}(12)
\]

\[
x <- \text{sort(sample}(100, 24))
\]

\[
z <- \text{PlotBinTree}(x, \text{cex}=0.8)
\]

Plot example - Titanic data, for once from a somewhat different perspective
\[
\text{tab} <- \text{apply}(\text{Titanic}, c(2,3,4), \text{sum})
\]

\[
cprob <- \text{c}(1, \text{prop.table(apply(tab, 1, sum))}
\]

\[
\text{as.vector(apern(prop.table(apply(tab, c(1,2), sum), 1), c(2, 1)))}
\]

\[
\text{as.vector(apern(prop.table(tab, c(1,2), c(3,2,1)))}
\]

\[
\text{PlotBinTree(round(cprob[BinTree(length(cprob))],2), horiz=TRUE, cex=0.8,}
\]

\[
\text{main="Titanic")}
\]

\[
\text{text(c("sex","age","survived"}, y=0, x=c(1,2,3)+1)
\]

BootCI

Simple Bootstrap Confidence Intervals

Description

Convenience wrapper for calculating bootstrap confidence intervals for univariate and bivariate statistics.

Usage

\[
\text{BootCI}(x, y = \text{NULL}, \text{FUN}, ...\text{, bci.method} = \text{c("norm", "basic", "stud", "perc", "bca")},
\]

\[
\text{conf.level} = 0.95, \text{sides} = \text{c("two.sided", "left", "right")}, R = 999)
\]

Arguments

- **x**: a (non-empty) numeric vector of data values.
- **y**: NULL (default) or a vector with compatible dimensions to \(x\), when a bivariate statistic is used.
- **FUN**: the function to be used.
- **bci.method**: A vector of character strings representing the type of intervals required. The value should be any subset of the values "norm", "basic", "stud", "perc", "bca", as it is passed on as method to \text{boot.ci}.
- **conf.level**: confidence level of the interval.
- **sides**: a character string specifying the side of the confidence interval, must be one of "two.sided" (default), "left" or "right". You can specify just the initial letter. "left" would be analogue to a hypothesis of "greater" in a t.test.
- **...**: further arguments are passed to the function \text{FUN}.
BoxCox

The number of bootstrap replicates. Usually this will be a single positive integer.
For importance resampling, some resamples may use one set of weights and
others use a different set of weights. In this case R would be a vector of integers
where each component gives the number of resamples from each of the rows of
weights.

Value

a named numeric vector with 3 elements:

<FUN> the specific estimate, as calculated by FUN
lwr.ci lower bound of the confidence interval
upr.ci upper bound of the confidence interval

Author(s)

Andri Signorell <andri@signorell.net>

See Also

MeanCI, MedianCI

Examples

set.seed(1984)
BootCI(d.pizza$temperature, FUN=mean, na.rm=TRUE, bci.method="basic")
BootCI(d.pizza$temperature, FUN=mean, trim=0.1, na.rm=TRUE, bci.method="basic")
BootCI(d.pizza$temperature, FUN=Skew, na.rm=TRUE, bci.method="basic")
BootCI(d.pizza$operator, d.pizza$area, FUN=CramerV)

spearman <- function(x,y) cor(x, y, method="spearman", use="p")
BootCI(d.pizza$temperature, d.pizza$delivery_min, FUN=spearman)

BoxCox

Box Cox Transformation

Description

BoxCox() returns a transformation of the input variable using a Box-Cox transformation.
BoxCoxInv() reverses the transformation.

Usage

BoxCox(x, lambda)
BoxCoxInv(x, lambda)
Arguments

x a numeric vector
lambda transformation parameter

Details

The Box-Cox transformation is given by

\[f_\lambda(x) = \begin{cases}
 x^{\lambda-1} & \text{for } \lambda \neq 0 \\
 \log(x) & \text{for } \lambda = 0
\end{cases} \]

Value

a numeric vector of the same length as x.

Note

These two functions are borrowed from library(“forecast”).

Author(s)

Rob J Hyndman <rob.hyndman@monash.edu>

References

See Also

Use `BoxCoxLambda` or `boxcox` in library(MASS) to find optimal lambda values.

Examples

example by Greg Snow
x <- rlnorm(500, 3, 2)

par(mfrow=c(2,2))
qqnorm(x, main="Lognormal")
qqnorm(boxcox(x, 1/2), main="BoxCox(lambda=0.5)")
qqnorm(boxcox(x, 0), main="BoxCox(lambda=0")

PlotFdist(boxcox(x, 0))

bx <- BoxCox(x, lambda = BoxCoxLambda(x))
Description

An automatic selection of the Box Cox transformation parameter is estimated with two methods. Guerrero’s (1993) method yields a lambda which minimizes the coefficient of variation for subseries of \(x \). For method "loglik", the value of lambda is chosen to maximize the profile log likelihood of a linear model fitted to \(x \). For non-seasonal data, a linear time trend is fitted while for seasonal data, a linear time trend with seasonal dummy variables is used.

Usage

\[
\text{BoxCoxLambda}(x, \text{method} = \text{c("guerrero", "loglik")}, \text{lower} = -1, \text{upper} = 2)
\]

Arguments

- \(x \): a numeric vector or time series
- \(\text{method} \): method to be used in calculating lambda. Can be either "guerrero" (default) or "loglik".
- \(\text{lower} \): lower limit for possible lambda values, default is -1.
- \(\text{upper} \): upper limit for possible lambda values, default is 2.

Value

a number indicating the Box-Cox transformation parameter.

Note

This function was previously published as BoxCox.lambda() in the \texttt{forecast} package and has been integrated here without logical changes.

Author(s)

Leanne Chhay and Rob J Hyndman

References

See Also

\texttt{BoxCox}
Examples

```r
lambda <- BoxCoxLambda(AirPassengers, lower=0)
```

Description

BoxedText draws the strings given in the vector labels at the coordinates given by x and y, surrounded by a rectangle.

Usage

```r
BoxedText(x, y = NULL, labels = seq_along(x), adj = NULL, pos = NULL, offset = 0.5, vfont = NULL, cex = 1, txt.col = NULL, font = NULL, srt = 0, xpad = 0.2, ypad = 0.2, density = NULL, angle = 45, col = "white", border = par("fg"), lty = par("lty"), lwd = par("lwd"), ...)
```

Arguments

- **x, y** numeric vectors of coordinates where the text labels should be written. If the length of x and y differs, the shorter one is recycled.
- **labels** a character vector or expression specifying the text to be written. An attempt is made to coerce other language objects (names and calls) to expressions, and vectors and other classed objects to character vectors by as.character. If labels is longer than x and y, the coordinates are recycled to the length of labels.
- **adj** The value of adj determines the way in which text strings are justified. A value of 0 produces left-justified text. 0.5 (the default) centered text and 1 right-justified text. (Any value in [0, 1] is allowed, and on most devices values outside that interval will also work.) Note that the adj argument of text also allows adj = c(x, y) for different adjustment in x- and y- directions.
- **pos** a position specifier for the text. If specified this overrides any adj value given. Values of 1, 2, 3 and 4, respectively indicate positions below, to the left of, above and to the right of the specified coordinates.
- **offset** when pos is specified, this value gives the offset of the label from the specified coordinate in fractions of a character width.
- **vfont** NULL for the current font family, or a character vector of length 2 for Hershey vector fonts. The first element of the vector selects a typeface and the second element selects a style. Ignored if labels is an expression.
- **cex** numeric character expansion factor; multiplied by par("cex") yields the final character size. NULL and NA are equivalent to 1.0.
- **txt.col, font** the color and (if vfont = NULL) font to be used, possibly vectors. These default to the values of the global graphical parameters in par().
srt
The string rotation in degrees.
xpad, ypad
The proportion of the rectangles to the extent of the text within.
density
the density of shading lines, in lines per inch. The default value of NULL means that no shading lines are drawn. A zero value of density means no shading lines whereas negative values (and NA) suppress shading (and so allow color filling).
angle
angle (in degrees) of the shading lines.
col
color(s) to fill or shade the rectangle(s) with. The default NA (or also NULL) means do not fill, i.e., draw transparent rectangles, unless density is specified.
border
color for rectangle border(s). The default is par("fg"). Use border = NA to omit borders (this is the default). If there are shading lines, border = TRUE means use the same colour for the border as for the shading lines.
lty
line type for borders and shading; defaults to "solid".
lwd
line width for borders and shading. Note that the use of lwd = 0 (as in the examples) is device-dependent.
...
additional arguments are passed to the text function.

Author(s)
Andri Signorell <andri@signorell.net>

See Also
SpreadOut, similar function in package plotrix boxed.labels (lacking rotation option)

Examples
Canvas(xpd=TRUE)

boxedtext(0, 0, adj=0, label="This is boxed text", srt=seq(0,360,20), xpad=.3, ypad=.3)
points(0,0, pch=15)

BreslowDayTest
Breslow-Day Test for Homogeneity of the Odds Ratios

Description
Calculates the Breslow-Day test of homogeneity for a $2 \times 2 \times k$ table, in order to investigate if all k strata have the same OR. If OR is not given, the Mantel-Haenszel estimate is used.

Usage
BreslowDayTest(x, OR = NA, correct = FALSE)
Arguments

- x: a $2 \times 2 \times k$ table.
- OR: the odds ratio to be tested against. If left undefined (default) the Mantel-Haenszel estimate will be used.
- correct: If TRUE, the Breslow-Day test with Tarone's adjustment is computed, which subtracts an adjustment factor to make the resulting statistic asymptotically chi-square.

Details

For the Breslow-Day test to be valid, the sample size should be relatively large in each stratum, and at least 80% of the expected cell counts should be greater than 5. Note that this is a stricter sample size requirement than the requirement for the Cochran-Mantel-Haenszel test for tables, in that each stratum sample size (not just the overall sample size) must be relatively large. Even when the Breslow-Day test is valid, it might not be very powerful against certain alternatives, as discussed in Breslow and Day (1980).

Alternatively, it might be better to cast the entire inference problem into the setting of a logistic regression model. Here, the underlying question of the Breslow-Day test can be answered by investigating whether an interaction term with the strata variable is necessary (e.g. using a likelihood ratio test using the anova function).

Author(s)

Michael Hoehle <hoehle@math.su.se>

References

Tarone, R.E. (1985) On heterogeneity tests based on efficient scores, Biometrika, 72, pp. 91-95.

See Also

WoolfTest

Examples

```r
migraine <- xtabs(freq ~ ., 
    cbind(expand.grid(treatment=c("active", "placebo"),
    response =c("better", "same"),
    gender =c("female", "male")),
```

freq=c(16, 5, 11, 20, 12, 7, 16, 19))

get rid of gender
tab <- xtabs(Freq ~ treatment + response, migraine)
Desc(tab)

only the women
female <- migraine[,, 1]
Desc(female)

.. and the men
male <- migraine[,, 2]
Desc(male)

BreslowDayTest(migraine)
BreslowDayTest(migraine, correct = TRUE)

salary <- array(
 c(38, 12, 102, 141, 12, 9, 136, 383),
 dim=c(2, 2, 2),
 dimnames=list(exposure=c("exposed", "not"),
 disease =c("case", "control"),
 salary =c("<1000", ">=1000"))
)

common odds ratio = 4.028269
BreslowDayTest(salary, OR = 4.02)

**BreuschGodfreyTest **

Breusch-Godfrey Test

Description

BreuschGodfreyTest performs the Breusch-Godfrey test for higher-order serial correlation.

Usage

BreuschGodfreyTest(formula, order = 1, order.by = NULL, type = c("Chisq", "F"),
 data = list(), fill = FALSE)

Arguments

- **formula**: a symbolic description for the model to be tested (or a fitted "lm" object).
- **order**: integer. maximal order of serial correlation to be tested.
- **order.by**: Either a vector z or a formula with a single explanatory variable like ~ z. The observations in the model are ordered by the size of z. If set to NULL (the default) the observations are assumed to be ordered (e.g., a time series).
type. the type of test statistic to be returned. Either "Chi sq" for the Chi-squared test statistic or "F" for the F test statistic.

data. an optional data frame containing the variables in the model. By default the variables are taken from the environment which BreuschGodfreyTest is called from.

fill. starting values for the lagged residuals in the auxiliary regression. By default 0 but can also be set to NA.

Details

Under H_0 the test statistic is asymptotically Chi-squared with degrees of freedom as given in parameter. If type is set to "F" the function returns a finite sample version of the test statistic, employing an F distribution with degrees of freedom as given in parameter.

By default, the starting values for the lagged residuals in the auxiliary regression are chosen to be 0 (as in Godfrey 1978) but could also be set to NA to omit them.

BreuschGodfreyTest also returns the coefficients and estimated covariance matrix from the auxiliary regression that includes the lagged residuals. Hence, CoefTest (package: RegClassTools) can be used to inspect the results. (Note, however, that standard theory does not always apply to the standard errors and t-statistics in this regression.)

Value

A list with class "BreuschGodfreyTest" inheriting from "htest" containing the following components:

- statistic. the value of the test statistic.
- p.value. the p-value of the test.
- parameter. degrees of freedom.
- method. a character string indicating what type of test was performed.
- data.name. a character string giving the name(s) of the data.
- coefficients. coefficient estimates from the auxiliary regression.
- vcov. corresponding covariance matrix estimate.

Note

This function was previously published as bgtest in the lmtest package and has been integrated here without logical changes.

Author(s)

David Mitchell <david.mitchell@dotars.gov.au>, Achim Zeileis
BrierScore

References

See Also

DurbinWatsonTest

Examples

```r
## Generate a stationary and an AR(1) series
x <- rep(c(1, -1), 50)
y1 <- 1 + x + rnorm(100)

## Perform Breusch-Godfrey test for first-order serial correlation:
BreuschGodfreyTest(y1 ~ x)

## or for fourth-order serial correlation
BreuschGodfreyTest(y1 ~ x, order = 4)

## Compare with Durbin-Watson test results:
DurbinWatsonTest(y1 ~ x)

y2 <- filter(y1, 0.5, method = "recursive")
BreuschGodfreyTest(y2 ~ x)
```

BrierScore
Brier Score for Assessing Prediction Accuracy

Description

Calculate Brier score for assessing the quality of the probabilistic predictions of binary events.

Usage

BrierScore(...)

S3 method for class 'glm'
BrierScore(x, scaled = FALSE, ...)

Default S3 method:
BrierScore(resp, pred, scaled = FALSE, ...)
Arguments

\(x \) a glm object
\(\text{resp} \) the response variable
\(\text{pred} \) the predicted values
\(\text{scaled} \) logical, defining if scaled or not. Default is FALSE.
\(\ldots \) further arguments to be passed to other functions.

Details

The Brier score is a proper score function that measures the accuracy of probabilistic predictions. It is applicable to tasks in which predictions must assign probabilities to a set of mutually exclusive discrete outcomes. The set of possible outcomes can be either binary or categorical in nature, and the probabilities assigned to this set of outcomes must sum to one (where each individual probability is in the range of 0 to 1).

It's calculated as

\[
\frac{1}{n} \sum_{i=1}^{n} (p_i - o_i)^2 \quad \text{where } p_i \text{ predicted probability and } o_i \text{ observed value out of } (0, 1)
\]

The lower the Brier score is for a set of predictions, the better the predictions are calibrated. Note that the Brier score, in its most common formulation, takes on a value between zero and one, since this is the largest possible difference between a predicted probability (which must be between zero and one) and the actual outcome (which can take on values of only 0 and 1). (In the original (1950) formulation of the Brier score, the range is double, from zero to two.)

Value

a numeric value

Author(s)

Andri Signorell <andri@signorell.net>

References

See Also

Conf

Examples

\[r.glm <- \text{glm}(\text{Survived} \sim ., \text{data}=\text{Untable(Titanic), family=binomial}) \]

\[\text{BrierScore}(r.glm) \]
BubbleLegend

Add a Legend to a Bubble Plot

Description

Add a legend for bubbles to a bubble plot.

Usage

```r
BubbleLegend(x, y = NULL, area, cols, labels = NULL, cols.lbl = "black",
            width = NULL, xjust = 0, yjust = 1, inset = 0, border = "black",
            frame = TRUE, adj = c(0.5, 0.5), cex = 1, cex.names = 1,
            bg = NULL, ...)```

**Arguments**

- `x` the left x-coordinate to be used to position the legend. See 'Details'.
- `y` the top y-coordinate to be used to position the legend. See 'Details'.
- `area` the area(s) for the bubbles in bubble legend.
- `cols` the color appearing in the legend.
- `labels` a vector of labels to be placed at the right side of the legend.
- `cols.lbl` the textcolor for the labels of the bubbles.
- `width` the width of the legend.
- `xjust` how the legend is to be justified relative to the legend x location. A value of 0 means left justified, 0.5 means centered and 1 means right justified.
- `yjust` the same as `xjust` for the legend y location.
- `inset` inset distance(s) from the margins as a fraction of the plot region when legend is placed by keyword.
- `border` defines the bordor color of each rectangle. Default is none (NA).
- `frame` defines the bordor color of the frame around the whole legend. Default is none (NA).
- `adj` text alignment, horizontal and vertical.
- `cex` extension factor for the area, default 1.0.
- `cex.names` character extension for the labels, default 1.0.
- `bg` the background color for the bubble legend.
- `...` further arguments are passed to the function `text`.
Details

The labels are placed in the middle of the legend.

The location of the legend may be specified by setting x to a single keyword from the list "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center". This places the legend on the inside of the plot frame at the given location. Partial argument matching is used. The optional inset argument specifies how far the legend is inset from the plot margins. If a single value is given, it is used for both margins; if two values are given, the first is used for x-distance, the second for y-distance. This is the same behaviour as it's implemented in `legend`.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

`legend`, `FindColor`, `legend`

Examples

```r
plotbubble(x=d.pizza$delivery_min, y=d.pizza$temperature, area=d.pizza$price,
 xlab="delivery time", ylab="temperature",
 col=SetAlpha(as.numeric(d.pizza$area)+2, .5), border="darkgrey",
 na.rm=TRUE, main="Price-Bubbles", panel.first=grid())

BubbleLegend("bottomleft", area=c(1500, 1000, 500), frame=TRUE,
 cols=SetAlpha("steelblue",0.5), bg="green",
 radius = c(1, 2.5, 5), labels=c(1500, 1000, 500), cex=0.8,
 cols.lbl=c("yellow", "red","blue"))
```

Description

This is just a wrapper for creating an empty plot with suitable defaults for plotting geometric shapes.

Usage

```r
Canvas(xlim = NULL, ylim = xlim, main = NULL, xpd = par("xpd"),
 mar=c(5.1,5.1,5.1,5.1), asp = 1, bg = par("bg"), usrbg = "white", ...)
```

Arguments

- `xlim`, `ylim`: the x and y limits for the plot. Default is c(-1, 1).
- `xpd`: expand drawing area, defaults to `par("xpd")`.
- `main`: the main title on top of the plot.
CartToPol

mar set margins. Defaults to c(5.1,5.1,5.1,5.1).
asp numeric, giving the aspect ratio y/x. (See \texttt{plot.window} for details. Default is 1.
bg the background color of the plot, defaults to \texttt{par("bg")}, which usually will be "white".
usrbg the color of the user space of the plot, defaults to "white".
... additional arguments are passed to the \texttt{plot()} command.

Details

The plot is created with these settings:
\texttt{asp = 1, xaxt = "n", yaxt = "n", xlab = ",", ylab = ",", frame.plot = FALSE}.

Value

a list of all the previous values of the parameters changed (returned invisibly)

Author(s)

Andri Signorell <andri@signorell.net>

Examples

\begin{verbatim}
Canvas(7)
text(0, 0, "Hello world!", cex=5)
\end{verbatim}

\begin{verbatim}
CartToPol

Transform Cartesian to Polar/Spherical Coordinates and Vice Versa

Description

Transform cartesian into polar coordinates, resp. to spherical coordinates and vice versa.

Usage

\texttt{CartToPol(x, y)}
\texttt{PolToCart(r, theta)}
\texttt{CartToSph(x, y, z, up = TRUE)}
\texttt{SphToCart(r, theta, phi, up = TRUE)}

Arguments

\begin{verbatim}
x, y, z vectors with the xy-coordinanates to be transformed.
r a vector with the radius of the points.
theta a vector with the angle(s) of the points.
phi a vector with the angle(s) of the points.
up logical. If set to \texttt{TRUE} (default) theta is measured from x-y plane, else theta is measured from the z-axis.
\end{verbatim}
Details

Angles are in radians, not degrees (i.e., a right angle is \(\pi/2\)). Use \texttt{DegToRad} to convert, if you don’t wanna do it by yourself.
All parameters are recycled if necessary.

Value

\texttt{PolToCart} returns a list of x and y coordinates of the points.
\texttt{CartToPol} returns a list of \(r\) for the radius and \(\theta\) for the angles of the given points.

Author(s)

Andri Signorell <andri@signorell.net>, Christian W. Hoffmann <christian@echoffmann.ch>

Examples

\begin{verbatim}
CartToPol(x=1, y=1)  
CartToPol(x=c(1,2,3), y=c(1,1,1))  
CartToPol(x=c(1,2,3), y=1)
\end{verbatim}

\begin{verbatim}
PolToCart(r=1, theta=pi/2)  
PolToCart(r=c(1,2,3), theta=pi/2)
\end{verbatim}

\begin{verbatim}
CartToSph(x=1, y=2, z=3)  # r=3.741657, theta=0.930274, phi=1.107149
\end{verbatim}

---

CatTable  

\textit{Function to write a table}

Description

CatTable helps printing a table, if is has to be broken into multiple rows. Rowlabels will be repeated after every new break.

Usage

\texttt{CatTable(tab, wcol, nrepchars, width = getOption("width"))}

Arguments

- \texttt{tab}  
  the rows of a table to be printed, pasted together in one string with constant columnwidth.
- \texttt{wcol}  
  integer, the width of the columns. All columns must have the same width.
- \texttt{nrepchars}  
  integer, the number of characters to be repeated with every break. This is typically the maximum width of the rowlabels.
- \texttt{width}  
  integer, the width of the whole table. Default is the width of the current command window (getOption("width")).
Author(s)

Andri Signorell <andri@signorell.net>

See Also

table, paste

Examples

# used in bivariate description functions
Desc(temperature ~ cut(delivery_min, breaks=40), data=d.pizza)

txt <- c(
  paste(sample(letters, 500, replace=TRUE), collapse=""),
  paste(sample(letters, 500, replace=TRUE), collapse=""),
  paste(sample(letters, 500, replace=TRUE), collapse=""
)
txt <- paste(c("aaa","bbb","ccc"), txt, sep="")

CatTable(txt, nrepchars=3, wcol=5)

---

**Description**

Calculates Lin’s concordance correlation coefficient for agreement on a continuous measure.

**Usage**

```r
CCC(x, y, ci = "z-transform", conf.level = 0.95, na.rm = FALSE)
```

**Arguments**

- `x` a vector, representing the first set of measurements.
- `y` a vector, representing the second set of measurements.
- `ci` a character string, indicating the method to be used. Options are `z-transform` or `asymptotic`.
- `conf.level` magnitude of the returned confidence interval. Must be a single number between 0 and 1.
- `na.rm` logical, indicating whether NA values should be stripped before the computation proceeds. If set to TRUE only the complete cases of the ratings will be used. Defaults to FALSE.
Details

Computes Lin’s (1989, 2000) concordance correlation coefficient for agreement on a continuous measure obtained by two methods. The concordance correlation coefficient combines measures of both precision and accuracy to determine how far the observed data deviate from the line of perfect concordance (that is, the line at 45 degrees on a square scatter plot). Lin’s coefficient increases in value as a function of the nearness of the data’s reduced major axis to the line of perfect concordance (the accuracy of the data) and of the tightness of the data about its reduced major axis (the precision of the data).

Both x and y values need to be present for a measurement pair to be included in the analysis. If either or both values are missing (i.e. coded NA) then the measurement pair is deleted before analysis.

Value

A list containing the following:

- `rho.c` the concordance correlation coefficient.
- `s.shift` the scale shift.
- `l.shift` the location shift.
- `C.b` a bias correction factor that measures how far the best-fit line deviates from a line at 45 degrees. No deviation from the 45 degree line occurs when C.b = 1. See Lin (1989, page 258).
- `blalt` a data frame with two columns: `mean` the mean of each pair of measurements, `delta` vector `y` minus vector `x`.

Author(s)

Mark Stevenson <mark.stevenson1@unimelb.edu.au>

References


See Also

ICC, KendallW

Examples

```r
Concordance correlation plot:
set.seed(seed = 1234)
method1 <- rnorm(n = 100, mean = 0, sd = 1)
method2 <- method1 + runif(n = 100, min = 0, max = 1)

Introduce some missing values:
method1[50] <- NA
method2[75] <- NA

tmp.ccc <- CCC(method1, method2, ci = "z-transform",
 conf.level = 0.95)

lab <- paste("CCC: ", round(tmp.ccc$rho.c[,1], digits = 2), ",
 round(tmp.ccc$rho.c[,2], digits = 2), ", - ",
 round(tmp.ccc$rho.c[,3], digits = 2), ",")

z <- lm(method2 ~ method1)

c <- lm(method2 - method1)

plot(method1, method2, xlim = c(0, 5), ylim = c(0,5), xlab = "Method 1",
 ylab = "Method 2", pch = 16)
abline(a = 0, b = 1, lty = 2)

legend(x = "topleft", legend = c("Line of perfect concordance",
 "Reduced major axis"), lty = c(2,1), lwd = c(1,1), bty = "n")
text(x = 1.55, y = 3.8, labels = lab)

Bland and Altman plot (Figure 2 from Bland and Altman 1986):
x <- c(494,395,516,434,476,557,413,442,658,433,417,656,267,
 478,178,423,427)
y <- c(512,430,520,428,500,600,364,380,658,445,432,626,260,
 477,259,350,451)

tmp.ccc <- CCC(x, y, ci = "z-transform", conf.level = 0.95)
tmp.mean <- mean(tmp.ccc$blalt$delta)
tmp.sd <- sqrt(var(tmp.ccc$blalt$delta))

plot(tmp.ccc$blalt$mean, tmp.ccc$blalt$delta, pch = 16,
 xlab = "Average PEFR by two meters (L/min)",
 ylab = "Difference in PEFR (L/min)", xlim = c(0,800),
 ylim = c(-140,140))

abline(h = tmp.mean, lty = 1, col = "gray")
```
Clockwise

**Description**

Transforms given angles in counter clock mode into clockwise angles.

**Usage**

```r
Clockwise(x, start = 0)
```

**Arguments**

- `x` : a vector of angles
- `start` : the starting angle for the transformation. Defaults to 0.

**Details**

Sometimes there's need for angles being defined the other way round.

**Value**

a data.frame with two columns, containing the start and end angles.

**Author(s)**

Andri Signorell <andri@signorell.net>

**See Also**

`PlotPolar`

**Examples**

```r
Clockwise(c(0, pi/4, pi/2, pi))
```
Closest

Find the Closest Value

Description

Find the closest value(s) of a number in a vector x. Multiple values will be reported, if the differences are the same.

Usage

Closest(x, a, which = FALSE, na.rm = FALSE)

Arguments

x
  the vector to be searched in

a
  the reference value

which
  a logical value defining if the index position or the value should be returned. By default will the value be returned.

na.rm
  a logical value indicating whether NA values should be stripped before the computation proceeds.

Value

the value or index in x which is closest to a

Author(s)

Andri Signorell <andri@signorell.net>

See Also

which

Examples

set.seed(8)
x <- sample(10, size=10, replace=TRUE)

Closest(x, 6)
Closest(x, 6, which=TRUE)

Closest(c(2, 3, 4, 5), 3.5)
Coalesce  

Return the First Element Not Being NA

Description

Return the first element of a vector, not being NA.

Usage

Coalesce(..., method = c("is.na", "is.finite"))

Arguments

...  the elements to be evaluated. This can either be a single vector, several vectors of same length, a matrix, a data.frame or a list of vectors (of same length). See examples.

method  one out of "is.na" (default) or "is.finite". The "is.na" option allows Inf values to be in the result, the second one eliminates them.

Details

If several vectors are supplied, the evaluation will be elementwise, resp. rowwise if x is a data.frame or a matrix. The first element of the result is the first non NA element of the first elements of all the arguments, the second element of the result is the one of the second elements of all the arguments and so on.

Shorter inputs (of non-zero length) are NOT recycled. The function will bark, if multiple vectors do not all have the same dimension.

The idea is borrowed from SQL. Might sometimes be useful when preparing data in R instead of in SQL.

Value

return a single vector of the first non NA element(s) of the given data structure.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

is.na, is.finite
CochranArmitageTest

Examples

Coalesce(c(NA, NA, NA, 5, 3))
Coalesce(c(NA, NULL, "a"))
Coalesce(NULL, 5, 3)

d.frm <- data.frame(matrix(c(
  1, 2, NA, 4,
  NA, NA, 3, 1,
  NaN, 2, 3, 1,
  NA, Inf, 1, 1), nrow=4, byrow=TRUE)
)
Coalesce(d.frm)
Coalesce(as.matrix(d.frm))
Coalesce(d.frm$X1, d.frm$X2, d.frm$X3, d.frm$X4)
Coalesce(d.frm$X1, d.frm$X2, d.frm$X3, d.frm$X4, method="is.finite")
Coalesce(list(d.frm[,1], d.frm[,2]))

# returns the first finite element
Coalesce(d.frm, method="is.finite")

# with characters (take care, factors won't work!)
# is.finite does not make sense here...
d.frm <- data.frame(matrix(c(
  "a", "b", NA, "4",
  NA, NA, "g", "m",
  NA_character_, "hfdg", "rr", "m",
  NA, Inf, 1, 1), nrow=4, byrow=TRUE)
, stringsAsFactors = FALSE)
Coalesce(d.frm$X1, d.frm$X2, d.frm$X3, d.frm$X4)
Coalesce(d.frm)
Coalesce(as.list(d.frm))

---

CochranArmitageTest    Cochran-Armitage Test for Trend

Description

Perform a Cochran Armitage test for trend in binomial proportions across the levels of a single variable. This test is appropriate only when one variable has two levels and the other variable is ordinal. The two-level variable represents the response, and the other represents an explanatory variable with ordered levels. The null hypothesis is the hypothesis of no trend, which means that the binomial proportion is the same for all levels of the explanatory variable.

Usage

CochranArmitageTest(x, alternative = c("two.sided", "increasing", "decreasing"))
Arguments

x a frequency table or a matrix.
alternative a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "increasing" or "decreasing". You can specify just the initial letter.

Value
A list of class htest, containing the following components:

statistic the z-statistic of the test.
parameter the dimension of the table.
p.value the p-value for the test.
alternative a character string describing the alternative hypothesis.
method the character string "Cochran-Armitage test for trend".
data.name a character string giving the names of the data.

Author(s)

Andri Signorell <andri@signorell.net> strongly based on code from Eric Lecoutre <lecoutre@stat.ucl.ac.be>


References


See Also

prop.trend.test

Examples

dose <- matrix(c(10,9,10,7,0,1,0,3), byrow=TRUE, nrow=2, dimnames=list(resp=0:1, dose=0:3))
Desc(dose)

CochranArmitageTest(dose, "increasing")
CochranArmitageTest(dose)
CochranArmitageTest(dose, "decreasing")

# not exactly the same as in package coin:
# independence_test(tumor ~ dose, data = lungtumor, teststat = "quad")
lungtumor <- data.frame(dose = rep(c(0, 1, 2), c(40, 50, 48)),
                         tumor = c(rep(c(0, 1), c(38, 2)),
                                  rep(c(0, 1), c(43, 7)),
                                  rep(c(0, 1), c(33, 15))))
tab <- table(lungtumor$dose, lungtumor$tumor)
CochranArmitageTest(tab)
# but similar to
prop.trend.test(tab[,1], apply(tab,1,sum))

## Description

Perform the Cochran’s Q test for unreplicated randomized block design experiments with a binary response variable and paired data.

## Usage

CochranQTest(y, ...)

### Default S3 method:
CochranQTest(y, groups, blocks, ...)

### S3 method for class 'formula'
CochranQTest(formula, data, subset, na.action, ...)

## Arguments

- `y` either a numeric vector of data values, or a data matrix.
- `groups` a vector giving the group for the corresponding elements of y if this is a vector; ignored if y is a matrix. If not a factor object, it is coerced to one.
- `blocks` a vector giving the block for the corresponding elements of y if this is a vector; ignored if y is a matrix. If not a factor object, it is coerced to one.
- `formula` a formula of the form a ~ b | c, where a, b and c give the data values and corresponding groups and blocks, respectively.
- `data` an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
- `subset` an optional vector specifying a subset of observations to be used.
- `na.action` a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").
- `...` further arguments to be passed to or from methods.
Details

CochranQTest can be used for analyzing unreplicated complete block designs (i.e., there is exactly one binary observation in y for each combination of levels of groups and blocks) where the normality assumption may be violated.

The null hypothesis is that apart from an effect of blocks, the location parameter of y is the same in each of the groups.

If y is a matrix, groups and blocks are obtained from the column and row indices, respectively. NA's are not allowed in groups or blocks; if y contains NA's, corresponding blocks are removed.

Note that Cochran’s Q Test is analogue to the Friedman test with 0, 1 coded response. This is used here for a simple implementation.

Value

A list with class htest containing the following components:

- statistic: the value of Cochran’s chi-squared statistic.
- parameter: the degrees of freedom of the approximate chi-squared distribution of the test statistic.
- p.value: the p-value of the test.
- method: the character string "Cochran’s Q-Test".
- data.name: a character string giving the names of the data.

Author(s)

Andri Signorell <andri@signorell.net>

Examples

```r
example in:
pp. S. 1824

use expand.grid, xtabs and Untable to create the dataset
d.frm <- Untable(xtabs(c(6,2,2,6,16,4,4,6) ~
 expand.grid(rep(list(c("F","U")), times=3)),
 colnames = LETTERS[1:3]))

rearrange to long shape
d.long <- reshape(d.frm, varying=1:3, times=names(d.frm)[c(1:3)],
 v.names="resp", direction="long")

after having done the hard work of data organisation, performing the test is a piece of cake....
CochranQTest(resp ~ time | id, data=d.long)
```
Description
Calculates the coefficient of variation and its confidence limits using the noncentral t-distribution.

Usage
CoefVar(x, unbiased = FALSE, conf.level = NA, na.rm = FALSE, ...)

## S3 method for class 'lm'
CoefVar(x, unbiased = FALSE, conf.level = NA, na.rm = FALSE, ...)

## S3 method for class 'aov'
CoefVar(x, unbiased = FALSE, conf.level = NA, na.rm = FALSE, ...)

## Default S3 method:
CoefVar(x, unbiased = FALSE, conf.level = NA, na.rm = FALSE, ...)

Arguments
- x: a (non-empty) numeric vector of data values.
- unbiased: logical value determining, if a bias correction should be used (see details). Default is FALSE.
- conf.level: confidence level of the interval. Default is FALSE.
- na.rm: logical. Should missing values be removed? Defaults to FALSE.
- ...: further arguments (not used here).

Details
In order for the coefficient of variation to be an unbiased estimate of the true population value, the coefficient of variation is corrected as:

\[ CV_{korr} = CV \cdot \left( 1 - \frac{1}{4 \cdot (n - 1)} + \frac{1}{n} \cdot CV^2 + \frac{1}{2 \cdot (n - 1)^2} \right) \]

Value
if no confidence intervals are requested: the estimate as numeric value (without any name)
else a named numeric vector with 3 elements
- est: estimate
- lwr.ci: lower confidence interval
- upr.ci: upper confidence interval
Author(s)
Andri Signorell <andri@signorell.net>, Michael Smithson <michael.smithson@anu.edu.au> (noncentral-t)

References

See Also
mean, sd

Examples
```r
set.seed(15)
x <- runif(100)
CoefVar(x, conf.level=0.95)
est low.ci upr.ci
0.5092566 0.4351644 0.6151409

Coefficient of variation for a linear model
r.lm <- lm(Fertility ~ ., swiss)
CoefVar(r.lm)
```

CohenD

Cohen’s Effect Size

Description
Computes the Cohen’s d and Hedges’ g effect size statistics.

Usage
CohenD(x, y = NULL, pooled = TRUE, correct = FALSE, conf.level = NA, na.rm = FALSE)
Arguments

- **x**: a (non-empty) numeric vector of data values.
- **y**: a (non-empty) numeric vector of data values.
- **pooled**: logical, indicating whether compute pooled standard deviation or the whole sample standard deviation. Default is TRUE.
- **correct**: logical, indicating whether to apply the Hedges correction. (Default: FALSE)
- **conf.level**: confidence level of the interval. Set this to NA, if no confidence intervals should be calculated. (This is the default)
- **na.rm**: logical. Should missing values be removed? Defaults to FALSE.

Value

A numeric vector with 3 elements:

- **d**: the effect size d
- **lwr.ci**: lower bound of the confidence interval
- **upr.ci**: upper bound of the confidence interval

Author(s)

Andri Signorell <andri@signorell.net>

References


See Also

- `mean`, `var`

Examples

```r
x <- d.pizza$price[d.pizza$driver=="Carter"]
y <- d.pizza$price[d.pizza$driver=="Miller"]

CohenD(x, y, conf.level=0.95, na.rm=TRUE)
```
Cohen's Kappa and Weighted Kappa

Description

Computes the agreement rates Cohen's kappa and weighted kappa and their confidence intervals.

Usage

CohenKappa(x, y = NULL, weights = c("Unweighted", "Equal-Spacing", "Fleiss-Cohen"),
conf.level = NA, ...)

Arguments

x can either be a numeric vector or a confusion matrix. In the latter case x must be a square matrix.
y NULL (default) or a vector with compatible dimensions to x. If y is provided,
table(x, y, ...) is calculated. In order to get a square matrix, x and y are coerced to factors with synchronized levels. (Note, that the vector interface can not be used together with weights.)
weights either one out of "Unweighted", "Equal-Spacing", "Fleiss-Cohen", which will calculate the weights accordingly, or a user-specified matrix having the same dimensions as x containing the weights for each cell.
conf.level confidence level of the interval. If set to NA (which is the default) no confidence intervals will be calculated.
... further arguments are passed to the function table, allowing i.e. to set useNA. This refers only to the vector interface.

Details

Cohen’s kappa is the diagonal sum of the (possibly weighted) relative frequencies, corrected for expected values and standardized by its maximum value.
The equal-spacing weights (see Cicchetti and Allison 1971) are defined by

\[ 1 - \frac{|i - j|}{r - 1} \]

r being the number of columns/rows, and the Fleiss-Cohen weights by

\[ 1 - \frac{(i - j)^2}{(r - 1)^2} \]

The latter attaches greater importance to closer disagreements.

Data can be passed to the function either as matrix or data.frame in x, or as two numeric vectors x and y. In the latter case table(x, y, ...) is calculated. Thus NAs are handled the same way as table does. Note that tables are by default calculated without NAs. The specific argument
useNA can be passed via the ... argument.
The vector interface \((x, \ y)\) is only supported for the calculation of unweighted kappa. For 2 factors with different levels we cannot ensure a reproducible construction of a confusion table, which is independent of the order of \(x\) and \(y\). All weights might lead to inconsistent results. Thus the function will raise an error in such cases.

**Value**

if no confidence intervals are requested: the estimate as numeric value

else a named numeric vector with 3 elements

- kappa: estimate
- lwr.ci: lower confidence interval
- upr.ci: upper confidence interval

**Author(s)**

David Meyer <david.meyer@r-project.org>, some slight changes Andri Signorell <andri@signorell.net>

**References**


**See Also**

*CronbachAlpha, KappaM*

**Examples**

```r
m <- matrix(c(53, 5, 2,
11, 14, 5,
1, 6, 3), nrow=3, byrow=TRUE,
dimnames = list(rater1 = c("V","N","P"), rater2 = c("V","N","P")))

confusion matrix interface
CohenKappa(m, weight="Unweighted")

vector interface
x <- Untable(m)
CohenKappa(x$rater1, x$rater2, weight="Unweighted")
```
# pairwise Kappa
rating <- data.frame(
  rtr1 = c(4,2,2,5,2, 1,3,1,1,5, 1,1,2,1,2, 3,1,1,2,1, 5,2,2,1,1, 2,1,2,1,5),
  rtr2 = c(4,2,3,5,2, 1,3,1,1,5, 4,2,2,4,2, 3,1,1,2,3, 5,4,2,1,4, 2,1,2,3,5),
  rtr3 = c(4,2,3,5,2, 3,3,3,4,5, 4,4,2,4,4, 3,1,1,4,3, 5,4,4,4,4, 2,1,4,3,5),
  rtr4 = c(4,5,3,5,4, 3,3,3,4,5, 4,4,3,4,4, 3,4,1,4,5, 5,4,5,4,4, 2,1,4,3,5),
  rtr5 = c(4,5,3,5,4, 3,5,3,4,5, 4,4,3,4,4, 3,5,1,4,5, 5,4,5,4,4, 2,5,4,3,5),
  rtr6 = c(4,5,5,5,4, 3,5,4,4,5, 4,4,3,4,5, 5,5,2,4,5, 5,4,5,4,5, 4,5,4,3,5)
)

PairApply(rating, FUN=CohenKappa, symmetric=TRUE)

# Weighted Kappa
cats <- c("<10%", "11-20%", "21-30%", "31-40%", "41-50%", ">50%")
m <- matrix(c(5,8,1,2,4,2, 3,5,3,5,5,0, 1,2,6,11,2,1, 0,1,5,4,3,3, 0,0,1,2,5,2, 0,0,1,2,1,4), nrow=6, byrow=TRUE, 
dimnames = list(rater1 = cats, rater2 = cats))
CohenKappa(m, weight="Equal-Spacing")

# supply an explicit weight matrix
ncol(m)
(wm <- outer(1:ncol(m), 1:ncol(m), function(x, y) {
  1 - ((abs(x-y) / (ncol(m)-1)) ))
) )
CohenKappa(m, weight=wm, conf.level=0.95)

# however, Fleiss, Cohen and Everitt weight similarities
fleiss <- matrix(c(
  106, 10, 4, 22, 28, 10, 2, 12, 6 ), ncol=3, byrow=TRUE)

#Fleiss weights the similarities
weights <- matrix(c(
  1.0000, 0.0000, 0.4444, 0.0000, 1.0000, 0.6666, 0.4444, 0.6666, 1.0000 ), ncol=3)
CohenKappa(fleiss, weights)

### Description

Collapse (or re-label) variables in a a contingency table or ftable object by re-assigning levels of the table variables.
Usage

`CollapseTable(x, ...)`

Arguments

- `x` A table or `ftable` object
- `...` A collection of one or more assignments of factors of the table to a list of levels

Details

Each of the `...` arguments must be of the form `variable = levels`, where `variable` is the name of one of the table dimensions, and `levels` is a character or numeric vector of length equal to the corresponding dimension of the table. Missing argument names are allowed and will be interpreted in the order of the dimensions of the table.

Value

A `table` object (even if the input was an `ftable`), representing the original table with one or more of its factors collapsed or rearranged into other levels.

Author(s)

Michael Friendly <friendly@yorku.ca>, Andri Signorell <andri@signorell.net>

See Also

- `UnTable`
- `margin.table` "collapses" a table in a different way, by summing over table dimensions.

Examples

```r
create some sample data in table form
sex <- c("Male", "Female")
age <- letters[1:6]
education <- c("low", "med", "high")
data <- expand.grid(sex=sex, age=age, education=education)
counts <- rpois(36, 100)
data <- cbind(data, counts)
t1 <- xtabs(counts ~ sex + age + education, data=data)

Desc(t1)
```

```r
age a b c d e f
sex education
Male low 119 101 109 85 99 93
med 94 98 103 108 84 84
high 81 88 96 110 100 92
Female low 107 104 95 103 96
med 104 98 94 95 110 106
high 93 85 90 109 99 86
```
# collapse age to 3 levels
```r
t2 <- CollapseTable(t1, age=c("A", "A", "B", "B", "C", "C"))
```
```
sex education
Male low 220 194 192
med 192 211 168
high 169 206 192
Female low 211 181 199
med 202 189 216
high 178 199 185
```

# collapse age to 3 levels and pool education: "low" and "med" to "low"
```r
t3 <- CollapseTable(t1, age=c("A", "A", "B", "B", "C", "C"),
 education=c("low", "low", "high"))
```
```
sex education
Male low 412 405 360
high 169 206 192
Female low 413 370 415
high 178 199 185
```

# change labels for levels of education to 1:3
```r
t4 <- CollapseTable(t1, education=1:3)
```
```
sex education
Male 1 119 101 109 85 99 93
2 94 98 103 108 84 84
3 81 88 96 110 100 92
Female 1 107 104 95 86 103 96
2 104 98 94 95 110 106
3 93 85 90 109 99 86
```

---

**ColorDlg**  
*Display Color Dialog to Choose a Color*

**Description**

Choose a color by means of the system’s color dialog. Nice for looking up RGB-values of any color.
ColorLegend

Usage

ColorDlg()

Value

RGB value of the selected color

Author(s)

Andri Signorell <andri@signorell.net>

See Also

ColPicker

Add a ColorLegend to a Plot

Description

Add a color legend, an image of a sequence of colors, to a plot.

Usage

ColorLegend(x, y = NULL, cols = rev(heat.colors(100)), labels = NULL, width = NULL, height = NULL, horiz = FALSE, xjust = 0, yjust = 1, inset = 0, border = NA, frame = NA, cntrlbl = FALSE, adj = ifelse(horiz, c(0.5, 1), c(1, 0.5)), cex = 1, ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>the left x-coordinate to be used to position the colorlegend. See 'Details'.</td>
</tr>
<tr>
<td>y</td>
<td>the top y-coordinate to be used to position the colorlegend. See 'Details'.</td>
</tr>
<tr>
<td>cols</td>
<td>the color appearing in the colorlegend.</td>
</tr>
<tr>
<td>labels</td>
<td>a vector of labels to be placed at the right side of the colorlegend.</td>
</tr>
<tr>
<td>width</td>
<td>the width of the colorlegend.</td>
</tr>
<tr>
<td>height</td>
<td>the height of the colorlegend.</td>
</tr>
<tr>
<td>horiz</td>
<td>logical indicating if the colorlegend should be horizontal; default FALSE means vertical alignment.</td>
</tr>
<tr>
<td>xjust</td>
<td>how the colorlegend is to be justified relative to the colorlegend x location. A value of 0 means left justified, 0.5 means centered and 1 means right justified.</td>
</tr>
<tr>
<td>yjust</td>
<td>the same as xjust for the legend y location.</td>
</tr>
<tr>
<td>inset</td>
<td>inset distance(s) from the margins as a fraction of the plot region when colorlegend is placed by keyword.</td>
</tr>
</tbody>
</table>
ColorLegend

border defines the border color of each rectangle. Default is none (NA).
frame defines the border color of the frame around the whole colorlegend. Default is none (NA).


cntrlbl defines, whether the labels should be printed in the middle of the color blocks or start at the edges of the colorlegend. Default is FALSE, which will print the extreme labels centered on the edges.

adj text alignment, horizontal and vertical.

cex character extension for the labels, default 1.0.

... further arguments are passed to the function text.

Details

The labels are placed at the right side of the colorlegend and are reparted uniformly between y and y- height.

The location may also be specified by setting x to a single keyword from the list "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center". This places the colorlegend on the inside of the plot frame at the given location. Partial argument matching is used. The optional inset argument specifies how far the colorlegend is inset from the plot margins. If a single value is given, it is used for both margins; if two values are given, the first is used for x-distance, the second for y-distance.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

legend, FindColor, BubbleLegend

Examples

plot(1:15, xlim=c(0,10), type="n", xlab="", ylab="", main="Colorstrips")

# A
ColorLegend(x="right", inset=0.1, labels=c(1:10))

# B: Center the labels
ColorLegend(x=1, y=9, height=6, col=colorRampPalette(c("blue", "white", "red")),
space = "rgb") (5), labels=1:5, cntrlbl = TRUE)

# C: Outer frame
ColorLegend(x=3, y=9, height=6, col=colorRampPalette(c("blue", "white", "red")),
space = "rgb") (5), labels=1:4, frame="grey")

# D
ColorLegend(x=5, y=9, height=6, col=colorRampPalette(c("blue", "white", "red")),
space = "rgb") (10), labels=sprintf("%.1f", seq(0,1,0.1)), cex=0.8)
ColPicker

Plot All Named R Colors

Description

ColPicker() plots the R-colors in a dense manner and allows to collect some colors by using a locator. This can be helpful when some colors should be put together to a palette.

Usage

ColPicker(locator = TRUE, ord = c("hsv", "default"), label = c("text", "hex", "dec"), mdim = c(38, 12), newwin = FALSE)

Arguments

locator logical, defines if the colors can be selected by mouseclick. Default is TRUE.

ord the order of the colors, can be either defined by hsv-value or by the R internal color-number. Default is the latter.

label label for the colors, can be the colorme (text), the hex-code (#RRGGBB) or the decimal RGB-number

mdim the dimension of the color matrix. Default is 38 rows and 12 columns.

newwin logical, defining if a new graphic device should be used. Default is FALSE.

Details

The function plots all the colors but leaves out the grey scales grey() and gray().

Author(s)

Andri Signorell <andri@signorell.net>

See Also

ColorDlg, par, colors, PlotPch
**Examples**

```r
ColPicker(locator=FALSE, ord="hsv")
ColPicker(locator=FALSE, label="hex")
```

---

**ColToGrey**

**Convert Colors to Grey/Grayscale**

**Description**

Convert colors to grey/grayscale so that you can see how your plot will look after photocopying or printing to a non-color printer.

**Usage**

```r
ColToGrey(col)
ColToGray(col)
```

**Arguments**

- `col`: vector of any of the three kind of R colors, i.e., either a color name (an element of colors()), a hexadecimal string of the form "#rrggbbaa" (see rgb), or an integer i meaning palette()[[i]]. Non-string values are coerced to integer.

**Details**

Converts colors to greyscale using the formula grey = 0.3*red + 0.59*green + 0.11*blue. This allows you to see how your color plot will approximately look when printed on a non-color printer or photocopied.

**Value**

A vector of colors (greys) corresponding to the input colors.

**Note**

These function was previously published as Col2Grey() in the TeachingDemos package and has been integrated here without logical changes.

**Author(s)**

Greg Snow <greg.snow@imail.org>

**See Also**

grey, ColToRgb, dichromat package
Examples
par(mfcol=c(2,2))
tmp <- 1:3
names(tmp) <- c('red','green','blue')

barplot(tmp, col=c('red','green','blue'))
barplot(tmp, col=ColToGrey(c('red','green','blue')))

barplot(tmp, col=c('red','#008100','#3636ff'))
barplot(tmp, col=ColToGrey(c('red','#008100','#3636ff')))
Description

ColToHsv transforms colors from R color into HSV space (hue/saturation/value).

Usage

ColToHsv(col, alpha = FALSE)

Arguments

col vector of any of the three kind of R colors, i.e., either a color name (an element of colors()), a hexadecimal string of the form "#rrggbbaa", or an integer i meaning palette()[i]. Non-string values are coerced to integer.

alpha logical value indicating whether alpha channel (opacity) values should be returned.

Details

Converts a color first into RGB and from there into HSV space by means of the functions rgb2hsv and col2rgb.

Value (brightness) gives the amount of light in the color. Hue describes the dominant wavelength. Saturation is the amount of Hue mixed into the color.

An HSV colorspace is relative to an RGB colorspace, which in R is sRGB, which has an implicit gamma correction.

Value

A matrix with a column for each color. The three rows of the matrix indicate hue, saturation and value and are named "h", "s", and "v" accordingly.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

rgb2hsv, ColToRgb

Examples

ColToHsv("peachpuff")
ColToHsv(c(blu = "royalblue", reddish = "tomato")) # names kept
ColToHsv(1:8)
ColToRgb

Color to RGB Conversion

Description

R color to RGB (red/green/blue) conversion.

Usage

ColToRgb(col, alpha = FALSE)

Arguments

col vector of any of the three kind of R colors, i.e., either a color name (an element of colors()), a hexadecimal string of the form "#rrggbbaa", or an integer i meaning palette()[i]. Non-string values are coerced to integer.

alpha logical value indicating whether alpha channel (opacity) values should be returned.

Details

This is merely a wrapper to col2rgb, defined in order to follow this package’s naming conventions.

Value

A matrix with a column for each color. The three rows of the matrix indicate red, green and blue value and are named "red", "green", and "blue" accordingly. The matrix might have a 4th row if an alpha channel is requested.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

col2rgb, RgbToCol

Examples

ColToRgb("peachpuff")
ColToRgb(c( blu = "royalblue", reddish = "tomato" )) # names kept

ColToRgb(1:8)
**Description**

Wraps text in a character matrix so, that it’s displayed over more than one line.

**Usage**

```r
ColumnWrap(x, width = NULL)
```

**Arguments**

- `x` the matrix with one row
- `width` integer, the width of the columns in characters

**Details**

A data.frame containing character columns with long texts is often wrapped by columns. This can lead to a loss of overview. ColumnWrap wraps the lines within the columns.

**Value**

a character matrix

**Author(s)**

Andri Signorell <andri@signorell.net>

**See Also**

`strwrap`

**Examples**

```
Abstract(d.pizza)
```
CombPairs  

*Get All Pairs Out of One or Two Sets of Elements*

**Description**

Returns all combinations of 2 out of the elements in x or x and y (if defined). Combinations of the same elements will be dropped (no replacing).

**Usage**

```
CombPairs(x, y = NULL)
```

**Arguments**

- `x`  
a vector of elements

- `y`  
a vector of elements, need not be same dimension as x. If y is not NULL then all combination x and y are returned.

**Details**

If y = NULL then all combination of 2 out of x are returned.  
If y is defined then all combinations of x and y are calculated.

**Value**

CombPairs returns a data.frame with 2 columns X1 and X2.

**Author(s)**

Andri Signorell <andri@signorell.net>

**See Also**

`combn`, `expand.grid`, `outer`, `lower.tri`

**Examples**

```r
CombPairs(letters[1:4])
CombPairs(x = letters[1:4], y = LETTERS[1:2])

get all pairs of combinations between factors and numerics out of a data.frame
CombPairs(which(sapply(d.pizza, isNumeric)), which(sapply(d.pizza, is.factor)))
```
ConDisPairs

Concordant and Discordant Pairs

Description
This function counts concordant and discordant pairs for two variables x, y with at least ordinal scale, aggregated in a 2way table. This is the base for many association measures like Goodman Kruskal’s gamma, but also all tau measures.

Usage
ConDisPairs(x)

Arguments
x
a 2-dimensional table. The column and the row order must be the logical one.

Details
The code is so far implemented in R (O(n^2)) and therefore slow for large sample sizes (>5000). An O(n log(n)) implementation is on track.

Value
a list with the number of concordant pairs, the number of discordant pairs and the matrix

Author(s)
Andri Signorell <andri@signorell.net>

References

See Also
Association measures:
KendallTauA (tau-a), cor (method="kendall") for tau-b, StuartTauC (tau-c), SomersDelta Lambda, GoodmanKruskalTau (tau), UncertCoef, MutInf

Examples
tab <- as.table(rbind(c(26,26,23,18,9),c(6,7,9,14,23)))
ConDisPairs(tab)
Confusion Matrix And Associated Statistics

Description
Calculates a cross-tabulation of observed and predicted classes with associated statistics.

Usage
Conf(x, ...)

## S3 method for class 'table'
Conf(x, pos = NULL, ...)
## S3 method for class 'matrix'
Conf(x, pos = NULL, ...)
## Default S3 method:
Conf(x, ref, pos = NULL, na.rm = TRUE, ...)

## S3 method for class 'rpart'
Conf(x, ...)
## S3 method for class 'multinom'
Conf(x, ...)
## S3 method for class 'glm'
Conf(x, cutoff = 0.5, ...)
## S3 method for class 'randomForest'
Conf(x, ...)
## S3 method for class 'svm'
Conf(x, ...)
## S3 method for class 'regr'
Conf(x, ...)

## S3 method for class 'Conf'
plot(x, main = "Confusion Matrix", ...)

## S3 method for class 'Conf'
print(x, digits = max(3,getOption("digits") - 3), ...)

Sens(x, ...)
Spec(x, ...)

Arguments
x a vector, normally a factor, of predicted classes or an object of following classes rpart, randomForest, svm, C50, glm, multinom, regr, lda, qda or table, resp. matrix. When a model is given, the predicted classes will be determined. A table or a matrix will be interpreted as a confusion matrix.
ref a vector, normally a factor, of classes to be used as the reference. This is ignored if x is a table or matrix.

pos a character string that defines the factor level corresponding to the "positive" results. Will be ignored for a \( n \times n \) table \( n > 2 \).

cutoff used in logit models. The cutoff for changing classes.

main overall title for the plot.

digits controls the number of digits to print.

na.rm a logical value indicating whether or not missing values should be removed. Defaults to FALSE.

... further arguments to be passed to or from methods.

Details

The functions require the factors to have the same levels.

For two class problems, the sensitivity, specificity, positive predictive value and negative predictive value is calculated using the positive argument. Also, the prevalence of the "event" is computed from the data (unless passed in as an argument), the detection rate (the rate of true events also predicted to be events) and the detection prevalence (the prevalence of predicted events).

Suppose a \( 2 \times 2 \) table with notation

<table>
<thead>
<tr>
<th>Reference</th>
<th>Predicted Event</th>
<th>Predicted No Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>No Event</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

The formulas used here are:

\[
\text{Sensitivity} = \frac{A}{A + C}
\]

\[
\text{Specificity} = \frac{D}{B + D}
\]

\[
\text{Prevalence} = \frac{A + C}{A + B + C + D}
\]

\[
\text{PPV} = \frac{(\text{sensitivity} \times \text{Prevalence}) + ((1 - \text{specificity}) \times (1 - \text{Prevalence}))}{((1 - \text{sensitivity}) \times \text{Prevalence}) + ((\text{specificity} \times (1 - \text{Prevalence}))}
\]

\[
\text{NPV} = \frac{(\text{specificity} \times (1 - \text{Prevalence})) + ((1 - \text{sensitivity}) \times \text{Prevalence})}{((1 - \text{sensitivity}) \times \text{Prevalence}) + ((\text{specificity} \times (1 - \text{Prevalence}))}
\]

\[
\text{DetectionRate} = \frac{A}{A + B + C + D}
\]

\[
\text{DetectionPrevalence} = \frac{A + B}{A + B + C + D}
\]

\[
\text{F - val Accuracy} = \frac{2}{1/\text{PPV} + 1/\text{Sensitivity}}
\]

See the references for discussions of the first five formulas.

For more than two classes, these results are calculated comparing each factor level to the remaining levels (i.e. a "one versus all" approach).

The overall accuracy and unweighted Kappa statistic are calculated. A p-value from McNemar’s test is also computed using \texttt{mcnemar.test} (which can produce \texttt{NA} values with sparse tables).
The overall accuracy rate is computed along with a 95 percent confidence interval for this rate (using `binomCI`) and a one-sided test to see if the accuracy is better than the "no information rate," which is taken to be the largest class percentage in the data.

The sensitivity is defined as the proportion of positive results out of the number of samples which were actually positive. When there are no positive results, sensitivity is not defined and a value of NA is returned. Similarly, when there are no negative results, specificity is not defined and a value of NA is returned. Similar statements are true for predictive values.

Confidence intervals for sensitivity, specificity etc. could be calculated as binomial confidence intervals (see `binomCI`). `binomCI(A, A+C)` yields the ci for sensitivity.

Value

a list with elements

- `table`: the results of `table` on data and reference
- `positive`: the positive result level
- `overall`: a numeric vector with overall accuracy and Kappa statistic values
- `byClass`: the sensitivity, specificity, positive predictive value, negative predictive value, prevalence, detection rate and detection prevalence for each class. For two class systems, this is calculated once using the `positive` argument

Author(s)

Andri Signorell <andri@signorell.net>

rewritten based on the ideas of `confusionMatrix` by Max Kuhn <Max.Kuhn@pfizer.com>

References


See Also

`OddsRatio`, `RelRisk`

Examples

```r
let tab be a confusion table
tab <- TextToTable("lo hi
lo 23 13
hi 10 18 ", dimnames=c("pred", "obs"))

Conf(tab, pos="hi")
```
pred <- Untable(tab)[,"pred"]
obs <- Untable(tab)[,"obs"]

Conf(x = pred, ref = obs)
Conf(x = pred, ref = obs, pos="hi")

Sens(tab)  # Sensitivity
Spec(tab)  # Specificity

tab <- TextToTable("
  terrible poor marginal clear
terrible  10  4  1  0
poor      5  10 12  2
marginal  2  4  12  5
clear     0  2  6  13
", dimnames=c("pred", "obs"))

Conf(tab)

---

ConnLines | Add Connection Lines to a Barplot

**Description**

Add connection lines to a stacked barplot (beside = TRUE is not supported). The function expects exactly the same arguments, that were used to create the barplot.

**Usage**

ConnLines(..., col = 1, lwd = 1, lty = "solid", xalign = c("mar","mid"))

**Arguments**

- `...` the arguments used to create the barplot. (The dots are sent directly to barplot).
- `col` the line color of the connection lines. Defaults to black.
- `lwd` the line width for the connection lines. Default is 1.
- `lty` the line type for the connection lines. Line types can either be specified as an integer (0=blank, 1=solid (default), 2=dashed, 3=dotted, 4=dotdash, 5=longdash, 6=twodash) or as one of the character strings "blank", "solid", "dashed", "dotted", "dotdash", "longdash", or "twodash". Default is "solid".
- `xalign` defines where the lines should be aligned to on the x-axis. Can be set either to the margins of the bars ("mar" which is the default) or to "mid". The latter will lead the connecting lines to the middle of the bars.
Author(s)

Andri Signorell <andri@signorell.net>

See Also

barplot

Examples

tab <- with(
  subset(d.pizza, driver %in% c("Carpenter","Miller","Farmer","Butcher")),
  table(factor(driver), Weekday(date, "dd", stringsAsFactor=TRUE))
)

tab

barplot(tab, beside=FALSE, space=1.2)
ConnLines(tab, beside=FALSE, space=1.2, lcol="grey50", lwd=1, lty=2)

barplot(tab, beside=FALSE, space=1.2, horiz=TRUE)
ConnLines(tab, beside=FALSE, space=1.2, horiz=TRUE, lcol="grey50", lwd=1, lty=2)

cols <- Pal("Helsana")[1:4]

b <- barplot(tab, beside=FALSE, horiz=FALSE, col=cols)
ConnLines(tab, beside=FALSE, horiz=FALSE, lcol="grey50", lwd=1, lty=2)

# set some labels
txt <- tab
txt[] <- gsub(pattern="^0", "", t(tab))  # do not print 0s
text(x=b, y=(apply(apply(rbind(0,tab), 2, Midx), 2, cumsum)), labels=txt,
  col=matrix(rep(TextContrastColor(cols), each=ncol(tab)),
  nrow=nrow(tab), byrow=FALSE ))

# align to the middle of the bars
barplot(tab, beside=FALSE, space=1.2)
ConnLines(tab, beside=FALSE, space=1.2, lcol="grey50", lwd=1, lty=2, method="mid")

Description

Perform Conover’s test of multiple comparisons using rank sums as post hoc test following a signif-
ificant kruskal.test.
Usage

ConoverTest(x, ...)

## Default S3 method:
ConoverTest(x, g, 
  method = c("holm", "hochberg", "hommel", "bonferroni", "BH", 
    "BY", "fdr", "none"),
  alternative = c("two.sided", "less", "greater"),
  out.list = TRUE, ...)

## S3 method for class 'formula'
ConoverTest(formula, data, subset, na.action, ...)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.
g a vector or factor object giving the group for the corresponding elements of x. Ignored if x is a list.
method the method for adjusting p-values for multiple comparisons. The function is calling p.adjust and this parameter is directly passed through.
alternative a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". You can specify just the initial letter.
out.list logical, indicating if the results should be printed in list mode or as a square matrix. Default is list (TRUE).
formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs the corresponding groups.
data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. Defaults togetOption("na.action").
... further arguments to be passed to or from methods.

Details

ConoverTest performs the post hoc pairwise multiple comparisons procedure appropriate to follow the rejection of a Kruskal-Wallis test. Conover's test is more powerful than Dunn's post hoc multiple comparisons test (DunnTest). The interpretation of stochastic dominance requires an assumption that the CDF of one group does not cross the CDF of the other.

ConoverTest makes m = k(k-1)/2 multiple pairwise comparisons based on the Conover-Iman t-test-statistic for the rank-sum differences:

\[ |\bar{R}_i - \bar{R}_j| > t_{1-\alpha/2,n-k} \cdot \sqrt{s^2 \cdot \left[ \frac{n - 1 - \hat{H}^*}{n - k} \right]} \cdot \left[ \frac{1}{n_i} + \frac{1}{n_j} \right] \]
with the (tie corrected) statistic of the Kruskal Wallis test

\[ H^* = \frac{12}{n(n+1)} \cdot \sum_{i=1}^{k} \frac{R_i^2}{n_i} - 3 \cdot (n + 1) \]

\[ 1 - \frac{\sum_{i=1}^{k} (t_i^2 - t_i)}{n_i} \]

and the \( s^2 \) being

\[ s^2 = \frac{1}{n-1} \left[ \sum R_i^2 - n \cdot \frac{(n + 1)^2}{4} \right] \]

If \( x \) is a list, its elements are taken as the samples to be compared, and hence have to be numeric data vectors. In this case, \( g \) is ignored, and one can simply use \( \text{ConoverTest}(x) \) to perform the test. If the samples are not yet contained in a list, use \( \text{ConoverTest(list(x, \ldots))} \).

Otherwise, \( x \) must be a numeric data vector, and \( g \) must be a vector or factor object of the same length as \( x \) giving the group for the corresponding elements of \( x \).

**Value**

A list with class "DunnTest" containing the following components:

- \( \text{res} \): an array containing the mean rank differences and the according p-values

**Author(s)**

Andri Signorell <andri@signorell.net>, the interface is based on R-Core code

**References**


**See Also**

DunnTest, NemenyiTest, kruskal.test, wilcox.test, p.adjust

**Examples**

```r
Hollander & Wolfe (1973), 116.
Mucociliary efficiency from the rate of removal of dust in normal
subjects, subjects with obstructive airway disease, and subjects
with asbestosis.
x <- c(2.9, 3.0, 2.5, 2.6, 3.2) # normal subjects
y <- c(3.8, 2.7, 4.0, 2.4) # with obstructive airway disease
z <- c(2.8, 3.4, 3.7, 2.2, 2.0) # with asbestosis
ConoverTest(list(x, y, z))

Equivalently,
x <- c(x, y, z)
g <- factor(rep(1:3, c(5, 4, 5)),
 labels = c("Normal subjects",
```

```r
```
"Subjects with obstructive airway disease",
"Subjects with asbestosis")

# do the kruskal.test first
kruskal.test(x, g)

# ...and the pairwise test afterwards
ConoverTest(x, g)

## Formula interface.
boxplot(Ozone ~ Month, data = airquality)
ConoverTest(Ozone ~ Month, data = airquality)

---

## Contrasts

### Description
Generate all pairwise contrasts for using in a post-hoc test, e.g. ScheffeTest.

### Usage
Contrasts(levs)

### Arguments
- **levs**
  - the levels to be used

### Value
A matrix with all possible pairwise contrasts, that can be built with the given levels.

### Author(s)
Andri Signorell <andri@signorell.net>

### See Also
- **ScheffeTest**

### Examples
Contrasts(LETTERS[1:5])

```r
B-A C-A D-A E-A C-B D-B E-B D-C E-C E-D
A -1 -1 -1 0 0 0 0 0 0
B 1 0 0 0 -1 -1 0 0 0
C 0 1 0 0 1 0 0 -1 -1
D 0 0 1 0 0 1 0 1 0
E 0 0 0 0 1 0 0 0 1
```
Description

Converts a numerical vector from one measurement system to another. Metric prefixes (as unit prefixes that precede a basic unit of measure to indicate a multiple or fraction of the unit) are respected.

Usage

\texttt{ConvUnit(x, from, to)}

data(d.units)
data(d.prefix)

Arguments

- \texttt{x} the numeric to be converted.
- \texttt{from} a character defining the original unit.
- \texttt{to} a character defining the target unit.

Details

The units as defined by the International System of Units (SI) (m, s, A, K, mol, cd, Hz, rad, sr, N, Pa, J, W, C, V, F, Ohm, S, Wb, T, H, lm, lx, Bq, Gy, Sv, kat, l) can be used to convert between different prefixes. The following non SI-units can be chosen for conversion between different systems. NA will be returned if a conversion can’t be found.

The function is using the conversion factors stored in the dataset \texttt{d.units}.

Weight and mass

<table>
<thead>
<tr>
<th></th>
<th>g</th>
<th>metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pound mass (avoardupois)</td>
<td>lb</td>
<td></td>
</tr>
<tr>
<td>Ounce mass (avoardupois)</td>
<td>oz</td>
<td></td>
</tr>
<tr>
<td>Metric ton</td>
<td>ton (or tn)</td>
<td></td>
</tr>
</tbody>
</table>

Distance

<table>
<thead>
<tr>
<th></th>
<th>m</th>
<th>metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statute mile</td>
<td>mi</td>
<td></td>
</tr>
<tr>
<td>Nautical mile</td>
<td>nmi</td>
<td></td>
</tr>
<tr>
<td>Inch</td>
<td>in</td>
<td></td>
</tr>
<tr>
<td>Foot</td>
<td>ft</td>
<td></td>
</tr>
<tr>
<td>Yard</td>
<td>yd</td>
<td></td>
</tr>
<tr>
<td>Angstrom</td>
<td>AA</td>
<td>(accepted) metric</td>
</tr>
</tbody>
</table>
Astronomical unit  au

Time
Year  a
Day  d
Hour  h
Minute  min
Second  s

Pressure
Pascal  Pa
Atmosphere  atm
mm of Mercury  mmHg
bar  bar
Pound-force per square inch  psi

Energy
Joule  J  metric
IT calorie  cal  (accepted) metric
Electron volt  eV (or ev)

Power
Horsepower (mechanical)  hp
Horsepower (metric)  HP
Watt  W (or w)  metric

Temperature
Degree Celsius  C
Degree Fahrenheit  F
Kelvin  K  metric

Liquid measure
Fluid ounce  fl oz
Gallon  gal
Liter  l (or lt)  (accepted) metric

Additional details can be found in the d.units data.frame.

Author(s)
Andri Signorell <andri@signorell.net>
Examples

ConvUnit(c(1.2, 5.4, 6.7), "in", "m")

# from kilometers to pico meters
ConvUnit(1, from="km", to="pm")

# from miles to kilometers
ConvUnit(1, from="mi", to="km")
# nautical miles
ConvUnit(1, from="nmi", to="km")
# from kilo Kelvin to Fahrenheit
ConvUnit(10, from="kK", to="F")
# from metric to more quirky units
ConvUnit(c(10, 1), from="hl", to="gal")
ConvUnit(500, from="ml", to="fl oz")

# conversion between non-SI units
ConvUnit(1000, "yd", "mi")
# ... must be the same as
ConvUnit(ConvUnit(1000, "yd", "m"), "m", "mi")

Cor

Correlation, Variance and Covariance (Matrices)

Description

Var, Cov and Cor compute the variance of x and the covariance or correlation of x and y if these are vectors. If x and y are matrices then the covariances (or correlations) between the columns of x and the columns of y are computed.

Usage

Var(x, ...)

## S3 method for class 'Freq'
Var(x, breaks, ...)

## Default S3 method:
Var(x, weights = NULL, na.rm = FALSE, use, ...)

Cov(x, y = NULL, use = "everything",
    method = c("pearson", "kendall", "spearman"))

Cor(x, y = NULL, use = "everything",
    method = c("pearson", "kendall", "spearman"))
Arguments

- **x**: a numeric vector, matrix or data frame.
- **y**: NULL (default) or a vector, matrix or data frame with compatible dimensions to **x**. The default is equivalent to **y = x** (but more efficient).
- **weights**: a numerical vector of weights the same length as **x** giving the weights to use for elements of **x**.
- **na.rm**: logical. Should missing values be removed?
- **use**: an optional character string giving a method for computing covariances in the presence of missing values. This must be (an abbreviation of) one of the strings "everything", "all.obs", "complete.obs", "na.or.complete", or "pairwise.complete.obs".
- **method**: a character string indicating which correlation coefficient (or covariance) is to be computed. One of "pearson" (default), "kendall", or "spearman"; can be abbreviated.
- **breaks**: breaks for calculating the variance for classified data as composed by **Freq**.
- **...**: further arguments passed to or from other methods.

Details

For **Cov** and **Cor** one must *either* give a matrix or data frame for **x** or give both **x** and **y**.

The inputs must be numeric (as determined by **is.numeric**; logical values are also allowed for historical compatibility): the "kendall" and "spearman" methods make sense for ordered inputs but **xtfrm** can be used to find a suitable prior transformation to numbers.

**Var** is just another interface to **Cov**, where **na.rm** is used to determine the default for use when that is unspecified. If **na.rm** is **TRUE** then the complete observations (rows) are used (**use = "na.or.complete"**) to compute the variance. Otherwise, by default use = "everything".

If use is "everything", **NAs** will propagate conceptually, i.e., a resulting value will be **NA** whenever one of its contributing observations is **NA**.

If use is "all.obs", then the presence of missing observations will produce an error. If use is "complete.obs" then missing values are handled by casewise deletion (and if there are no complete cases, that gives an error).

"na.or.complete" is the same unless there are no complete cases, that gives **NA**. Finally, if use has the value "pairwise.complete.obs" then the correlation or covariance between each pair of variables is computed using all complete pairs of observations on those variables. This can result in covariance or correlation matrices which are not positive semi-definite, as well as **NA** entries if there are no complete pairs for that pair of variables. For **Cov** and **Var**, "pairwise.complete.obs" only works with the "pearson" method. Note that (the equivalent of) **Var(double(0), use = *)** gives **NA** for use = "everything" and "na.or.complete", and gives an error in the other cases.

The denominator **n** − 1 is used which gives an unbiased estimator of the (co)variance for i.i.d. observations. These functions return **NA** when there is only one observation (whereas S-PLUS has been returning **NaN**), and fail if **x** has length zero.

For **Cor()**, if method is "kendall" or "spearman", Kendall’s τ or Spearman’s ρ statistic is used to estimate a rank-based measure of association. These are more robust and have been recommended if the data do not necessarily come from a bivariate normal distribution.

For **Cov()**, a non-Pearson method is unusual but available for the sake of completeness. Note that
"spearman" basically computes Cor(R(x), R(y)) (or Cov(., .)) where R(u) := rank(u, na.last = "keep"). In the case of missing values, the ranks are calculated depending on the value of use, either based on complete observations, or based on pairwise completeness with reranking for each pair.

Scaling a covariance matrix into a correlation one can be achieved in many ways, mathematically most appealing by multiplication with a diagonal matrix from left and right, or more efficiently by using sweep(., FUN = "/") twice.

Value

For r <- Cor(*, use = "all.obs"), it is now guaranteed that all(abs(r) <= 1).

Note

Some people have noted that the code for Kendall’s tau is slow for very large datasets (many more than 1000 cases). It rarely makes sense to do such a computation, but see function cor.fk in package pcaPP.

References


See Also

cor.test for confidence intervals (and tests).
cov.wt for weighted covariance computation.
sd for standard deviation (vectors).

Examples

Var(1:10)  # 9.166667
Var(1:5, 1:5) # 2.5

## Two simple vectors
Cor(1:10, 2:11) # == 1

## Correlation Matrix of Multivariate sample:
(CL <- Cor(longley))
## Graphical Correlation Matrix:
symnum(CL) # highly correlated

## Spearman's rho and Kendall's tau
symnum(c1S <- Cor(longley, method = "spearman"))
symnum(c1K <- Cor(longley, method = "kendall"))
## How much do they differ?
i <- lower.tri(CL)
Cor(cbind(P = CI[i], S = c1S[i], K = c1K[i]))
## CorPart

### Find the Correlations for a Set of Variables With Set y Removed

**Description**

A straightforward application of matrix algebra to remove the effect of the variables in the y set from the x set. Input may be either a data matrix or a correlation matrix. Variables in x and y are specified by location.

**Usage**

CorPart(m, x, y)
Arguments

- `m`: a data or correlation matrix.
- `x`: the variable numbers associated with the X set.
- `y`: the variable numbers associated with the Y set.

Details

It is sometimes convenient to partial the effect of a number of variables (e.g., sex, age, education) out of the correlations of another set of variables. This could be done laboriously by finding the residuals of various multiple correlations, and then correlating these residuals. The matrix algebra alternative is to do it directly.

Value

The matrix of partial correlations.

Author(s)

William Revelle

References

Revelle, W. An introduction to psychometric theory with applications in R Springer. (working draft available at http://personality-project.org/r/book/)

See Also

cor

Examples

# example from Bortz, J. (1993) Statistik fuer Sozialwissenschaftler, Springer, pp. 413

abstr <- c(9,11,13,14,9,10,11,10,8,13,7,9,13,14)
coord <- c(8,12,14,13,14,8,9,12,8,9,14,7,10,12)
age <- c(6,8,9,9,10,7,8,9,8,7,10,6,10,10,9)

# calculate the correlation of abstr and coord, after without the effect of the age
CorPart(cbind(abstr, coord, age), 1:2, 3)

# by correlation matrix m
m <- cor(cbind(abstr, coord, age))
CorPart(m, 1:2, 3)

# ... which would be the same as:
lm1 <- lm(abstr ~ age)
lm2 <- lm(coord ~ age)

cor(resid(lm1), resid(lm2))
Description

Computes the polychoric correlation (and its standard error) between two ordinal variables or from their contingency table, under the assumption that the ordinal variables dissect continuous latent variables that are bivariate normal. Either the maximum-likelihood estimator or a (possibly much) quicker “two-step” approximation is available. For the ML estimator, the estimates of the thresholds and the covariance matrix of the estimates are also available.

Usage

\[
\text{CorPolychor}(x, y, \text{ML} = \text{FALSE}, \text{control} = \text{list()}, \text{std.err} = \text{FALSE}, \text{maxcor} = .9999)
\]

## S3 method for class 'CorPolychor'

\[
\text{print}(x, \text{digits} = \text{max}(3, \text{getOption}("digits") - 3), \ldots)
\]

Arguments

\begin{itemize}
  \item \textbf{x} \hspace{1cm} a contingency table of counts or an ordered categorical variable; the latter can be numeric, logical, a factor, or an ordered factor, but if a factor, its levels should be in proper order.
  \item \textbf{y} \hspace{1cm} if \textbf{x} is a variable, a second ordered categorical variable.
  \item \textbf{ML} \hspace{1cm} if TRUE, compute the maximum-likelihood estimate; if FALSE, the default, compute a quicker “two-step” approximation.
  \item \textbf{control} \hspace{1cm} optional arguments to be passed to the \texttt{optim} function.
  \item \textbf{std.err} \hspace{1cm} if TRUE, return the estimated variance of the correlation (for the two-step estimator) or the estimated covariance matrix (for the ML estimator) of the correlation and thresholds; the default is FALSE.
  \item \textbf{maxcor} \hspace{1cm} maximum absolute correlation (to insure numerical stability).
  \item \textbf{digits} \hspace{1cm} integer, determining the number of digits used to format the printed result
  \item \ldots \hspace{1cm} not used
\end{itemize}

Value

If \textbf{std.err} is TRUE, returns an object of class "polycor" with the following components:

\begin{itemize}
  \item \textbf{type} \hspace{1cm} set to "polychoric".
  \item \textbf{rho} \hspace{1cm} the CorPolychoric correlation.
  \item \textbf{var} \hspace{1cm} the estimated variance of the correlation, or, for the ML estimate, the estimated covariance matrix of the correlation and thresholds.
  \item \textbf{n} \hspace{1cm} the number of observations on which the correlation is based.
\end{itemize}
chisq  chi-square test for bivariate normality.
df    degrees of freedom for the test of bivariate normality.
ML    TRUE for the ML estimate, FALSE for the two-step estimate.

Otherwise, returns the polychoric correlation.

**Note**

This is a verbatim copy from polchor function in the package polycor.

**Author(s)**

John Fox <jfox@mcmaster.ca>

**References**


**See Also**

hetcor, polyserial, print.CorPolychor, optim

**Examples**

```r
set.seed(12345)
z <- RndPairs(1000, 0.6)
x <- z[,1]
y <- z[,2]
cor(x, y) # sample correlation
x <- cut(x, c(-Inf, .75, Inf))
y <- cut(y, c(-Inf, -1, .5, 1.5, Inf))
CorPolychor(x, y) # 2-step estimate
CorPolychor(x, y, ML=TRUE, std.err=TRUE) # ML estimate
```

**CountCompCases  Count Complete Cases**

**Description**

Return for each variable of a data frame the number of missing values and the complete cases to be expected if this variable would be omitted.
Usage

CountCompCases(x)

```r
S3 method for class 'CountCompCases'
print(x, digits=1, ...)
```

Arguments

- `x`: a data.frame containing the data.
- `digits`: the number of digits to be used when printing the results.
- `...`: the dots are not further used.

Value

A list with three elements. The first gives the number of rows, the second the number of complete cases for the whole data frame. The third element `tab` contains the data for the single variables.

Author(s)

Andri Signorell &lt;andri@signorell.net&gt;

See Also

- `PlotMiss`

Examples

```r
CountCompCases(d.pizza)
```

---

CourseData  

*Get HWZ Datasets*

Description

Wrapper for didactical datasets used in statistic courses.

Usage

```r
CourseData(name, url = NULL, header = TRUE, sep = ",\", ...)```

Arguments

- **name**: the name of the file, usually without extension.
- **url**: a url where the data reside, should have the form "http://www.mysite.net/data/". Defaults to the data folder on my site.
- **header**: a logical value indicating whether the file contains the names of the variables as its first line. If missing, the value is determined from the file format: header is set to TRUE if and only if the first row contains one fewer field than the number of columns.
- **sep**: the field separator character. Values on each line of the file are separated by this character. Default is - unlike in *read.table* - ";" instead of 'white space'.
- **...**: the dots are sent to *read.table*.

Value

A *data.frame* containing a representation of the data in the file.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

read.table

Examples

```r
## Not run:
d.farm <- CourseData("farmer")

## End(Not run)
```

CramerVonMisesTest

Cramer-von Mises Test for Normality

Description

Performs the Cramer-von Mises test for the composite hypothesis of normality, see e.g. Thode (2002, Sec. 5.1.3).

Usage

CramerVonMisesTest(x)

Arguments

- **x**: a numeric vector of data values, the number of which must be greater than 7. Missing values are allowed.
Details

The Cramer-von Mises test is an EDF omnibus test for the composite hypothesis of normality. The test statistic is

\[W = \frac{1}{12n} + \sum_{i=1}^{n} \left(p(i) - \frac{2i - 1}{2n} \right), \]

where \(p(i) = \Phi([x(i) - \bar{x}] / s) \). Here, \(\Phi \) is the cumulative distribution function of the standard normal distribution, and \(\bar{x} \) and \(s \) are mean and standard deviation of the data values. The p-value is computed from the modified statistic \(Z = W(1.0 + 0.5/n) \) according to Table 4.9 in Stephens (1986).

Value

A list of class htest, containing the following components:

- p.value: the p-value for the test.
- method: the character string “Cramer-von Mises normality test”.
- data.name: a character string giving the name(s) of the data.

Author(s)

Juergen Gross <gross@statistik.uni-dortmund.de>

References

See Also

- shapiro.test for performing the Shapiro-Wilk test for normality. AndersonDarlingTest, LillieTest, PearsonTest, ShapiroFranciaTest for performing further tests for normality. qqnorm for producing a normal quantile-quantile plot.

Examples

CramerVonMisesTest(rnorm(100, mean = 5, sd = 3))
CramerVonMisesTest(runif(100, min = 2, max = 4))
Cronbach’s Coefficient Alpha

Description
Cronbach’s alpha is a measure of internal consistency and often used for validating psychometric tests. It determines the internal consistency or average correlation of items in a survey instrument to gauge its reliability. This reduces to Kuder-Richardson formula 20 (KR-20) when the columns of the data matrix are dichotomous.

Usage
CronbachAlpha(x, conf.level = NA, cond = FALSE, na.rm = FALSE)

Arguments
- \(x \): \(n \times m \) matrix or dataframe with item responses, \(k \) subjects (in rows) \(m \) items (in columns).
- \(\text{conf.level} \): confidence level of the interval. If set to `NA` (which is the default) no confidence interval will be calculated.
- \(\text{cond} \): logical. If set to `TRUE`, alpha is additionally calculated for the dataset with each item left out.
- \(\text{na.rm} \): logical, indicating whether `NA` values should be stripped before the computation proceeds. If set to `TRUE` only the complete cases of the ratings will be used. Defaults to `FALSE`.

Value
Either a numeric value or a named vector of 3 columns if confidence levels are required (estimate, lower and upper ci) or a list containing the following components, if the argument \(\text{cond} \) is set to `TRUE`:
- `unconditional`: Cronbach’s Alpha, either the single value only or with confidence intervals
- `condCronbachAlpha`: The alpha that would be realized if the item were excluded

Author(s)
Andri Signorell <andri@signorell.net>, based on code of Harold C. Doran

References
See Also

CohenKappa, KappaM

Examples

```r
set.seed(1234)
tmp <- data.frame(
  item1 = sample(c(0,1), 20, replace=TRUE),
  item2 = sample(c(0,1), 20, replace=TRUE),
  item3 = sample(c(0,1), 20, replace=TRUE),
  item4 = sample(c(0,1), 20, replace=TRUE),
  item5 = sample(c(0,1), 20, replace=TRUE)
)
CronbachAlpha(tmp[,1:4], cond=FALSE, conf.level=0.95)
CronbachAlpha(tmp[,1:4], cond=TRUE, conf.level=0.95)
CronbachAlpha(tmp[,1:4], cond=FALSE)
CronbachAlpha(tmp[,1:2], cond=TRUE, conf.level=0.95)

## Not run:
# Calculate bootstrap confidence intervals for CronbachAlpha
library(boot)
cronbach.boot <- function(data,x) {CronbachAlpha(data[x,]][[3]])
res <- boot(datafile, cronbach.boot, 1000)
quantile(res$t, c(0.025,0.975)) # two-sided bootstrapped confidence interval of Cronbach's alpha
boot.ci(res, type="bca") # adjusted bootstrap percentile (BCa) confidence interval (better)

## End(Not run)
```

Cross Product

Description

Vector or cross product

Usage

```r
Cross(x, y)
```

Arguments

- `x` numeric vector or matrix
- `y` numeric vector or matrix
Details

Computes the cross (or: vector) product of vectors in 3 dimensions. In case of matrices it takes the first dimension of length 3 and computes the cross product between corresponding columns or rows.

The more general cross product of $n\!-\!1$ vectors in n-dimensional space is realized as \texttt{CrossN}.

Value

3-dim. vector if x and y are vectors, a matrix of 3-dim. vectors if x and y are matrices themselves.

Author(s)

Hans W. Borchers <hwborchers@googlemail.com>

See Also

\texttt{Dot, CrossN}

Examples

\begin{verbatim}
cross(c(1, 2, 3), c(4, 5, 6)) # -3 6 -3

Triple product can be calculated as:
va <- c(1, 2, 3)
vb <- c(4, 3, 0)
vC <- c(5, 1, 1)

Dot(va, cross(vb, vc))
\end{verbatim}

\begin{tabular}{ll}
\hline
\texttt{CrossN} & \textit{n-dimensional Vector Cross Product} \\
\hline
\end{tabular}

Description

Vector cross product of $n\!-\!1$ vectors in n-dimensional space

Usage

\texttt{CrossN(A)}

Arguments

\begin{verbatim}
A \hspace{1cm} \text{matrix of size (n-1) \times n where n \geq 2.}
\end{verbatim}

Details

The rows of the matrix A are taken as $(n-1)$ vectors in n-dimensional space. The cross product generates a vector in this space that is orthogonal to all these rows in A and its length is the volume of the geometric hypercube spanned by the vectors.
Value

A vector of length \(n \)

Note

The ‘scalar triple product' in \(R^3 \) can be defined as

\[
\text{spatproduct} \leftarrow \text{function}(a, b, c) \ \text{Dot}(a, \ \text{CrossN}(b, c))
\]

It represents the volume of the parallelepiped spanned by the three vectors.

Author(s)

Hans W. Borchers <hwborchers@googlemail.com>

See Also

Cross, Dot

Examples

```r
A <- matrix(c(1,0,0, 0,1,0), nrow=2, ncol=3, byrow=TRUE)
CrossN(A)  #=> 0 0 1

x <- c(1,0, 0,0, 0.0)
y <- c(1.0, 0.5, 0.0)
z <- c(0.0, 0.0, 1.0)
identical(Dot(x, CrossN(rbind(y, z))), det(rbind(x, y, z)))
```

Cstat

C Statistic (Area Under the ROC Curve)

Description

Calculate the C statistic, a measure of goodness of fit for binary outcomes in a logistic regression or any other classification model. The C statistic is equivalent to the area under the ROC-curve (Receiver Operating Characteristic).

Usage

```r
Cstat(x, ...)
```

S3 method for class 'glm'

```r
Cstat(x, ...)
```

Default S3 method:

```r
Cstat(x, resp, ...)
```
Arguments

- **x**
 - the linear model
- **resp**
 - the response variable
- **...**
 - further arguments to be passed to other functions.

Details

Values for this measure range from 0.5 to 1.0, with higher values indicating better predictive models. A value of 0.5 indicates that the model is no better than chance at making a prediction of membership in a group and a value of 1.0 indicates that the model perfectly identifies those within a group and those not. Models are typically considered reasonable when the C-statistic is higher than 0.7 and strong when C exceeds 0.8.

Confidence intervals for this measure can be calculated by bootstrap.

Value

numeric value

Author(s)

Andri Signorell <andri@signorell.net>

References

See Also

- BrierScore

Examples

r.glm <- glm(Survived ~ ., data=Untable(Titanic), family=binomial)

Cstat(r.glm)

CutQ

Create a Factor Variable Using the Quantiles of a Continuous Variable

Description

Create a factor variable using the quantiles of a continuous variable.

Usage

```r
CutQ(x, breaks = quantile(x, seq(0, 1, by = 0.25), na.rm = TRUE),
    labels = NULL, na.rm = FALSE, ...)
```
Arguments

- **x**: continuous variable.
- **breaks**: the breaks for creating groups. By default the quartiles will be used, say `quantile(seq(0, 1, by = 0.25))` quantiles. See `quantile` for details.
- **labels**: labels for the levels of the resulting category. By default, labels are defined as `Q1, Q2` to the length of `breaks - 1`. The parameter ist passed to `cut`, so if `labels` are set to `FALSE`, simple integer codes are returned instead of a factor.
- **na.rm**: Boolean indicating whether missing values should be removed when computing quantiles. Defaults to `TRUE`.
- **...**: Optional arguments passed to `cut`.

Details

This function uses `quantile` to obtain the specified quantiles of `x`, then calls `cut` to create a factor variable using the intervals specified by these quantiles.

It properly handles cases where more than one quantile obtains the same value, as in the second example below. Note that in this case, there will be fewer generated factor levels than the specified number of quantile intervals.

Value

Factor variable with one level for each quantile interval given by `q`.

Author(s)

Gregory R. Warnes <greg@warnes.net>, some slight modifications Andri Signorell <andri@signorell.net>

See Also

- `cut`, `quantile`

Examples

```r
# create example data
x <- rnorm(1000)

# cut into quartiles
quartiles <- CutQ(x)
table(quartiles)

# cut into deciles
deciles <- CutQ(x, seq(0, 1, by=0.1), labels=FALSE)
table(deciles)

# show handling of 'tied' quantiles.
x <- round(x)  # discretize to create ties
stem(x)  # display the ties
deciles <- CutQ( x, seq(0, 1, by=0.1) )
```
table(deciles) # note that there are only 5 groups (not 10)
due to duplicates

d.countries

ISO 3166-1 Country Codes

Description
Country codes published by the International Organization for Standardization (ISO) define codes for the names of countries, dependent territories, and special areas of geographical interest.

Usage
data("d.countries")

Format
A data frame with 249 observations on the following 4 variables.

name a character vector, the name of the country.
a2 a character vector, two-letter country codes (aka alpha-2) which are the most widely used of the three, and used most prominently for the Internet’s country code top-level domains (with a few exceptions).
a3 a character vector, three-letter country codes (aka alpha-3) which allow a better visual association between the codes and the country names than the alpha-2 codes.
code a numeric vector, three-digit country codes which are identical to those developed and maintained by the United Nations Statistics Division, with the advantage of script (writing system) independence, and hence useful for people or systems using non-Latin scripts.
pop2012 the population in 2012
gcpi2012 the gross national income (per capita) in dollars per country in 2012.

References

Examples
head(d.countries)
d.diamonds

Data diamonds

Description

As I suppose, an artificial dataset

Usage

```
data(d.diamonds)
```

Format

A data frame with 440 observations on the following 10 variables.

- index a numeric vector
- carat a numeric vector
- colour a factor with levels D E F G H I J K L
- clarity an ordered factor with levels I2 < I1 < SI3 < SI2 < SI1 < VS2 < VS1 < VVS2 < VVS1
- cut an ordered factor with levels F < G < V < X < I
- certification a factor with levels AGS DOW EGL GIA IGI
- polish an ordered factor with levels F < G < V < X < I
- symmetry an ordered factor with levels F < G < V < X < I
- price a numeric vector
- wholesaler a factor with levels A B C

Details

P Poor F Fair G Good V Very good X Excellent I Ideal

Source

somewhere from the net...

Examples

```
data(d.diamonds)
str(d.diamonds)
```
Description

This data.frame contains the most important properties of the periodic table of the elements.

Usage

data(d.periodic)

Format

A data frame with 110 observations on the following 24 variables.

symbol symbol of an element.
nr atomic number of an atomic symbol.
name name of an element.
group group of an element. Possible results are: Alkali Earth, Alkali Met., Halogen, Metal, Noble Gas, Non-Metal, Rare Earth and Trans. Met.
weight atomic weight of an element. The values are based upon carbon-12. () indicates the most stable or best known isotope.
meltpt melting point of an element in [K].
boilpt boiling point of an element in Kelvin [K].
dens density of an element in [g/cm3] at 300K and 1 atm.
elconf electron configuration of an element.
oxstat oxidation states of an element. The most stable is indicated by a "!".
struct crystal structure of an element. Possible results are: Cubic, Cubic body centered, Cubic face centered, Hexagonal, Monoclinic, Orthorhombic, Rhombohedral, Tetragonal
covrad covalent radius of an element in Angstroem [Å].
arad atomic radius of an element in Angstroem.
avol atomic volume of an element in [cm3/mol].
sheat specific heat of an element in [J/(g K)].
eneg electronegativity (Pauling’s) of an element.
fusheat heat of fusion of an element in [kJ/mol].
vapheat heat of vaporization of an element in [kJ/mol].
elcond electrical conductivity of an element in [1/(Ohm cm)].
thermcond thermal conductivity of an element in [W/(cm K)].
ionpot1 first ionization potential of an element in [V].
ionpot2 second ionization potential of an element in [V].
ionpot3 third ionization potential of an element in [V].
discyear year of discovery of the element
d.pizza

References

http://en.wikipedia.org/wiki/Periodic_table

Description

An artificial dataset inspired by a similar dataset pizza.sav in *Arbeitsbuch zur deskriptiven und induktiven Statistik* by Toutenburg et.al.

The dataset contains data of a pizza delivery service in London, delivering pizzas to three areas. Every record defines one order/delivery and the according properties. A pizza is supposed to taste good, if its temperature is high enough, say 45 Celsius. So it might be interesting for the pizza delivery service to minimize the delivery time.

The dataset is designed to be possibly evil. It contains the most used datatypes as numerics, factors, ordered factors, integers, logicals and a date. NAs are scattered everywhere partly systematically, partly randomly (except in the index).

Usage

```r
data(d.pizza)
```

Format

A data frame with 1209 observations on the following 17 variables.

- **index**: a numeric vector, indexing the records (no missings here).
- **date**: Date, the delivery date
- **week**: integer, the weeknumber
- **weekday**: integer, the weekday
- **area**: factor, the three London districts: Brent, Camden, Westminster
- **count**: integer, the number of pizzas delivered
- **rabate**: logical, TRUE if a rabate has been given
- **price**: numeric, the total price of delivered pizza(s)
- **operator**: a factor with levels Allanah Maria Rhonda
- **driver**: a factor with levels Carpenter Carter Taylor Butcher Hunter Miller Farmer
- **delivery_min**: numeric, the delivery time in minutes (decimal)
- **temperature**: numeric, the temperature of the pizza in degrees Celsius when delivered to the customer
- **wine_ordered**: integer, 1 if wine was ordered, 0 if not
- **wine_delivered**: integer, 1 if wine was delivered, 0 if not
- **wrongpizza**: logical, TRUE if a wrong pizza was delivered
- **quality**: ordered factor with levels low < medium < high, defining the quality of the pizza when delivered
Details

The dataset contains NAs randomly scattered.

References

Examples

str(d.pizza)
head(d.pizza)

Desc(d.pizza)

d.whisky

Classification of Scotch Single Malts

Description

86 malt whiskies are scored between 0-4 for 12 different taste categories including sweetness, smoky, nutty etc. Additionally, coordinates of distilleries allow us to obtain pairwise distance information. Using a combination of these variables it is possible to look for correlations between particular attributes of taste and physical location, for example does a shared local resource have a significant effect on nearby whiskies.

By using correlation analysis it may be possible to provide whisky recommendations based upon an individual’s particular preferences. By computing the Pearson correlation coefficient and specifying a threshold value between 0 and 1, we can establish an adjacency matrix where each node is a malt whisky and an edge represents a level of similarity above the threshold.

Usage

data("d.whisky")

Format

A data frame with 86 observations on the following 16 variables.

distillery a character Aberfeldy, Aberlour, AnCnoc, Ardbeg, ...
brand a grouping factor to separate the better known distilleries (A) from the lesser known ones (B).
region a factor with levels campbeltown, highland, islands, islay, lowland, speyside.
body a numeric vector
sweetness a numeric vector
smoky a numeric vector
medicinal a numeric vector
tobacco a numeric vector
honey a numeric vector
spicy a numeric vector
winey a numeric vector
nutty a numeric vector
malty a numeric vector
fruity a numeric vector
floral a numeric vector
postcode a character AB30 1YE, AB35 5TB, ...
latitude a numeric vector, coordinate pairs of distilleries.
longitude a numeric vector, coordinate pairs of distilleries.

Source

http://www.mathstat.strath.ac.uk/outreach/nessie/nessie_whisky.html

References

http://www.mathstat.strath.ac.uk/outreach/nessie/index.html

Examples

head(d.whisky)

opar <- par(mfrow=c(3,3), cex.main=1.8)
for(i in 1:9)
 PlotPolar(d.whisky[i, 4:15], rlim=4, type="l", col=hecru, lwd=2, fill=SetAlpha(hecru, 0.4),
 panel.first=PolarGrid(ntheta=ncol(d.whisky[i, 2:13]), nr = NA, col="grey",
 lty="dotted", las=1, cex=1.4, alabels=StrCap(colnames(d.whisky[i, 3:14])),
 lbradians=TRUE),
 main=d.whisky[i, "distillery"])

par(mfrow=c(3,3), cex.main=1.8, xpd=NA)
id <- d.whisky$distillery %in% c("Ardbeg", "Caol Ila", "Cragganmore", "Lagavulin", "Laphroig",
 "Macallan", "Mortlach", "Talisker", "Tobermory")
PlotFaces(d.whisky[id, 4:15], nr=3, nc=3, col=hecru, scale=TRUE, fill=TRUE,
 labels=d.whisky$distillery[id])

par(opar)
Datasets for Simulation

Datasets for Probabilistic Simulation

Description

For performing elementary probability calculations in introductory statistic courses, we might want to simulate random games. The dataset roulette contains the standard sample space for one spin on a roulette wheel. cards contains the standard set of 52 playing cards in four colours (without Jokers). tarot does the same with a classic tarot deck.

Usage

cards
tarot
roulette

Value

cards is a data.frame with two columns named rank and suit
tarot is a data.frame with three columns named rank, suit and desc
roulette is a data.frame with two columns named num and col

Examples

head(cards)
head(tarot)
head(roulette)

drawing 5 cards
sample(do.call(paste, cards), 5)

spin the wheel
sample(do.call(paste, roulette), 1)

simulate the evening in Las Vegas
sample(do.call(paste, roulette), 32, replace=TRUE)

Date Functions

Basic Date Functions

Description

Some more date functions for making daily life a bit easier. The first ones extract a specific part of a given date, others check some conditions.
Date Functions

Usage

Year(x)
Quarter(x)
Month(x, fmt = c("m", "mm", "mmm"), lang = DescToolsOptions("lang"),
 stringsAsFactors = TRUE)
Week(x, method = c("iso", "us"))
Day(x)
Weekday(x, fmt = c("d", "dd", "ddd"), lang = DescToolsOptions("lang"),
 stringsAsFactors = TRUE)
YearDay(x)
YearMonth(x)

Day(x) <- value

IsWeekend(x)
IsLeapYear(x)

Hour(x)
Minute(x)
Second(x)
Timezone(x)

Now()
Today()

DiffDays360(start_d, end_d, method = c("eu", "us"))
LastDayOfMonth(x)

Arguments

x the date to be evaluated.
fmt format string, defines how the month or the weekday are to be formatted. De-
defaults to "m", resp. "d". Is ignored for other functions.
value new value
lang optional value setting the language for the months and daynames. Can be either
 "local" for current locale or "engl" for english. If left to NULL, the option
 "lang" will be searched for and if not found "local" will be taken as default.
stringsAsFactors logical. Defines if the result should be coerced to a factor, using the local de-
definitions as levels. The result would be an ordered factor. Default is TRUE.
start_d, end_d the start, resp. end date for DiffDays360.
method one out of "eu", "us", setting either European or US-Method calculation
 mode. Default is "eu".
Date Functions

Details

These functions are mainly convenience wrappers for the painful `format()` and its strange codes...

Based on the requested time component, the output is as follows:

- **Year** returns the year of the input date in yyyy format.
- **Quarter** returns the quarter of the year (1 to 4) for the input date.
- **Month** returns the month of the year (1 to 12) for the input date.
- **Week** returns the week of the year for the input date (0 to 53), as defined in ISO8601.
- **Weekday** returns the week day of the input date. (1 - Monday, 2 - Tuesday, ... 7 - Sunday). (Names and abbreviations are either english or in the current locale!)
- **YearDay** returns the day of the year numbering (1 to 366).
- **Day** returns the day of the month (1 to 31).
- **YearMonth** returns the yearmonth representation (yyyymm) of a date as long integer.
- **Hour**, **Minute**, **Second**, **Timezone** return the hour, minute, second or timezone from a POSIXlt object.
- **Today**, **Now** return the current date, resp. the current date and time.

- **isWeekend** returns TRUE, if the date x falls on a weekend.
- **isLeapYear** returns TRUE, if the year of the date x is a leap year.

The day can not only be extracted, but as well be defined. See examples.

- **DiffDays360** calculates the difference between 2 dates using the 360-days convention.
- **LastDayOfMonth** returns the last day of the month of the given date(s).

The language in Weekday and Month can be set with an option as well. The functions will check for an existing option named "lang" and take this value if it exists. So simply set option(lang="engl") if the results should always be reported in english.

Value

- A vector of the same dimension as x, consisting of either numeric values or characters depending on the function used.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

- `strptime`, `DateTimeClasses`, `as.POSIXlt`

Examples

```r
x <- today()  # the same as Sys.Date() but maybe easier to remember..

Year(x)
Quarter(x)
Month(x)
```
Build-in Constants Extension

Description

There’s a small number of built-in constants in R. We have `month.name` and `month.abb` but nothing similar for weekdays. Here it is.

Usage

```r
day.name
day.abb
```

Details

The following constants are available in DescTools:

- `day.name`: the English names for the day of the week (Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday);
- `day.abb`: the three-letter abbreviations for the English day names (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
DegToRad

See Also

month_name, month.abb

Description

Convert degrees to radians (and back again).

Usage

```r
DegToRad(deg)
RadToDeg(rad)
```

Arguments

- `deg`: a vector of angles in degrees.
- `rad`: a vector of angles in radians.

Value

DegToRad returns a vector of the same length as `deg` with the angles in radians. RadToDeg returns a vector of the same length as `rad` with the angles in degrees.

Author(s)

Andri Signorell <andri@signorell.net>

Examples

```r
DegToRad(c(90, 180, 270))
RadToDeg(c(0.5, 1, 2) * pi)
```
Description

DenseRank() computes the rank of a vector \(x \) and returns the rank as a number. The ranks are consecutive integers beginning with 1. No ranks are skipped if there are ranks with multiple items. So the largest rank value is the number of unique values of \(x \). Unlike \texttt{rank} gives the ranking within the vector \(x \) too, but ties are assigned the same rank, with the next ranking(s) skipped.

\texttt{PercentRank()} takes a vector \(x \) and returns the percentile that elements of \(x \) correspond to.

Usage

\texttt{DenseRank(x, na.last = TRUE)}

\texttt{PercentRank(x)}

Arguments

\(x \quad \text{a numeric, complex, character or logical vector.} \)

\(\text{na.last} \quad \text{for controlling the treatment of NAs. If TRUE, missing values in the data are put last; if FALSE, they are put first; if NA, they are removed; if "keep" they are kept with rank NA.} \)

Value

A numeric vector of the same length as \(x \) with names copied from \(x \) (unless \text{na.last} = \text{NA}, when missing values are removed). The vector is of integer type unless \(x \) is a long vector.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

\texttt{rank, factor, order, sort}

Examples

\((r1 \leftarrow \text{rank}(x1 \leftarrow \text{c}(3, 1, 4, 15, 92))) \)

\(x2 \leftarrow \text{c}(3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5) \)

\(\text{names}(x2) \leftarrow \text{letters}[1:11] \)

\((r2 \leftarrow \text{rank}(x2)) \quad \text{# ties are averaged} \)

\((r2 \leftarrow \text{DenseRank}(x2)) \quad \text{# ranks are enumerated} \)

\texttt{PercentRank(x2)}
Depreciation

Description

Return the depreciation of an asset for a specified period using different methods. SLN returns the straight-line depreciation DB uses the fixed-declining balance method and SYD returns the sum-of-years’ digits depreciation.

Usage

SLN(cost, salvage, life)
DB(cost, salvage, life, period = 1:life)
SYD(cost, salvage, life, period = 1:life)

Arguments

cost initial cost of the asset.
salvage value at the end of the depreciation (sometimes called the salvage value of the asset).
life number of periods over which the asset is depreciated (sometimes called the useful life of the asset).
period period for which you want to calculate the depreciation. Period must use the same units as life.

Value

val

Author(s)

Andri Signorell <andri@signorell.net>

See Also

NPV()

Examples

depreciation allowance for each year
SLN(cost = 50000, salvage = 10000, life = 5)
DB(cost = 50000, salvage = 10000, life = 5)

50000 - c(0, cumsum(SYD(cost = 50000, salvage = 10000, life = 5)))
Description

Produce summaries of various types of variables. Calculate descriptive statistics for x and use Word as reporting tool for the numeric results and for descriptive plots. The appropriate statistics are chosen depending on the class of x. The general intention is to simplify the description process for lazy typers and return a quick, but rich summary.

A 2-dimensional table will be described with it's relative frequencies, a short summary containing the total cases, the dimensions of the table, chi-square tests and some association measures as phi-coefficient, contingency coefficient and Cramer's V.
Tables with higher dimensions will simply be printed as flat table, with marginal sums for the first and for the last dimension.

Usage

Desc(x, ..., main = NULL, plotit = NULL, wrd = NULL)

Default S3 method:
Desc(x, main = NULL, maxrows = NULL, ord = NULL,
 conf.level = 0.95, verbose = 2, rfrq = "111", margins = c(1,2),
 dprobs = NULL, mprobs = NULL, plotit = NULL, sep = NULL, digits = NULL, ...)

S3 method for class 'data.frame'
Desc(x, main = NULL, plotit = NULL, enum = TRUE, sep = NULL, ...)

S3 method for class 'list'
Desc(x, main = NULL, plotit = NULL, enum = TRUE, sep = NULL, ...)

S3 method for class 'numeric'
Desc(x, main = NULL, maxrows = NULL, plotit = NULL,
 sep = NULL, digits = NULL, ...)

S3 method for class 'integer'
Desc(x, main = NULL, maxrows = NULL, plotit = NULL,
 sep = NULL, digits = NULL, ...)

S3 method for class 'factor'
Desc(x, main = NULL, maxrows = NULL, ord = NULL, plotit = NULL,
 sep = NULL, digits = NULL, ...)

S3 method for class 'ordered'
Desc(x, main = NULL, maxrows = NULL, ord = NULL, plotit = NULL,
 sep = NULL, digits = NULL, ...)

S3 method for class 'character'
Desc(x, main = NULL, maxrows = NULL, ord = NULL, plotit = NULL, sep = NULL, digits = NULL, ...)

S3 method for class 'logical'
Desc(x, main = NULL, ord = NULL, conf.level = 0.95, plotit = NULL, sep = NULL, digits = NULL, ...)

S3 method for class 'Date'
Desc(x, main = NULL, dprobs = NULL, mprobs = NULL, plotit = NULL, sep = NULL, digits = NULL, ...)

S3 method for class 'table'
Desc(x, main = NULL, conf.level = 0.95, verbose = 2, rfrq = "111", margins = c(1,2), plotit = NULL, sep = NULL, digits = NULL, ...)

S3 method for class 'formula'
Desc(formula, data = parent.frame(), subset, main = NULL, plotit = NULL, digits = NULL, ...)

S3 method for class 'Desc'
print(x, digits = NULL, plotit = NULL, nolabel = FALSE, sep = NULL, ...)

S3 method for class 'Desc'
plot(x, main = NULL, ...)

Arguments

- **x**: the object to be described. This can be a data.frame, a list, a table or a vector of the classes: numeric, integer, factor, ordered factor, logical.

- **main**: a character vector, containing the main title(s). If this is left to NULL, the title will be composed as: variablename (class(es)), resp. number - variablename (class(es)) if the enum option is set to TRUE. Use NA if no caption should be printed at all.

- **wrd**: the pointer to a running MS Word instance, as created by GetNewWrd() (for a new one) or by GetCurrWrd() for an existing one. All output will then be redirected there. Default is NULL, which will report all results to the console.

- **digits**: integer. With how many digits should the relative frequencies be formatted? Default can be set by DescToolsOptions(digits=x).

- **maxrows**: numeric; defines the maximum number of rows in a frequency table to be reported. For factors with many levels it is often not interesting to see all of them. Default is set to 12 most frequent ones (resp. the first ones if ord is set to "levels" or "names"). For a numeric argument x maxrows is the minimum number of unique values needed for a numeric variable to be treated as continuous. If left to its default...
Desc

NULL, x will be regarded as continuos if it has more than 12 single values. In this case the list of extreme values will be displayed and the frequency table else. If maxrows is < 1 it will be interpreted as percentage. In this case just as many rows, as the maxrows% most frequent levels will be shown. Say, if maxrows is set to 0.8, then the number of rows is fixed so, that the highest cumulative relative frequency is the first one going beyond 0.8.

Setting maxrows to Inf will unconditionally report all values and also produce a plot with type "h" instead of a histogram.

ord character out of "name" (alphabetical order), "level", "asc" (by frequencies ascending), "desc" (by frequencies descending) defining the order for a frequency table as used for factors, numerics with few unique values and logicals. Factors (and character vectors) are by default ordered by their descending frequencies, ordered factors by their natural order.

rfrq a string with 3 characters, each of them being 1 or 0, defining which percentages should be reported. The first position is interpreted as total percentages, the second as row percentages and the third as column percentages. "011" hence produces a table output with row and column percentages. If set to NULL rfrq is defined in dependency of verbose (verbose = "low" sets rfrq to "000" and else to "111", latter meaning all percentages will be reported.)

Applies only to tables and is ignored else.

margins a vector, consisting out of 1 and/or 2. Defines the margin sums to be included. Row margins are reported if margins is set to 1. Set it to 2 for column margins and c(1,2) for both. Default is NULL (none).

Applies only to tables and is ignored else.

verbose integer out of c(2, 1, 3) defining the verbosity of the reported results. 2 (default) means medium, 1 less and 3 extensive results.

Applies only to tables and is ignored else.

conf.level confidence level of the interval. If set to NA no confidence interval will be calculated. Default is 0.95.

dprobs, mprobs a vector with the probabilities for the Chi-Square test for days, resp. months, when describing a Date variable. If this is left to NULL (default) then a uniform distribution will be used for days and a monthdays distribution in a non leap year (p = c(31/365, 28/365, 31/365, ...)) for the months.

Applies only to Dates and is ignored else.

enum logical, determining if in data.frames and lists a sequential number should be included in the main title. Default is TRUE. The reason for this option is, that if a Word report with enumerated headings is created, the numbers may be redundant or inconsistent.

plotit boolean. Should a plot be created? The plot type will be chosen according to the classes of variables (roughly following a numeric-numeric, numeric-categorical, categorical-categorical logic). Default can be defined by option plotit, if it does not exist then it's set to FALSE.

sep character. The separator for the title. By default a line of "-" for the current width of the screen (options("width")) will be used.
Desc

nolabel logical, defining if labels (defined as attribute with the name label, as done by Label) should be plotted.

formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs the corresponding groups.

data an optional matrix or data frame containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset an optional vector specifying a subset of observations to be used.

... further arguments to be passed to or from other methods. For the internal default method these can include:

 p a vector of probabilities of the same length of x. An error is given if any entry of p is negative. This argument will be passed on to chisq.test. Default is rep(1/length(x), length(x)).

add_ni logical. Indicates if the group length should be displayed in the boxplot.

smooth character, either "loess" or "smooth.spline" defining the type of smoother to be used in num ~ num plots. Default is loess for n < 500 and smooth.spline else.

Details

Desc is a generic function. It dispatches to one of the methods above depending on the class of its first argument. Typing ?Desc + TAB at the prompt should present a choice of links: the help pages for each of these Desc methods (at least if you’re using RStudio, which anyway is recommended). You don’t need to use the full name of the method although you may if you wish; i.e., Desc(x) is idiomatic R but you can bypass method dispatch by going direct if you wish: Desc.numeric(x).

This function produces a rich description of a factor, containing length, number of NAs, number of levels and detailed frequencies of all levels. The order of the frequency table can be chosen between descending/ascending frequency, labels or levels. For ordered factors the order default is "level". Character vectors are treated as unordered factors Desc.char converts x to a factor an processes x as factor.

Desc.ordered does nothing more than changing the standard order for the frequencies to it’s intrinsic order, which means order "level" instead of "desc" in the factor case.

Description interface for dates. We do here what seems reasonable for describing dates. We start with a short summary about length, number of NAs and extreme values, before we describe the frequencies of the weekdays and months, rounded up by a chi-square test.

A 2-dimensional table will be described with it’s relative frequencies, a short summary containing the total cases, the dimensions of the table, chi-square tests and some association measures as phi-coefficient, contingency coefficient and Cramer’s V.

Tables with higher dimensions will simply be printed as flat table, with marginal sums for the first and for the last dimension.

Note that NAs cannot be handled by this interface, as tables in general come in "as.is", say basically as a matrix without any further information about potentially previously cleared NAs.

Description of a dichotomous variable. This can either be a boolean vector, a factor with two levels or a numeric variable with only two unique values. The confidence levels for the relative frequencies are calculated by BinomCI, method "Wilson" on a confidence level defined by conf.level. Dichotomous variables can easily be condensed in one graphical representation. Desc for a set of
flags (=dichotomous variables) calculates the frequencies, a binomial confidence interval and produces a kind of dotplot with error bars. Motivation for this function is, that dichotomous variable in general do not contain intense information. Therefore it makes sense to condense the description of sets of dichotomous variables.

The formula interface accepts the formula operators +, :, *, I(), 1 and evaluates any function. The left hand side and right hand side of the formula are evaluated the same way. The variable pairs are processed in dependency of their classes.

Word This function is not thought of being directly run by the enduser. It will normally be called automatically, when a pointer to a Word instance is passed to the function Desc. However DescWrd takes some more specific arguments concerning the Word output (like font or fontsize), which can make it necessary to call the function directly.

Value

A list containing the following components:

- length: the length of the vector (n + NAs).
- n: the valid entries (NAs are excluded)
- NAs: number of NAs
- unique: number of unique values.
- 0s: number of zeros
- mean: arithmetic mean
- MeanSE: standard error of the mean, as calculated by MeanSE.
- quant: a table of quantiles, as calculated by quantile(x, probs = c(.05,.10,.25,.5,.75,.9,.95), na.rm = TRUE), na.rm = TRUE
- sd: standard deviation
- vcoef: coefficient of variation: mean(x) / sd(x)
- mad: median absolute deviation (mad)
- IQR: interquartile range
- skew: skewness, as calculated by Skew.
- kurt: kurtosis, as calculated by Kurt.
- highlow: the lowest and the highest values, reported with their frequencies in brackets, if > 1.
- frq: a data.frame of absolute and relative frequencies given by Freq if maxlevels > unique values in the vector.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

summary, plot
Examples

implemented classes:
Desc(d.pizza$wrongpizza) # logical
Desc(d.pizza$driver) # factor
Desc(d.pizza$quality) # ordered factor
Desc(as.character(d.pizza$driver)) # character
Desc(d.pizza$week) # integer
Desc(d.pizza$delivery_min) # numeric
Desc(d.pizza$date) # Date

Desc(d.pizza)
Desc(d.pizza$wrongpizza, main="The wrong pizza delivered", digits=5)

Desc(table(d.pizza$area)) # 1-dim table
Desc(table(d.pizza$area, d.pizza$operator)) # 2-dim table
Desc(table(d.pizza$area, d.pizza$operator, d.pizza$driver)) # n-dim table

expressions
Desc(log(d.pizza$temperature))
Desc(d.pizza$temperature > 45)

supported labels
Label(d.pizza$temperature) <- "This is the temperature in degrees Celsius measured at the time when the pizza is delivered to the client."
Desc(d.pizza$temperature)
try as well: Desc(d.pizza$temperature, wrd=GetNewWrd())

z <- Desc(d.pizza$temperature)
print(z, digits=1, plotit=FALSE)
plot (additional arguments are passed on to the underlying plot function)
plot(z, main="The pizza's temperature in Celsius", args.hist=list(breaks=50))

bivariate
Desc(price ~ operator, data=d.pizza) # numeric ~ factor
Desc(driver ~ operator, data=d.pizza) # factor ~ factor
Desc(driver ~ area + operator, data=d.pizza) # factor ~ several factors
Desc(driver + area ~ operator, data=d.pizza) # several factors ~ factor
Desc(driver ~ week, data=d.pizza) # factor ~ integer
Desc(driver ~ operator, data=d.pizza, rfrq="111") # alle rel. frequencies
Desc(driver ~ operator, data=d.pizza, rfrq="000", verbose="high") # no rel. frequencies

Desc(price ~ delivery_min, data=d.pizza) # numeric ~ numeric
Desc(price + delivery_min ~ operator + driver + wrongpizza, data=d.pizza, digits=c(2,2,2,2,0,3,0,0))

Desc(week ~ driver, data=d.pizza, digits=c(2,2,2,0,3,0,0)) # define digits
Desc(delivery_min + weekday ~ driver, data=d.pizza)
without defining data-parameter
Desc(d.pizza$delivery_min - d.pizza$driver)

with functions and interactions
Desc(sqrt(price) ~ operator : factor(wrongpizza), data=d.pizza)
Desc(log(price+1) ~ cut(delivery_min, breaks=seq(10,90,10)),
 data=d.pizza, digits=c(2,2,2,2,0,3,0,0))

response versus all the rest
Desc(driver ~ ., data=d.pizza[, c("temperature","wine_delivered","area","driver")])

all the rest versus response
Desc(. ~ driver, data=d.pizza[, c("temperature","wine_delivered","area","driver")])

pairwise Descriptions
p <- CombPairs(c("area","count","operator","driver","temperature","wrongpizza","quality"),)
for(i in 1:nrow(p))
 print(Desc(formula(gettextf("%s ~ %s", p$X1, p$X2)), data=d.pizza))

get more flexibility, create the table first
tab <- as.table(apply(HairEyeColor, c(1,2), sum))
 tab <- tab[,c("Brown","Hazel","Green","Blue")]

display only absolute values, row and columnwise percentages
Desc(tab, row.vars=c(3, 1), rfreq="011", plotit=FALSE)

do the plot by hand, while setting the colours for the mosaics
cols1 <- SetAlpha(c("sienna4", "burlywood", "chartreuse3", "slategray1"), 0.6)
cols2 <- SetAlpha(c("moccasin", "salmon1", "wheat3", "gray32"), 0.8)
plot(tab, col1=cols1, col2=cols2)

use global format options for presentation
Fmt(abs=as.fmt(digits=0, big.mark=""))
Fmt(per=as.fmt(digits=2, fmt="%"))
Desc(area ~ driver, d.pizza, plotit=FALSE)

Fmt(abs=as.fmt(digits=0, big.mark=""))
Fmt(per=as.fmt(digits=3, leading="drop"))
Desc(area ~ driver, d.pizza, plotit=FALSE)

plot arguments can be fixed in detail
z <- Desc(BoxCox(d.pizza$temperature, lambda = 1.5))
plot(z, mar=c(0, 2.1, 4.1, 2.1), args.rug=TRUE, args.hist=list(breaks=50),
 args.dens=list(from=0))

The default description for count variables can be inappropriate,
the density curve does not represent the variable well.
set.seed(1972)
DescTools Aliases

Some Aliases Set for Convenience

Description

Some aliases are defined either for having shorter names or for following the Google naming convention.

Usage

N()

Details

N() is the same as as.numeric()

Author(s)

Andri Signorell <andri@signorell.net>

Examples

head(N(d.pizza$driver))
DescTools Palettes

Some Custom Palettes

Description

Some more custom palettes.

Usage

Pal(pal, n = 100, alpha = 1)

S3 method for class 'palette'
plot(x, cex = 3, ...)

hred
horange
hyellow
hecru
hblue
hgreen

Arguments

pal name or number of the palette. One of RedToBlack (1), RedBlackGreen (2),
SteeBlueWhite (3), RedWhiteGreen (4), RedWhiteBlue0 (5), RedWhiteBlue1 (6),
RedWhiteBlue2 (7), RedWhiteBlue3 (8), Helsana (9), Tibco (10), RedGreen1 (11),
Spring (12), Soap (13), Maiden (14), Dark (15), Accent (16), Pastel (17),
Fragile (18), Big (19), Long (20), Night (21), Dawn (22), Noon (23),
Light (24)

n integer, number of colors for the palette.

alpha the alpha value to be added. This can be any value from 0 (fully transparent) to
1 (opaque). NA is interpreted so as to delete a potential alpha channel. Default is
0.5.

x a palette to be plotted.

cex extension for the color squares. Defaults to 3.

... further arguments passed to the function.

Details

hred, horange, hyellow, hecru, hblue and hgreen are constants, pointing to the according color from
the palette Pal("Helsana").

Value

a vector of colors
Author(s)

Andri Signorell <andri@signorell.net>

See Also

colorRampPalette

Examples

Canvas(c(0,1))
ColorLegend(x=0, y=1, width=0.1, col=Pal(1, n=50))
ColorLegend(x=0.15, y=1, width=0.1, col=Pal(2, n=50))
ColorLegend(x=0.3, y=1, width=0.1, col=Pal(3, n=50))
ColorLegend(x=0.45, y=1, width=0.1, col=Pal(4, n=50))
ColorLegend(x=0.6, y=1, width=0.1, col=Pal(5, n=50))
ColorLegend(x=0.75, y=1, width=0.1, col=Pal(6, n=50))
ColorLegend(x=0.9, y=1, width=0.1, col=Pal(7))
ColorLegend(x=1.05, y=1, width=0.1, col=Pal(8))

text(1:8, y=1.05, x=seq(0,1.05,.15)+.05)
title(main="DescTools palettes")
par(mfrow=c(4,2), mar=c(1,1,2,1))
barplot(1:9, col=Pal("Tibco"), axes=FALSE, main="Palette 'Tibco'")
barplot(1:7, col=Pal("Helsana"), axes=FALSE, main="Palette 'Helsana'")
barplot(1:7, col=SetAlpha(Pal("Helsana")[c("ecru","hellgruen","hellblau")], 0.6),
axes=FALSE, main="Palette 'Helsana' (Alpha)")
barplot(1:10, col=Pal("RedToBlack", 10), axes=FALSE, main="Palette 'RedToBlack'")
barplot(1:10, col=Pal("RedBlackGreen", 10), axes=FALSE, main="Palette 'RedBlackGreen'")
barplot(1:10, col=Pal("SteeBlueWhite", 10), axes=FALSE, main="Palette 'SteeBlueWhite'")
barplot(1:10, col=Pal("RedWhiteGreen", 10), axes=FALSE, main="Palette 'RedWhiteGreen'")
DescToolsOptions

Arguments

any options can be defined, using name = value. However, only the ones below are used by DescTools functions.

default

if the specified option is not set in the options list, this value is returned. This facilitates retrieving an option and checking whether it is set and setting it separately if not.

reset

logical. If this is set to TRUE, the options will be overwritten with their default values. Other arguments will be ignored in this case. Default is FALSE.

Details

Invoking DescToolsOptions() with no arguments returns a list with the current values of the options. Note that not all options listed below are set initially. To access the value of a single option, one can simply use DescToolsOptions("plotit"). To set a new value use the same rationale as with the R options: DescToolsOptions(plotit=FALSE)

Options used by DescTools

col: a vector of colours, defined as names or as RGB-longs ("#RRGGBB"). By now three colors are used in several plots as defaults. By default they’re set to hblue, hred and horange. Change the values by defining DescToolsOptions(col=c("pink", "blue", "yellow")). Any color definition can be used here.

digits: the number of FIXED digits, used throughout the print functions.

fixedfont: this font will be used by default, when Desc writes to a Word document. Must be defined as a font object, say enumerating name, face and size of the font and setting the class font, e.g. structure(list(name="Courier New", size=7), class="font").

fmt: Three number format definitions are currently used in the Desc routines. The format used for integer values is named "abs", for percentages "perc" and for floating point numeric values "num". The format definitions must be of class "fmt" and may contain any argument used in the function Format.

footnote: a character vector, containing characters to be used as footnote signs. Any character can be defined here. This is currently used by T0ne.

lang: either "engl" or "local", defining the language to be used for the names of weekdays and months when using Format.

plotit: logical, defining whether the Desc-procedures should produce plots by default. This is usually a good thing, but it may clutter up your desktop, if you’re not using RStudio. Therefore it can be turned off.

stamp: text or expression to be placed in the right bottom corner of the DescTools plots. This can be useful, if some author or date information should automatically be inserted by default. Any text can be set as option, but also dynamic expressions can be used. The default would use an expression as <username>/<date>, which will use the username from the system and the current date. See defaults below.

Calling DescToolsOptions(reset=TRUE) will reset the options to these defaults:
options(DescTools = list(
 col = c(hblue = "#8296C4", hred = "#9A0941", horange = "#F08100"),
 digits = 3,
 fixedfont = structure(list(name = "Consolas", size = 7), class = "font"),
 fmt = list(abs = structure(list(digits = 0, big.mark = ""),
 name = "abs", label = "Number format for counts", default = TRUE,
 class = "fmt"),
 per = structure(list(digits = 1, fmt = "%"),
 name = "per", label = "Percentage number format", default = TRUE,
 class = "fmt"),
 num = structure(list(digits = 3, big.mark = ""),
 name = "num", label = "Number format for floats", default = TRUE,
 class = "fmt"),
),
 footnote = c("\", "\"", "\"\")
),
lang = "engl",
plotit = TRUE,
stamp = expression(gettextf("%s/%s", Sys.getenv("USERNAME"),
 Format(Today(), fmt = "yyyy-mm-dd")))
))

This code can as well be copied and pasted to the users' RProfile file, in order to have the options permanently available.

Value

For a given vector of strings the current value set for option x, or NULL if the option is unset.

If called with no arguments, returns all option settings in a list. Otherwise, it changes the named settings and invisibly returns their previous values.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

Format, Pal

Examples

DescToolsOptions("plotit")

Not run:

Get all options, defaults are attributed as such
DescToolsOptions()

get some options
DescToolsOptions("plotit", "lang")
get some potentially undefined option, while taking a user default and
overriding system defaults
DescToolsOptions("stamp", default="Condor, 2016")

get an undefined option, should return default
DescToolsOptions("stampede", default="Condor, 2016")

set options, while getting the old values
opt <- DescToolsOptions(plotit=789, lang="portugues")
DescToolsOptions()
output the old values
opt

just a single argument
DescToolsOptions(digits=2)

reset the old values
DescToolsOptions(opt)
DescToolsOptions()

reset factory defaults
DescToolsOptions(reset=TRUE)

End(Not run)

DigitSum

Calculate Digit Sum

Description

Calculate digit sum of a number x.

Usage

`DigitSum(x)`

Arguments

- `x`
 an integer number

Value

the digit sum

Author(s)

Andri Signorell <andri@signorell.net> based on code by Julius benchmarked by Uwe
dir.choose

Choose a Folder Interactively

Description

Choose a directory interactively.

Usage

dir.choose(default = "", caption = "Select directory")

Arguments

default which directory to show initially.
caption the caption on the selection dialog

Value

A length-one character vector, character NA if 'Cancel' was selected.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

file.choose

Examples

Not run:

dir.choose(getwd(), "Choose a suitable folder")

End(Not run)
Rao’s Diversity Coefficient

Description

Calculates Rao’s diversity coefficient (also known as "Quadratic Entropy") within samples.

Usage

DivCoef(df, dis, scale)

Arguments

df a data frame with elements as rows, samples as columns, and abundance, presence-absence or frequencies as entries

dis an object of class dist containing distances or dissimilarities among elements. If dis is NULL, Gini-Simpson index is performed.

scale a logical value indicating whether or not the diversity coefficient should be scaled by its maximal value over all frequency distributions.

Value

Returns a data frame with samples as rows and the diversity coefficient within samples as columns

Note

This function was previously published as divc() in the ade4 package and has been integrated here without logical changes.

Author(s)

Sandrine Pavoine <pavoine@biomserv.univ-lyon1.fr>

References

DivCoefMax

Maximal value of Rao’s diversity coefficient also called quadratic entropy

Description

For a given dissimilarity matrix, this function calculates the maximal value of Rao’s diversity coefficient over all frequency distribution. It uses an optimization technique based on Rosen’s projection gradient algorithm and is verified using the Kuhn-Tucker conditions.

Usage

DivCoefMax(dis, epsilon, comment)

Arguments

dis: an object of class dist containing distances or dissimilarities among elements.
epsilon: a tolerance threshold: a frequency is non null if it is higher than epsilon.
comment: a logical value indicating whether or not comments on the optimization technique should be printed.

Value

Returns a list

value: the maximal value of Rao’s diversity coefficient.
vectors: a data frame containing four frequency distributions: sim is a simple distribution which is equal to $D1 / D1^T$, pro is equal to $z / \|z\|_1^2$, where z is the nonnegative eigenvector of the matrix containing the squared dissimilarities among the elements, met is equal to z^2, num is a frequency vector maximizing Rao’s diversity coefficient.

Author(s)

Stéphane Champely <Stephane.Champely@univ-lyon1.fr>
Sandrine Pavoine <pavoine@biomserv.univ-lyon1.fr>

Examples

 # data(ecomor)
 # dtaxo <- dist.taxo(ecomor$taxo)
 # DivCoef(ecomor$habitat, dtaxo)

 # data(humDNAm)
 # DivCoef(humDNAm$samples, sqrt(humDNAm$distances))
References

Examples

```r
## Not run:
p <- par()
m <- par()
data(elec88)
mar <- c(0.1, 0.1, 0.1, 0.1)
# Departments of France.
area.plot(elec88$area)

# Dissimilarity matrix.
d <- dist(elec88$xy)

# Frequency distribution maximizing spatial diversity in France
# according to Rao's quadratic entropy.
France.m <- DivCoefMax(d)
w0 <- France.m$vectors$num
v0 <- France.m$value
(1:94) [w0 > 0]

# Smallest circle including all the 94 departments.
# The squared radius of that circle is the maximal value of the
# spatial diversity.
w1 = elec88$xy*c(6, 28, 66), ]
w.c = apply(w1 * w0[c(6, 28, 66)], 2, sum)
symbols(w.c[1], w.c[2], circles = sqrt(v0), inc = FALSE, add = TRUE)
s.value(elec88$xy, w0, add.plot = TRUE)
par(par = par)

# Maximisation of Rao's diversity coefficient
# with ultrametric dissimilarities.
data(microsatt)
mic.genet <- count2genet(microsatt$tab)
mic.dist <- dist.genet(mic.genet, 1)
mic.phylog <- hclust2phylog(hclust(mic.dist))
plot.phylog(mic.phylog)
mic.maxpond <- DivCoefMax(mic.phylog$Wdist)$vectors$num
dotchart.phylog(mic.phylog, mic.maxpond)

## End(Not run)
```
Divisors

Calculate Divisors

Description

Calculate divisors of positive natural numbers.

Usage

Divisors(x)

Arguments

x integer number for which the divisors are to be returned

Value

an integer vector containing the divisors

Author(s)

Andri Signorell <andri@signorell.net>

See Also

Primes, IsPrime, GCD, LCM

Examples

Divisors(c(145, 786))

DoBy

Evaluates a Function Groupwise

Description

Split the vector x into partitions and apply the function to each partition separately. Computation restarts for each partition.

The logic is the same as the OLAP functions in SQL, e.g. SUM(x) OVER (PARTITION BY group).

Usage

DoBy(x, ...)

S3 method for class 'formula'
DoBy(formula, data = parent.frame(), subset, na.action, vnames = NULL, ...)

Default S3 method:
DoBy(x, by, FUN, vnames = NULL, collapse = FALSE, ...)
Arguments

x a vector that should be operated.
by list of one or more factors, each of same length as x. If by is not a factor, the
elements are coerced to factors by as.factor().
FUN Function to apply for each factor level combination.
formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs the
corresponding groups.
data an optional matrix or data frame (or similar: see model.frame) containing the
variables in the formula formula. By default the variables are taken from the
parent.frame().
subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. De-
defaults to getOption("na.action").
vnames name for the new variables.
collapse logical, determining if the results should be collapsed to groups. Default is
FALSE.
... optional arguments to FUN: See the "Note" section.

Details

This is more or less the same as the function ave, with the arguments organized a bit different and
offering more flexibility.

Value

a data.frame with the same number of rows as length as x containing the groupwise results of FUN
and the used group factors.
The attribute response denotes the name of the response variable in case the formula interface was
used.

Note

Optional arguments to FUN supplied by the ... argument are not divided into cells. It is therefore
inappropriate for FUN to expect additional arguments with the same length as x.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

ave, tapply, aggregate
Examples

d.frm <- data.frame(x=rep(1:4, 3), v=sample(x=1:3, size=12, replace=TRUE),
g=gl(4,3,labels=letters[1:4]), m=gl(3,4,labels=LETTERS[1:3]))

SQL-OLAP: sum() over (partition by g)
DoBy(d.frm$x, d.frm$g, FUN=sum)
DoBy(d.frm$x, FUN=sum)

more than 1 grouping variables are organized as list as in tapply:
DoBy(d.frm$x, list(d.frm$g, d.frm$m), mean)

count
d.frm$count <- DoBy(d.frm$x, d.frm$g, length)

rank
d.frm$rank <- DoBy(d.frm$v, d.frm$g, rank)
d.frm$dense_rank <- DoBy(d.frm$v, d.frm$g, DenseRank)
d.frm$rank_desc <- DoBy(d.frm$x, d.frm$g, function(x) rank(-x))

row_number
d.frm$row_number <- DoBy(d.frm$v, d.frm$g, function(x) order(x))
d.frm

DoCall

Description

The do.call can be somewhat slow, especially when working with large objects. This function is based upon the suggestions from Hadley Wickham on the R mailing list, see here. Also thanks to Tommy at StackOverflow for suggesting how to handle double and triple colon operators, :::, further enhancing the function.

Usage

DoCall(what, args, quote = FALSE, envir = parent.frame())

Arguments

what

either a function or a non-empty character string naming the function to be called.

args

a list of arguments to the function call. The names attribute of args gives the argument names.

quote

a logical value indicating whether to quote the arguments.

envir

an environment within which to evaluate the call. This will be most useful if what is a character string and the arguments are symbols or quoted expressions.
Note

While the function attempts to do most of what `do.call` can it has limitations. It can currently not parse the example code from the original function:

```r
do.call(paste, list(as.name("A"), as.name("B")), quote = TRUE) and the functionality of quote has not been thoroughly tested.
```

Note

This is a verbatim copy from Gmisc::fastDoCall.

Author(s)

Max Gordon <max@gforge.se>

Examples

```r
DoCall("complex", list( imaginary = 1:3))

### if we already have a list (e.g. a data frame)
### we need c() to add further arguments
tmp <- expand.grid(letters[1:2], 1:3, c("+", "-"))
DoCall("paste", c(tmp, sep = ""))

### examples of where objects will be found.
A <- 2
f <- function(x) print(x^2)
env <- new.env()
assign("A", 10, envir = env)
assign("f", f, envir = env)
f <- function(x) print(x)
f(A)                      # 2
DoCall("f", list(A))        # 2
DoCall("f", list(A), envir = env)  # 4
DoCall(f, list(A), envir = env)  # 2
DoCall("f", list(quote(A)), envir = env)  # 100
DoCall(f, list(quote(A)), envir = env)  # 10
DoCall("f", list(as.name("A")), envir = env)  # 100

eval(call("f", A))          # 2
eval(call("f", quote(A)))   # 2
eval(call("f", A), envir = env)  # 4
eval(call("f", quote(A)), envir = env)  # 100
```

<table>
<thead>
<tr>
<th>Dot</th>
<th>Scalar Product</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Dot</code></td>
<td><code>Scalar Product</code></td>
</tr>
</tbody>
</table>

Description

'dot' or 'scalar' product of vectors or pairwise columns of matrices.
Usage

```r
dot(x, y)
```

Arguments

- `x`: numeric vector or matrix
- `y`: numeric vector or matrix

Details

Returns the 'dot' or 'scalar' product of vectors or columns of matrices. Two vectors must be of same length, two matrices must be of the same size. If `x` and `y` are column or row vectors, their dot product will be computed as if they were simple vectors.

Value

A scalar or vector of length the number of columns of `x` and `y`.

Author(s)

Hans W. Borchers <hwborchers@googlemail.com>

See Also

- `cross`

Examples

```r
dot(1:5, 1:5) #=> 55
# Length of space diagonal in 3-dim- cube:
sqrt(dot(c(1,1,1), c(1,1,1))) #=> 1.732051
```

Description

Draw one or more elliptic (or circular) arcs from `theta.1` to `theta.2` on an existing plot using classic graphics.

Usage

```r
drawarc(x = 0, y = x, rx = 1, ry = rx,
        theta.1 = 0, theta.2 = 2*pi, nv = 100,
        col = par("col"), lty = par("lty"), lwd = par("lwd"),
        plot = TRUE)
```
DrawArc

Arguments

- **x, y**
 a vector (or scalar) of xy-coordinates of the center(s) of the arc(s).

- **rx**
 a scalar or a vector giving the semi-major axis of the ellipse for the arc(s).

- **ry**
 a scalar or a vector giving the semi-minor axis of the ellipse for the arc(s). Default is `radius.x` which will result in a circle arc with radius.x.

- **theta.1**
 a scalar or a vector of starting angles in radians.

- **theta.2**
 a scalar or a vector of ending angles in radians.

- **nv**
 number of vertices used to plot the arc. Scalar or vector.

- **col**
 color for the arc(s). Scalar or vector.

- **lty**
 line type used for drawing.

- **lwd**
 line width used for drawing.

- **plot**
 logical. If **true** the structure will be plotted. If **false** only the xy-points are calculated and returned. Use this if you want to combine several geometric structures to a single polygon.

Details

- All parameters are recycled if necessary.
- Be sure to use an aspect ratio of 1 as shown in the example to avoid distortion.

Value

DrawArc invisibly returns a list of the calculated coordinates for all shapes.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

- **DrawCircle**, **polygon**

Examples

- `curve(sin(x), 0, pi, col="blue", asp=1)`
- `DrawArc(x = pi/2, y = 0, rx = 1, theta.1 = pi/4, theta.2 = 3*pi/4, col="red")`
DrawBand

Draw Confidence Band

Description

Draw a (confidence) band. Just a wrapper for polygon.

Usage

DrawBand(x, y, col = SetAlpha("grey", 0.5), border = NA)

Arguments

x a vector or a matrix with x coordinates for the band. If x is given as matrix it must be a \(2 \times n\) matrix and the second column will be reversed. x will be recycled in the case y is a 2dimensional matrix.
y a vector or a matrix with y coordinates for the band. If y is given as matrix it must be a \(2 \times n\) matrix and the second column will be reversed. y will be recycled in the case x is a 2dimensional matrix.
col the color of the band.
border the border color of the band.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

polygon

Examples

set.seed(18)
x <- rnorm(15)
y <- x + rnorm(15)
new <- seq(-3, 3, 0.5)
pred.w.plim <- predict(lm(y ~ x), newdata=data.frame(x=new), interval="prediction")
pred.w.clim <- predict(lm(y ~ x), newdata=data.frame(x=new), interval="confidence")

plot(y ~ x)
DrawBand(y = c(pred.w.plim[,2], rev(pred.w.plim[,3])),
 x=c(new, rev(new)), col= SetAlpha("grey90", 0.5))

passing y as matrix interface allows more intuitive arguments
DrawBand(y = pred.w.clim[, 2:3],
 x = new, col= SetAlpha("grey80", 0.5))

abline(lm(y~x), col="brown")
DrawBeziers
Draw a Bezier Curve

Description

Draw a Bezier curve.

Usage

```r
drawbezier(x = 0, y = x, nv = 100, col = par("col"), lty = par("lty"),
           lwd = par("lwd"), plot = TRUE)
```

Arguments

- `x`, `y`: a vector of xy-coordinates to define the Bezier curve. Should at least contain 3 points.
- `nv`: number of vertices to draw the curve.
- `col`: color(s) for the curve. Default is `par("fg")`.
- `lty`: line type for borders and shading; defaults to "solid".
- `lwd`: line width for borders and shading.
- `plot`: logical. If `TRUE` the structure will be plotted. If `FALSE` only the xy-points are calculated and returned. Use this if you want to combine several geometric structures to a single polygon.

Details

Bezier curves appear in such areas as mechanical computer aided design (CAD). They are named after P. Bezier, who used a closely related representation in Renault’s UNISURF CAD system in the early 1960s (similar, unpublished, work was done by P. de Casteljau at Citroen in the late 1950s and early 1960s). The 1970s and 1980s saw a flowering of interest in Bezier curves, with many CAD systems using them, and many important developments in their theory. The usefulness of Bezier curves resides in their many geometric and analytical properties. There are elegant and efficient algorithms for evaluation, differentiation, subdivision of the curves, and conversion to other useful representations. (See: Farin, 1993)

Value

`drawbezier` invisibly returns a list of the calculated coordinates for all shapes.

Author(s)

Frank E Harrell Jr <f.harrell@vanderbilt.edu>

References

See Also

polygon, DrawRegPolygon, DrawCircle, DrawArc

Examples

Canvas(xlim=c(0,1))
grid()
DrawBezier(x=c(0,0.5,1), y=c(0,0.5,0), col="blue", lwd=2)
DrawBezier(x=c(0,0.5,1), y=c(0,1,0), col="red", lwd=2)
DrawBezier(x=c(0,0.25,0.5,0.75,1), y=c(0,1,1,1,0), col="darkgreen", lwd=2)

Description

Draw one or several circle on an existing plot.

Usage

DrawCircle(x = 0, y = x, r.out = 1, r.in = 0,
theta.1 = 0, theta.2 = 2*pi, border = par("fg"),
col = NA, lty = par("lty"), lwd = par("lwd"),
nv = 100, plot = TRUE)

Arguments

x, y a vector (or scalar) of xy-coordinates for the center(s) of the circle(s).
r.out a vector (or scalar) of the outer radius of the circle.
r.in a vector (or scalar) of a potential inner radius of an annulus.
theta.1 a vector (or scalar) of the starting angle(s). The sectors are built counterclockwise.
theta.2 a vector (or scalar) of the ending angle(s).
nv number of vertices to draw the circle.
border color for circle borders. The default is par("fg"). Use border = NA to omit borders.
col color(s) to fill or shade the circle(s) with. The default NA (or also NULL) means do not fill, i.e., draw transparent circles, unless density is specified.
lty line type for borders and shading; defaults to "solid".
lwd line width for borders and shading.
plot logical. If TRUE the structure will be plotted. If FALSE only the points are calculated and returned. Use this option if you want to combine several geometric structures to a polygon.
Details

All geometric arguments will be recycled.

Value

The function invisibly returns a list of the calculated coordinates for all shapes.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

`polygon`, `DrawRegPolygon`, `DrawEllipse`, `DrawArc`

Examples

Canvas(xlim = c(-5, 5), xpd=TRUE)
cols <- Pal("Helsana")[1:4]

Draw ring
drawCircle(r.in = 1, r.out = 5, border="d#2827ebgrey", col=SetAlpha(hyellow, 0.2), lwd=2)

Draw circle
drawCircle(r.in = 6, border=hgreen, lwd=3)

Draw sectors
drawCircle(r.in = geom[, 3], r.out = geom[, 4],
theta.1 = geom[, 1], theta.2 = geom[, 2],
col = SetAlpha(cols, 0.6),
border = cols, lwd=1)

clipping
Canvas(bg="lightgrey", main="Yin - Yang")
drawCircle(r.out = 1, col="white")
clip(0, 2, 2, -2)
drawCircle(col="black")
clip(-2, 2, 2, -2)
drawCircle(y = c(-0.5, 0.5), r.out = 0.5, col=c("black", "white"), border=NA)
drawCircle(y = c(-0.5, 0.5), r.out = 0.1, col=c("white", "black"), border=NA)
drawCircle()
```r
# rotation
x <- seq(-3, 3, length.out=10)
y <- rep(0, length.out=length(x))

Canvas(xlim=c(-5,5), bg="black")
sapply( (0:11) * pi/6, function(theta) {
  xy <- Rotate(x, y=y, theta=theta)
  DrawCircle (x=xy$x, y=xy$y, r.in=2.4, border=setalpha("white", 0.2))
})
```

DrawEllipse

Draw Ellipse

Description

Draw one or several ellipses on an existing plot.

Usage

```r
DrawEllipse(x = 0, y = x, radius.x = 1, radius.y = 0.5, rot = 0,
            nv = 100, border = par("fg"), col = par("bg"),
            lty = par("lty"), lwd = par("lwd"), plot = TRUE)
```

Arguments

- `x, y` the x and y co-ordinates for the centre(s) of the ellipse(s).
- `radius.x` a scalar or a vector giving the semi-major axis of the ellipse.
- `radius.y` a scalar or a vector giving the semi-minor axis of the ellipse.
- `rot` angle of rotation in radians.
- `nv` number of vertices to draw the ellipses.
- `border` color for borders. The default is `par("fg")`. Use `border = NA` to omit borders.
- `col` color(s) to fill or shade the annulus sector with. The default `NA` (or also `NULL`) means do not fill (say draw transparent).
- `lty` line type for borders and shading; defaults to "solid".
- `lwd` line width for borders and shading.
- `plot` logical. If TRUE the structure will be plotted. If FALSE only the points are calculated and returned. Use this if you want to combine several geometric structures to a single polygon.

Details

Use `DegToRad` if you want to define rotation angle in degrees.
DrawRegPolygon

Value

The function invisibly returns a list of the calculated coordinates for all shapes.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

polygon, DrawRegPolygon, DrawCircle, DrawArc

Examples

par(mfrow=c(1,2))

Canvas()
DrawEllipse(rot = c(1:3) * pi/3, col=SetAlpha(c("blue","red","green"), 0.5))

plot(cars)
m <- var(cars)
eig <- eigen(m)
eig.val <- sqrt(eig$values)
eig.vec <- eig$vectors

DrawEllipse(x=mean(cars$speed), y=mean(cars$dist), radius.x=eig$val[1], radius.y=eig$val[2],
rot=acos(eig.vec[1,1]), border="blue", lwd=3)

DrawRegPolygon

Draw Regular Polygon(s)

Description

Draw a regular polygon with n corners. This is the workhorse function for drawing regular poly-
gons. Drawing a circle can be done by setting the vertices to a value of say 100.

Usage

DrawRegPolygon(x = 0, y = x, radius.x = 1, radius.y = radius.x, rot = 0,
 nv = 3, border = par("fg"), col = par("bg"), lty = par("lty"),
 lwd = par("lwd"), plot = TRUE)

Arguments

x, y

a vector (or scalar) of xy-coordinates of the center(s) of the regular polygon(s).

radius.x

a scalar or a vector giving the semi-major axis of the ellipse for the polygon(s).

radius.y

a scalar or a vector giving the semi-minor axis of the ellipse for the polygon(s).
Default is radius.x which will result in a polygon with radius.x.
DrawRegPolygon

- **rot**: angle of rotation in radians.
- **nv**: number of vertices to draw the polygon(s).
- **border**: color for borders. The default is `par("bg")`. Use `border = NA` to omit borders.
- **col**: color(s) to fill or shade the shape with. The default NA (or also NULL) means do not fill (say draw transparent).
- **lty**: line type for borders and shading; defaults to "solid".
- **lwd**: line width for borders and shading.
- **plot**: logical. If TRUE the structure will be plotted. If FALSE only the points are calculated and returned. Use this if you want to combine several geometric structures to a polygon.

Details

All geometric arguments will be recycled.

Value

The function invisibly returns a list of the calculated coordinates for all shapes.

Author(s)

AndriSignorel <andri@signorell.net>

See Also

`polygon`, `DrawCircle`, `DrawArc`

Examples

```r
# Draw 4 triangles (nv = 3) with different rotation angles
plot(c(0,1),c(0,1), asp=1, type="n", xaxt="n", yaxt="n", xlab="", ylab="")
DrawRegPolygon(x = 0.5, y = 0.5, rot = (1:4)*pi/6, radius.x = 0.5, nv = 3,
       col = SetAlpha("yellow",0.5))

# Draw several polygons
plot(c(0,1),c(0,1), asp=1, type="n", xaxt="n", yaxt="n", xlab="", ylab="")
DrawRegPolygon(x = 0.5, y = 0.5, radius.x=seq(50, 5, -10) * 1 /100,
       rot=0, nv = c(50, 10, 7, 4, 3), col=SetAlpha("blue",seq(0.2,0.7,0.1)))

# Combine several polygons by sorting the coordinates
# Calculate the xy-points for two concentric pentagons
d.pnts <- do.call("rbind", lapply(DrawRegPolygon(radius.x=c(1,0.38), nv=5,
       rot=c(pi/2, pi/2+pi/5), plot=FALSE ), data.frame))

# prepare plot
plot(c(-1,1),c(-1,1), asp=1, type="n", xaxt="n", yaxt="n", xlab="", ylab="")
```
and draw the polygon with reordered points
polygon(d.pts[order(rep(1:6, times=2), rep(1:2, each=6)), c("x","y")], col="yellow")

Move the center
plot(c(0,1),c(0,1), asp=1, type="n", xaxt="n", yaxt="n", xlab="", ylab="")
theta <- seq(0, pi/6, length.out=5)
xy <- PolToCart(exp(theta) / 2, theta)
DrawRegPolygon(x=xy$x, y=xy$y + 0.5, radius.x=seq(0.5, 0.1, -0.1),
 nv=4, rot=seq(0, pi/2, length.out=5), col=rainbow(5))

Plot a polygon with a "hole"
plot(c(-1,1),c(-1,1), asp=1, type="n", xaxt="n", yaxt="n", xlab="", ylab="")
DrawRegPolygon(nv = 4, rot=pi/4, col="red")
text(x=0,y=0, "Polygon", cex=6, srt=45)

Calculate circle and hexagon, but do not plot
pts <- DrawRegPolygon(radius.x=c(0.7, 0.5), nv = c(100, 6), plot=FALSE)

combine the 2 shapes and plot the new structure
polygon(x = unlist(lapply(pts, ",x")),
y=unlist(lapply(pts, ",y")), col="green", border=FALSE)

Description

Generates a matrix of dummy codes (class indicators) for a given factor.

Usage

```r
dummy(x, method = c("treatment", "sum", "helmert", "poly", "full"),
  base = 1, levels = NULL)
```

Arguments

- `x` factor or vector of classes for cases.
- `method` defines the method of the contrasts being formed. Can be one out of "treatment", "sum", "helmert", "poly", "full", whereas "treatment" is the default one. Abbreviations are accepted. The option "full" returns a full set of class indicators, say a dummy factor for EACH level of x. Note that this would be redundant for lm and friends!
- `base` an integer specifying which group is considered the baseline group.
- `levels` an optional vector of the values (as character strings) that x might have taken. The default is the unique set of values taken by as.character(x), sorted into increasing order of x. This is directly passed on to `factor`.
Value

a matrix with the dummy codes. The number of rows correspond to the number of elements in \(x \) and the number of columns to the number of its levels - 1, respectively to the number of levels given as argument -1.

When method full is chosen the number of columns will correspond to the number of levels.

Author(s)

Andri Signorell <andri@signorell.net>

References

See Also

model.frame, contrasts, class.ind in the package nnet

Examples

```r
x <- c("red","blue","green","blue","green","red","red","blue")
Dummy(x)
Dummy(x, base = 2)

Dummy(x, method = "sum")

y <- c("Max","Max","Max","Max","Max","Bill","Bill","Bill")

Dummy(y)
Dummy(y, base = "Max")

Dummy(y, base = "Max", method="full")

# "Undummy" (revert the dummy coding)
m <- Dummy(y, method="full")
m
z <- apply(m, 1, function(x) colnames(m)[x==1])
z
identical(y, as.vector(z))

m <- Dummy(y)
m
z <- apply(m, 1, function(x) ifelse(sum(x)==0, attr(m,"base"), colnames(m)[x==1]))
z
```
Dunnett's Test for Comparing Several Treatments With a Control

Description

Performs Dunnett’s test for comparing several treatments with a control.

Usage

DunnettTest(x, ...)

Default S3 method:
DunnettTest(x, g, control = NULL, conf.level = 0.95, ...)

S3 method for class 'formula'
DunnettTest(formula, data, subset, na.action, ...)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.
g a vector or factor object giving the group for the corresponding elements of x. Ignored if x is a list.
control the level of the control group against which the others should be tested. If there are multiple levels the calculation will be performed for every one.
conf.level confidence level of the interval.
formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs the corresponding groups.
data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. Defaults to option("na.action").
... further arguments to be passed to or from methods.

Details

DunnettTest does the post hoc pairwise multiple comparisons procedure.

If x is a list, its elements are taken as the samples to be compared, and hence have to be numeric data vectors. In this case, g is ignored, and one can simply use DunnettTest(x) to perform the test. If the samples are not yet contained in a list, use DunnettTest(list(x, ...)).

Otherwise, x must be a numeric data vector, and g must be a vector or factor object of the same length as x giving the group for the corresponding elements of x.
Value

A list of class `c("PostHocTest")`, containing one matrix named after the control with columns `diff` giving the difference in the observed means, `lwr.ci` giving the lower end point of the interval, `upr.ci` giving the upper end point and `pval` giving the p-value after adjustment for the multiple comparisons.

There are print and plot methods for class "PostHocTest". The plot method does not accept `xlab`, `ylab` or `main` arguments and creates its own values for each plot.

Author(s)

Andri Signorell <andri@signorell.net>, the interface is based on R-Core code

References

See Also

`posthoctest`

Examples

```r
# Hollander & Wolfe (1973), 116.
# Mucociliary efficiency from the rate of removal of dust in normal
# subjects, subjects with obstructive airway disease, and subjects
# with asbestosis.
# x <- c(2.9, 3.0, 2.5, 2.6, 3.2) # normal subjects
# y <- c(3.8, 2.7, 4.0, 2.4) # with obstructive airway disease
# z <- c(2.8, 3.4, 3.7, 2.2, 2.0) # with asbestosis
DunnettTest(list(x, y, z))

# Equivalently,
x <- c(x, y, z)
g <- factor(rep(1:3, c(5, 5)),
          labels = c("Normal subjects",
                     "Subjects with obstructive airway disease",
                     "Subjects with asbestosis"))
DunnettTest(x, g)

# Formula interface
boxplot(Ozone ~ Month, data = airquality)
DunnettTest(Ozone ~ Month, data = airquality)

DunnettTest(Ozone ~ Month, data = airquality, control="B", conf.level=0.9)
```
Dunn's Test of Multiple Comparisons

Description

Performs Dunn's test of multiple comparisons using rank sums.

Usage

DunnTest(x, ...)

Default S3 method:
DunnTest(x, g,
 method = c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"),
 alternative = c("two.sided", "less", "greater"),
 out.list = TRUE, ...)

S3 method for class 'formula'
DunnTest(formula, data, subset, na.action, ...)

S3 method for class 'DunnTest'
print(x, digits = getOption("digits", 3), ...)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.
g a vector or factor object giving the group for the corresponding elements of x. Ignored if x is a list.
method the method for adjusting p-values for multiple comparisons. The function is calling p.adjust and this parameter is directly passed through.
alternative a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". You can specify just the initial letter.
out.list logical, indicating if the results should be printed in list mode or as a square matrix. Default is list (TRUE).
formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs the corresponding groups.
data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").
digits controls the number of fixed digits to print.
... further arguments to be passed to or from methods.
Details

DunnTest performs the post hoc pairwise multiple comparisons procedure appropriate to follow the rejection of a Kruskal-Wallis test. The Kruskal-Wallis test, being a non-parametric analog of the one-way ANOVA, is an omnibus test of the null hypothesis that none of k groups stochastically dominate one another. Dunn's test is constructed in part by summing jointly ranked data. The rank sum test, itself a non-parametric analog of the unpaired t-test, is possibly intuitive, but inappropriate as a post hoc pairwise test, because (1) it fails to retain the dependent ranking that produced the Kruskal-Wallis test statistic, and (2) it does not incorporate the pooled variance estimate implied by the null hypothesis of the Kruskal-Wallis test.

If x is a list, its elements are taken as the samples to be compared, and hence have to be numeric data vectors. In this case, g is ignored, and one can simply use DunnTest(x) to perform the test. If the samples are not yet contained in a list, use DunnTest(list(x, ...)). Otherwise, x must be a numeric data vector, and g must be a vector or factor object of the same length as x giving the group for the corresponding elements of x.

Value

A list with class "DunnTest" containing the following components:

res an array containing the mean rank differences and the according p-values

Author(s)

Andri Signorell <andri@signorell.net>, the interface is based on R-Core code

References

See Also

kruskal.test, wilcox.test, p.adjust

Examples

Hollander & Wolfe (1973), 116.
Mucociliary efficiency from the rate of removal of dust in normal
subjects, subjects with obstructive airway disease, and subjects
with asbestosis.
x <- c(2.9, 3.0, 2.5, 2.6, 3.2) # normal subjects
y <- c(3.8, 2.7, 4.0, 2.4) # with obstructive airway disease
z <- c(2.8, 3.4, 3.7, 2.2, 2.0) # with asbestosis
DunnTest(list(x, y, z))

Equivalently,
x <- c(x, y, z)
g <- factor(rep(1:3, c(5, 4, 5)))
labels = c("Normal subjects",
 "Subjects with obstructive airway disease",
 "Subjects with asbestosis")

do the kruskal.test first
kruskal.test(x, g)

...and the pairwise test afterwards
DunnTest(x, g)

Formula interface.
boxplot(Ozone ~ Month, data = airquality)
DunnTest(Ozone ~ Month, data = airquality)

Durbin-Watson Test

Description

Performs the Durbin-Watson test for autocorrelation of disturbances.

Usage

```r
DurbinWatsonTest(formula, order.by = NULL,
                  alternative = c("greater", "two.sided", "less"),
                  iterations = 15, exact = NULL, tol = 1e-10, data = list())
```

Arguments

- **formula**: a symbolic description for the model to be tested (or a fitted "lm" object).
- **order.by**: Either a vector z or a formula with a single explanatory variable like ~ z. The observations in the model are ordered by the size of z. If set to NULL (the default) the observations are assumed to be ordered (e.g., a time series).
- **alternative**: a character string specifying the alternative hypothesis.
- **iterations**: an integer specifying the number of iterations when calculating the p-value with the "pan" algorithm.
- **exact**: logical. If set to FALSE a normal approximation will be used to compute the p-value, if TRUE the "pan" algorithm is used. The default is to use "pan" if the sample size is < 100.
- **tol**: tolerance. Eigenvalues computed have to be greater than tol to be treated as non-zero.
- **data**: an optional data frame containing the variables in the model. By default the variables are taken from the environment which `DurbinWatsonTest` is called from.
Details

The Durbin-Watson test has the null hypothesis that the autocorrelation of the disturbances is 0. It is possible to test against the alternative that it is greater than, not equal to, or less than 0, respectively. This can be specified by the alternative argument.

Under the assumption of normally distributed disturbances, the null distribution of the Durbin-Watson statistic is the distribution of a linear combination of chi-squared variables. The p-value is computed using the Fortran version of Applied Statistics Algorithm AS 153 by Farebrother (1980, 1984). This algorithm is called "pan" or "gradsol". For large sample sizes the algorithm might fail to compute the p value; in that case a warning is printed and an approximate p value will be given; this p value is computed using a normal approximation with mean and variance of the Durbin-Watson test statistic.

Examples can not only be found on this page, but also on the help pages of the data sets bondyield, currencysubstitution, growthofmoney, moneydemand, unemployment, wages.

For an overview on R and econometrics see Racine & Hyndman (2002).

Value

An object of class "htest" containing:

- statistic: the test statistic.
- p.value: the corresponding p-value.
- method: a character string with the method used.
- data.name: a character string with the data name.

Note

This function was previously published as dwtest in the lmtest package and has been integrated here without logical changes.

Author(s)

Torsten Hothorn, Achim Zeileis, Richard W. Farebrother (pan.f), Clint Cummins (pan.f), Giovanni Millo, David Mitchell

References

See Also

lm

Examples

```r
## generate two AR(1) error terms with parameter
## rho = 0 (white noise) and rho = 0.9 respectively
err1 <- rnorm(100)

## generate regressor and dependent variable
x <- rep(c(-1,1), 50)
y1 <- 1 + x + err1

## perform Durbin-Watson test
DurbinWatsonTest(y1 ~ x)

err2 <- filter(err1, 0.9, method="recursive")
y2 <- 1 + x + err2
DurbinWatsonTest(y2 ~ x)

## for a simple vector use:
e_t <- c(-32.33, -26.603, 2.215, -16.967, -1.148, -2.512, -1.967, 11.669, -0.513, 27.032, -4.422, 40.032, 23.577, 33.94, -2.787, -8.606, 0.575, 6.848, -18.971, -29.063)
DurbinWatsonTest(e_t ~ 1)
```

<table>
<thead>
<tr>
<th>Entropy</th>
<th>Shannon Entropy and Mutual Information</th>
</tr>
</thead>
</table>

Description

Computes Shannon entropy and the mutual information of two variables. The entropy quantifies the expected value of the information contained in a vector. The mutual information is a quantity that measures the mutual dependence of the two random variables.

Usage

```r
Entropy(x, y = NULL, base = 2, ...)

MutInf(x, y, base = 2, ...)
```
Arguments

- **x**: a vector or a matrix of numerical or categorical type. If only x is supplied it will be interpreted as contingency table.
- **y**: a vector with the same type and dimension as x. If y is not NULL then the entropy of `table(x, y, ...)` will be calculated.
- **base**: base of the logarithm to be used, defaults to 2.
- **...**: further arguments are passed to the function `table`, allowing i.e. to set `useNA`.

Details

The Shannon entropy equation provides a way to estimate the average minimum number of bits needed to encode a string of symbols, based on the frequency of the symbols. It is given by the formula \(H = -\sum (\pi \log(\pi)) \) where \(\pi \) is the probability of character number \(i \) showing up in a stream of characters of the given "script". The entropy is ranging from 0 to \(\text{Inf} \).

Value

a numeric value.

Author(s)

Andri Signorell <andri@signorell.net>

References

See Also

package `entropy` which implements various estimators of entropy

Examples

```r
Entropy(as.matrix(rep(1/8, 8)))
```

http://r.789695.n4.nabble.com/entropy-package-how-to-compute-mutual-information-td4385339.html

```r
x <- as.factor(c("a", "b", "a", "c", "b", "c"))
y <- as.factor(c("b", "a", "a", "c", "c", "b"))

Entropy(table(x), base=exp(1))
Entropy(table(y), base=exp(1))
Entropy(x, y, base=exp(1))
```

Mutual information is
Entropy(table(x), base=exp(1)) + Entropy(table(y), base=exp(1)) - Entropy(x, y, base=exp(1))
MutInf(x, y, base=exp(1))

Entropy(table(x)) + Entropy(table(y)) - Entropy(x, y)
MutInf(x, y, base=2)

http://en.wikipedia.org/wiki/Cluster_labeling
tab <- matrix(c(60,10000,200,500000), nrow=2, byrow=TRUE)
MutInf(tab, base=2)

d.frm <- Untable(as.table(tab))
str(d.frm)
MutInf(d.frm[,1], d.frm[,2])

table(d.frm[,1], d.frm[,2])
MutInf(table(d.frm[,1], d.frm[,2]))

Ranking mutual information can help to describe clusters
#
r.mi <- MutInf(x, grp)
attributes(r.mi)$dimnames <- attributes(tab)$dimnames
#
calculating ranks of mutual information
r.mi_r <- apply(-r.mi, 2, rank, na.last=TRUE)
show only first 6 ranks
r.mi_r6 <- ifelse(r.mi_r < 7, r.mi_r, NA)
attributes(r.mi_r6)$dimnames <- attributes(tab)$dimnames
r.mi_r6

Eps

Greenhouse-Geisser And Huynh-Feldt Epsilons

Description

Calculate Greenhouse-Geisser and Huynh-Feldt epsilons.

Usage

Eps(S, p, g, n)

Arguments

- **S**
 - pxp covariance matrix
- **p**
 - dimension of observation vectors
- **g**
 - number of groups
- **n**
 - number of subjects
ErrBars

Value

a numeric value

Author(s)

Hans Rudolf Roth <hroth@retired.ethz.ch>

References

See Also

aov

Examples

```r
## find!
```

Add Error Bars to an Existing Plot

Description

Add error bars to an existing plot.

Usage

```r
ErrBars(from, to = NULL, pos = NULL, mid = NULL, horiz = FALSE, col = par("fg"), lty = par("lty"), lwd = par("lwd"), code = 3, length = 0.05, pch = NA, cex.pch = par("cex"), col.pch = par("fg"), bg.pch = par("bg"), ...)
```

Arguments

- **from**: coordinates of points from which to draw (the lower end of the error bars). If to is left to NULL and from is a $k \times 2$ dimensional matrix, the first column will be interpreted as from and the second as to.
- **to**: coordinates of points to which to draw (the upper end of the error bars).
- **pos**: numeric, position of the error bars. This will either be the x-coordinate in case of vertical error bars and the y-coordinate in case of horizontal error bars.
- **mid**: numeric, position of midpoints. Defaults to the mean of from and to.
ErrBars

horiz logical, determining whether horizontal error bars are needed (default is FALSE).
col the line color.
1ty the line type.
lwd line width.
code integer code, determining where end lines are to be drawn. code = 0 will draw
no end lines, code = 1 will draw an end line on the left (lower) side at (x0[i],
y0[i]), code = 2 on the right (upper) side (x1[i], y1[i]) and code = 3
(default) will draw end lines at both ends.
length the length of the end lines.
pch plotting character for the midpoints. The position of the points is given by mid.
If mid is left to NULL the points will be plotted in the middle of from and to. No
points will be plotted if this is set to NA, which is the default.
cex.pch the character extension for the plotting characters. Default is par("cex").
col.pch the color of the plotting characters. Default is par("fg").
bg.pch the background color of the plotting characters (if pch is set to 21:25). Default
is par("bg").
... the dots are passed to the arrows function.

Details

A short wrapper for plotting error bars by means of arrows.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

arrows, lines.loess

Examples

par(mfrow=c(2,2))
b <- barplot(1:5, ylim=c(0,6))
ErrBars(from=1:5+rep(0.5,5), to=1:5+rep(0.5,5), pos=b, length=0.2)

just on one side
b <- barplot(1:5, ylim=c(0,6))
ErrBars(from=1:5, to=1:5+rep(0.5,5), pos=b, length=0.2, col="red", code=2, lwd=2)

b <- barplot(1:5, xlim=c(0,6), horiz=TRUE)
ErrBars(from=1:5, to=1:5+rep(0.2,5), pos=b, horiz=TRUE, length=0.2, col="red", code=2, lwd=2)

par(xpd=FALSE)
dotchart(1:5, xlim=c(0,6))
ErrBars(from=1:5-rep(0.2,5), to=1:5+rep(0.2,5), horiz=TRUE, length=0.1)
Description

Calculates eta-squared, partial eta-squared, and generalized eta-squared effects.

Usage

```
EtaSq(x, type = 2, anova = FALSE)
```

```R
## S3 method for class 'lm'
EtaSq(x, type = 2, anova = FALSE)
```

```R
## S3 method for class 'aovlist'
EtaSq(x, type = 2, anova = FALSE)
```

Arguments

- `x` An analysis of variance (`aov`, `aovlist`) object.
- `type` What type of sum of squares to calculate? `EtaSq.aovlist` requires `type=1`.
- `anova` Should the full ANOVA table be printed out in addition to the effect sizes?

Details

Calculates the eta-squared, partial eta-squared, and generalized eta-squared measures of effect size that are commonly used in analysis of variance. The input `x` should be the analysis of variance object itself. For between-subjects designs, generalized eta-squared equals partial eta-squared. The reported generalized eta-squared for repeated-measures designs assumes that all factors are manipulated, i.e., that there are no measured factors like gender (see references).

For unbalanced designs, the default in `EtaSq` is to compute Type II sums of squares (`type=2`), in keeping with the `Anova` function in the `car` package. It is possible to revert to the Type I SS values (`type=1`) to be consistent with `anova`, but this rarely tests hypotheses of interest. Type III SS values (`type=3`) can also be computed. `EtaSq.aovlist` requires `type=1`.

Value

If `anova=FALSE`, the output for `EtaSq.lm` is an M x 2 matrix, for `EtaSq.aovlist` it is an M x 3 matrix. Each of the M rows corresponds to one of the terms in the ANOVA (e.g., main effect 1, main effect 2, interaction, etc), and each of the columns corresponds to a different measure of effect size. Column 1 contains the eta-squared values, and column 2 contains partial eta-squared values. Column 3 contains the generalized eta-squared values. If `anova=TRUE`, the output contains additional columns containing the sums of squares, mean squares, degrees of freedom, F-statistics and p-values. For `EtaSq.aovlist`, additional columns contain the error sum of squares and error degrees of freedom corresponding to an effect term.
Author(s)
Daniel Navarro <daniel.navarro@adelaide.edu.au>, Daniel Wollschlaeger <dwoll@psychologie.uni-kiel.de>

References

See Also
aov, anova, Anova

Examples

```r
# Example 1: one-way ANOVA
outcome <- c(1.4, 2.1, 3.0, 2.1, 3.2, 4.7, 3.5, 4.5, 5.4)  # data
treatment1 <- factor(c(1, 1, 2, 2, 3, 3))  # grouping variable
anova1 <- aov(outcome ~ treatment1)  # run the ANOVA
summary(anova1)  # print the ANOVA table
EtaSq(anova1)  # effect size

# Example 2: two-way ANOVA
outcome <- c(1.4, 2.1, 3.0, 2.1, 3.2, 4.7, 3.5, 4.5, 5.4)
treatment1 <- factor(c(1, 1, 2, 2, 3, 3))  # second grouping variable
treatment2 <- factor(c(1, 2, 3, 1, 2, 3, 1, 2, 3))
anova2 <- aov(outcome ~ treatment1 + treatment2)  # run the ANOVA
summary(anova2)  # print the ANOVA table
EtaSq(anova2)  # effect size

# Example 3: two-way ANOVA unbalanced cell sizes
# Data from Maxwell & Delaney, 2004
# Designing experiments and analyzing data

dfMD <- data.frame(IV1=factor(rep(1:3, c(3*5+7, 5*6+4, 5*4+6))),
                   IV2=factor(rep(rep(1:3, 3), c(3,5,7, 5,6,4, 5,4,6))),
                   DV=c(41, 43, 50), c(51, 43, 53, 54, 46), c(45, 55, 56, 60, 58, 62, 62),
                   c(56, 47, 45, 46, 49), c(58, 49, 49, 61, 52, 62), c(59, 55, 68, 63),
                   c(43, 56, 48, 46, 47), c(59, 46, 58, 54), c(55, 69, 63, 56, 62, 67))
# use contr.sum for correct sum of squares type 3
dfMD$IV1s <- C(dfMD$IV1, "contr.sum")
dfMD$IV2s <- C(dfMD$IV2, "contr.sum")
dfMD$IV1t <- C(dfMD$IV1, "contr.treatment")
dfMD$IV2t <- C(dfMD$IV2, "contr.treatment")
EtaSq(aov(DV ~ IV1s*IV2s, data=dfMD), type=3)
EtaSq(aov(DV ~ IV1t*IV2t, data=dfMD), type=1)
```
Example 4: two-way split-plot ANOVA -> EtaSq.aovlist

```r
DV_t1 <- round(rnorm(3*10, -0.5, 1), 2)
DV_t2 <- round(rnorm(3*10, 0, 1), 2)
DV_t3 <- round(rnorm(3*10, 0.5, 1), 2)
dfSPF <- data.frame(id=factor(rep(1:(3*10), times=3)),
                     IVbtw=factor(rep(LETTERS[1:3], times=3*10)),
                     IVwth=factor(rep(1:3, each=3*10)),
                     DV=c(DV_t1, DV_t2, DV_t3))
spf <- aov(DV ~ IVbtw*IVwth + Error(id/IVwth), data=dfSPF)
EtaSq(spf, type=1, anova=TRUE)
```

Description

Calculate the expected frequencies of an n-way table assuming independence.

Usage

```r
ExpFreq(x, freq = c("abs", "rel"))
```

Arguments

- `x`: a table.
- `freq`: indicates, whether absolute or relative frequencies should be computed. Can either be "abs" or "rel". Partial matching is supported.

Value

A table with either the absolute or the relative expected frequencies.

Note

This is a copy of the function `independence_table` in `vcd`.

Author(s)

David Meyer <David.Meyer@R-project.org>

See Also

- `chisq.test`

Examples

```r
ExpFreq(Titanic)
ExpFreq(UCBAmissions, freq="r")
```
Description

Find the kth smallest, resp. largest values from a vector x and return the values and their frequencies.

Usage

Small(x, k = 5, unique = FALSE, na.last = NA)
Large(x, k = 5, unique = FALSE, na.last = NA)

HighLow(x, nlow = 5, nhigh = nlow, na.last = NA)

Arguments

x a numeric vector
k an integer >0 defining how many extreme values should be returned. Default is k = 5. If k > length(x), all values will be returned.
unique logical, defining if unique values should be considered or not. If this is set to TRUE, a list with the k extreme values and their frequencies is returned. Default is FALSE (as unique is a rather expensive function).
na.last for controlling the treatment of NAs. If TRUE, missing values in the data are put last; if FALSE, they are put first; if NA, they are removed.
nlow a single integer. The number of the smallest elements of a vector to be printed. Defaults to 5.
nhigh a single integer. The number of the greatest elements of a vector to be printed. Defaults to the number of nlow.

Details

This does not seem to be a difficult problem at first sight. We could simply tabulate and sort the vector and finally take the first or last k values. However sorting and tabulating the whole vector when we’re just interested in the few smallest values is a considerable waste of resources. This approach becomes already impracticable for medium vector lengths. There are several points and solutions of this problem discussed out there. The present implementation is based on highly efficient C++ code and proved to be very fast.

HighLow enumerates the k extreme values (both sides) and their frequencies (in brackets). It is used for describing univariate variables and is interesting for checking the ends of the vector, where in real data often wrong values accumulate. This is merely a printing routine for the highest and the lowest values of x.

Value

if unique is set to FALSE: a vector with the k most extreme values,
else: a list, containing the k most extreme values and their frequencies.
Author(s)

Andri Signorell <andri@signorell.net>
C++ parts by Nathan Russell and Romain Francois

References

http://stackoverflow.com/questions/36993935/find-the-largest-n-unique-values-and-their-frequencies
http://gallery.rcpp.org/articles/top-elements-from-vectors-using-priority-queue/

See Also

max, max, sort, rank

Examples

x <- sample(1:10, 1000, rep=TRUE)
Large(x, 3)
Large(x, k=3, unique=TRUE)

works fine up to x ~ 1e6
x <- runif(1000000)
Small(x, 3, unique=TRUE)
Small(x, 3, unique=FALSE)

Both ends
cat(HighLow(d.pizza$temperature, na.last=NA))

ExtrVal

Distributions of Maxima and Minima

Description

Density function, distribution function, quantile function and random generation for the maximum/minimum of a given number of independent variables from a specified distribution.

Usage

dExtrVal(x, densfun, distnfun, ..., distn, mlen = 1, largest = TRUE, log = FALSE)
pExtrVal(q, distnfun, ..., distn, mlen = 1, largest = TRUE, lower.tail = TRUE)
qExtrVal(p, quantfun, ..., distn, mlen = 1, largest = TRUE, lower.tail = TRUE)
rExtrVal(n, quantfun, ..., distn, mlen = 1, largest = TRUE)
Arguments

- **x, q**: Vector of quantiles.
- **p**: Vector of probabilities.
- **n**: Number of observations.
- **densfun, distnfun, quantfun**: Density, distribution and quantile function of the specified distribution. The density function must have a log argument (a simple wrapper can always be constructed to achieve this).
- **...**: Parameters of the specified distribution.
- **distn**: A character string, optionally given as an alternative to densfun, distnfun and quantfun such that the density, distribution and quantile functions are formed upon the addition of the prefixes d, p and q respectively.
- **mlen**: The number of independent variables.
- **largest**: Logical; if TRUE (default) use maxima, otherwise minima.
- **log**: Logical; if TRUE, the log density is returned.
- **lower.tail**: Logical; if TRUE (default) probabilities are P[X <= x], otherwise P[X > x].

Value

- **dExtrVal** gives the density function, **pExtrVal** gives the distribution function and **qExtrVal** gives the quantile function of the maximum/minimum of mlen independent variables from a specified distribution. **rExtrVal** generates random deviates.

Author(s)

Alec Stephenson <alec_stephenson@hotmail.com>

See Also

- **rGenExtrVal**, **rOrder**

Examples

```r
dExtrVal(2:4, dnorm, pnorm, mean = 0.5, sd = 1.2, mlen = 5)
dExtrVal(2:4, distn = "norm", mean = 0.5, sd = 1.2, mlen = 5)
dExtrVal(2:4, distn = "exp", mlen = 2, largest = FALSE)
pExtrVal(2:4, distn = "exp", rate = 1.2, mlen = 2)
qExtrVal(seq(0.9, 0.6, -0.1), distn = "exp", rate = 1.2, mlen = 2)
rExtrVal(5, qgamma, shape = 1, mlen = 10)
p <- (1:9)/10
pexp(qExtrVal(p, distn = "exp", rate = 1.2, mlen = 1), rate = 1.2)
# [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
```
Factorize Prime Factorization of Integers

Description

Compute the prime factorization(s) of integer(s) \(n \).

Usage

Factorize(\(n \))

Arguments

\(n \) vector of integers to factorize.

Details

works via Primes, currently in a cheap way, sub-optimal for large composite \(n \).

Value

A named list of the same length as \(n \), each element a 2-column matrix with column "p" the prime factors and column~"m" their respective exponents (or multiplicities), i.e., for a prime number \(n \), the resulting matrix is \(\text{cbind}(p = n, m = 1) \).

Author(s)

Martin Maechler, Jan. 1996.

See Also

GCD, LCM, Primes, IsPrime, Divisors

For factorization of moderately or really large numbers, see the gmp package, and its factorize() (which is \(~20x \) faster!).

Examples

Factorize(47)
Factorize(seq(101, 120, by=2))
FctArgs

Retrieves a Function’s Arguments

Description
Retrieve a function’s arguments and default values in a list.

Usage
FctArgs(name, sort = FALSE)

Arguments
name
name of the function.

sort
logical. Should the function arguments be sorted? Defaults to FALSE.

Value
a data.frame with the default in the first columns and with row.names as argument names.

Author(s)
Andri Signorell <andri@signorell.net>

See Also
formalArgs, formals, args, alist, body

Examples
formalArgs(PlotFdist)
formals(PlotFdist)

compare:
FctArgs(PlotFdist)

Fibonacci

Fibonacci Numbers

Description
Generates Fibonacci numbers.

Usage
Fibonacci(n)
Arguments

\[n \] nonnegative integer or vector of nonnegative integers.

Details

Generates the \(n \)-th Fibonacci number, whereas \(\text{Fibonacci}(0) = 0 \).

Value

A single integer, or a vector of integers.

Author(s)

Andri Signorell <andri@signorell.net>

References

Examples

\[
\begin{align*}
\text{Fibonacci}(0) & \quad \# 1 \\
\text{Fibonacci}(2) & \quad \# 2 \\
\text{Fibonacci}(0:3) & \quad \# 0 1 1 2 \\
\end{align*}
\]

Golden ratio
\[
\begin{align*}
F & \leftarrow \text{Fibonacci}(1:25) \quad \# \ldots \quad 75025 \quad 121393 \\
f_{25} & \leftarrow F[25]/F[24] \quad \# \quad 1.618033989 \\
\phi & \leftarrow (\sqrt{5} + 1)/2 \\
\text{abs}(f_{25} - \phi) & \quad \# \quad 7.945178e-11
\end{align*}
\]

Fibonacci numbers without iteration
\[
\begin{align*}
\text{fibo} & \leftarrow \text{function}(n) \{ \\
& \quad \text{phi} \leftarrow (\sqrt{5} + 1)/2 \\
& \quad \text{fib} \leftarrow (\phi^{n+1} - (1-\phi)^{(n+1)}) / (2\phi - 1) \\
& \quad \text{round}(\text{fib})
\}
\end{align*}
\]

\[
\begin{align*}
\text{fibo}(30:33) & \quad \# \quad 1346269 \quad 2178309 \quad 3524578 \quad 5702887
\end{align*}
\]
Description

Handling of pathnames is tedious in Windows because of the backslashes, that prevent simple pasting of a copied path into the source code. FileOpenCmd displays the FileOpen-Dialog for picking a file interactively. When done, backslashes in the returned path will be replaced by simple slashes as used in R path definitions. The edited path is invisibly returned and also written to the clipboard, from where it can easily be pasted in any code editor.

This is especially helpful in combination with RStudio’s new AddIns-option.

Usage

FileOpenCmd(fmt = NULL)

Arguments

fmt
the format, in which the filename parts should be returned. This can be defined quite flexible containing the elements path, filename and ext (file extension) enclosed by %.
Default is path/filename.ext and coded as "%path%\%filename%.%ext%". See examples for additional alternative definitions.

Details

There are 2 predefined formats that can be addressed with fmt = 1 resp. fmt = 2. 1 will return the path enclosed by a typical read.table(...) command, 2 will do the same with load(...).

Value

character string containing the path (also present in the clipboard)

Author(s)

Andri Signorell <andri@signorell.net>

See Also

file.choose

Examples

Not run:
choose a file
fn <- FileOpenCmd()
print(gettextf("You chose the file: %s ", fn))

the path and filename can as well be nested in a command,
done here to build a read.table command that can be well inserted into the code:
FileOpenCmd(fmt="d.%fname% <- read.table(file = \\
"%path%\%fname%\%fxt\",
header = TRUE, sep = \\
";\", na.strings = c("NA","NULL"), strip.white = TRUE)"

go to your editor and paste...
Find a color on a defined color range depending on the value of x. This is helpful for colorcoding numeric values.

Usage

```r
FindColor(x, cols = rev(heat.colors(100)),
          min.x = NULL, max.x = NULL, all.inside = FALSE)
```

Arguments

- `x` numeric.
- `cols` a vector of colors.
- `min.x` the x-value to be used for the left edge of the first color. If left to the default NULL min(pretty(x)) will be used.
- `max.x` the x-value to be used for the right edge of the last color. If left to the default NULL max(pretty(x)) will be used.
- `all.inside` logical; if true, the returned indices are coerced into 1, ..., N-1, i.e., 0 is mapped to 1 and N to N-1.

Details

For the selection of colors the option `rightmost.closed` in the used function `findinterval` is set to TRUE. This will ensure that all values on the right edge of the range are assigned a color. How values outside the boundaries of `min.x` and `max.x` should be handled can be controlled by `all.inside`. Set this value to TRUE, if those values should get the colors at the edges or set it to FALSE, if they should remain white (which is the default).

Note that `findInterval` closes the intervals on the left side, e.g. [0, 1). This option can’t be changed. Consequently will x-values lying on the edge of two colors get the color of the bigger one.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

- `findInterval`
Examples

```r
Canvas(7, main="Use of function FindColor()")

# get some data
x <- c(23, 56, 96)
# get a color range from blue via white to red
cols <- colorRampPalette(c("blue", "white", "red"))(100)
ColorLegend(x="bottomleft", cols=cols, labels=seq(0, 100, 10), cex=0.8)

# and now the color coding of x:
(xcols <- FindColor(x, cols, min.x=0, max.x=100))

# this should be the same as
cols[x+1]

# how does it look like?
y0 <- c(-5, -2, 1)
text(x=1, y=max(y0)+2, labels="Color coding of x:"

text(x=1.5, y=y0, labels=x)
DrawRegPolygon(x=3, y=y0, nv=4, rot=pi/4, col=xcols)
text(x=6, y=y0, labels=xcols)

# how does the function select colors?
Canvas(xlim = c(0,1), ylim = c(0,1))
cols <- c(red="red", yellow="yellow", green="green", blue="blue")
ColorLegend(x=0, y=1, width=1, cols=rev(cols), horiz = TRUE,
    labels=Format(seq(0, 1, .25), digits=2), frame="grey", cex=0.8)
x <- c(-0.2, 0, 0.15, 0.55, .75, 1, 1.3)
arrow(y0 = x, y0 = 0.6, y1 = 0.8, angle = 15, length = .2)
text(x=x, y = 0.5, labels = x, adj = c(0.5,0.5))
text(x=x, y = 0.4, labels = names(FindColor(x, cols=cols,
    min.x = 0, max.x = 1, all.inside = TRUE)), adj = c(0.5,0.5))
text(x=x, y = 0.3, labels = names(FindColor(x, cols=cols,
    min.x = 0, max.x = 1, all.inside = FALSE)), adj = c(0.5,0.5))
```

FindCorr

Determine Highly Correlated Variables

Description

This function searches through a correlation matrix and returns a vector of integers corresponding to columns to remove to reduce pair-wise correlations.

Usage

`FindCorr(x, cutoff = .90, verbose = FALSE)`
Arguments

- `x` A correlation matrix
- `cutoff` A numeric value for the pair-wise absolute correlation cutoff
- `verbose` A boolean for printing the details

Details

The absolute values of pair-wise correlations are considered. If two variables have a high correlation, the function looks at the mean absolute correlation of each variable and removes the variable with the largest mean absolute correlation.

There are several function in the `subselect` package (`leaps, genetic, anneal`) that can also be used to accomplish the same goal.

Value

A vector of indices denoting the columns to remove. If no correlations meet the criteria, `numeric(0)` is returned.

Author(s)

Original R code by Dong Li, modified by Max Kuhn

References

See Also

`leaps, genetic, anneal`

Examples

```r
corrMatrix <- diag(rep(1, 5))

corrDF <- expand.grid(row = 1:5, col = 1:5)
corrDF$correlation <- as.vector(corrMatrix)
PlotCorr(xtabs(correlation ~ ., corrDF), las=1, border="grey")

FindCorr(corrMatrix, cutoff = .65, verbose = TRUE)
FindCorr(corrMatrix, cutoff = .99, verbose = TRUE)

# d.pizza example
m <- cor(data.frame(lapply(d.pizza, as.numeric)), use="pairwise.complete.obs")
FindCorr(m, verbose = TRUE)
```
FisherZ

Fisher-Transformation for Correlation to z-Score

Description

Convert a correlation to a z score or z to r using the Fisher transformation or find the confidence intervals for a specified correlation.

Usage

FisherZ(rho)
FisherZInv(z)
CorCI(rho, n, conf.level = 0.95, alternative = c("two.sided", "less", "greater"))

Arguments

rho the Pearson’s correlation coefficient
z a Fisher z transformed value
n sample size used for calculating the confidence intervals
alternative is a character string, one of "greater", "less", or "two.sided", or the initial letter of each, indicating the specification of the alternative hypothesis. "greater" corresponds to positive association, "less" to negative association.
conf.level confidence level for the returned confidence interval, restricted to lie between zero and one.

Details

The sampling distribution of Pearson’s r is not normally distributed. Fisher developed a transformation now called "Fisher’s z-transformation" that converts Pearson’s r’s to the normally distributed variable z’. The formula for the transformation is:

\[z_r = \tanh^{-1} \left(\frac{1 + r}{1 - r} \right) \]

Value

z value corresponding to r (in FisherZ)
r corresponding to z (in FisherZInv)
rho, lower and upper confidence intervals (CorCI)

Author(s)

William Revelle <revelle@northwestern.edu>,
slight modifications Andri Signorell <andri@signorell.net> based on R-Core code
See Also

cor.test

Examples

cors <- seq(-.9, .9, .1)
zs <- FisherZ(cors)
rs <- FisherZInv(zs)
round(zs, 2)
n <- 30
r <- seq(0, .9, .1)
rc <- t(sapply(r, CorCI, n=n))
t <- r * sqrt(n-2) / sqrt(1-r^2)
p <- (1 - pt(t, n-2)) / 2
r.rc <- data.frame(r=r, z=FisherZ(r), lower=rc[,2], upper=rc[,3], t=t, p=p)
round(r.rc,2)
Value

a matrix of the separated text.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

StrChop

Examples

let's get some tabbed text
txt <- matrix(capture.output(Titanic[,2,1]))
FixToTable(txt[-1,])

Format Numbers and Dates

Description

Formatting numbers in R often degenerates into a major intellectual challenge for us little guys. We have several functions available and quite often it's hard to work out which one to use, when an uncommon option is needed. This function wraps those functions and tries to offer a simpler, less technical, but still flexible interface.

There's also an easygoing interface for format templates, defined as a list consisting of any accepted format features. In this way templates can be defined outside and may easily be changed or modified later.

Usage

Format(x, digits = NULL, sci = NULL, big.mark = NULL,
leading = NULL, zero.form = NULL, na.form = NULL,
fmt = NULL, align = NULL, width = NULL, lang = NULL, ...)

S3 method for class 'table'
Format(x, digits = NULL, sci = NULL, big.mark = NULL,
leading = NULL, zero.form = NULL, na.form = NULL,
fmt = NULL, align = NULL, width = NULL, lang = NULL, ...)

S3 method for class 'matrix'
Format(x, digits = NULL, sci = NULL, big.mark = NULL,
leading = NULL, zero.form = NULL, na.form = NULL,
fmt = NULL, align = NULL, width = NULL, lang = NULL, ...)

Default S3 method:
Format(x, digits = NULL, sci = NULL, big.mark = NULL,
leading = NULL, zero.form = NULL, na.form = NULL,
fmt = NULL, align = NULL, width = NULL, lang = NULL, ...)

Fmt(...)
as.fmt(...)
as.CDateFmt(fmt)

Arguments

x an atomic numerical, typically a vector of real numbers or a matrix of numerical
values. Factors will be converted to strings.
digits integer, the desired (fixed) number of digits after the decimal point. Unlike
formatC you will always get this number of digits even if the last digit is 0.
sci integer. The power of 10 to be set when deciding to print numeric values in ex-
ponential notation. Fixed notation will be preferred unless the number is larger
than 10^scipen. If just one value is set it will be used for the left border 10^(-
scipen) as well as for the right one (10^scipen). A negative and a positive value
can also be set independently. Default is getOption("scipen").
big.mark character; if not empty used as mark between every 3 decimals before the deci-
mal point. Default is "" (none).
leading character string that can be used for setting leading zeros. "000" would make
sure that at least 3 digits on the left side will be printed. Setting leading to "drop"
will yield results like ".452" for 0.452. The default NULL will leave the numbers
as they are.
zero.form character, string specifying how zeros should be specially formatted. Useful for
pretty printing 'sparse' objects. If set to NULL (default) no special action will be
taken.
na.form character, string specifying how NAs should be specially formatted. If set to NULL (default) no special action will be taken.
fmt either a format string, allowing to flexibly define special formats or an object of
class fmt, consisting of a list of format arguments. See Details.
align the character on whose position the strings will be aligned. Left alignment can
be requested by setting sep = "\\l", right alignment by "\\r" and center
alignment by "\\c". Mind the backslashes, as if they are omitted, strings would
be aligned to the character l, r or c respectively. The default is NULL which
would just leave the strings as they are.
This argument is send directly to the function StrAlign() as argument sep.
width integer, the defined width of the strings.
lang optional value setting the language for the months and daynames. Can be either
"local" for current locale or "eng1" for english. If left to NULL, the DescTools
Option "lang" will be searched for and if not found "local" will be taken as
default.
... further arguments to be passed to or from methods.
Details

`Format()` is used to format numbers. `format()` can be used to display existing or define new format templates. `as.format()` will convert a list to a format object (class `format`).

The argument `fmt` can be be used to generate different formats. When `x` is a date, it can be formatted with any combination of the format codes `d`, `m`, and `y` for day, month or year. Repeting the specific code defines the degree of abbreviation:

Date codes
- `d` day of the month without leading zero (1 - 31)
- `dd` day of the month with leading zero (01 - 31)
- `ddd` abbreviated name for the day of the week (e.g. Mon) in the current user’s language
- `dddd` full name for the day of the week (e.g. Monday) in the current user’s language
- `m` month without leading zero (1 - 12)
- `mm` month with leading zero (01 - 12)
- `mmm` abbreviated month name (e.g. Jan) in the current user’s language
- `mmmm` full month name (e.g. January) in the current user’s language
- `y` year without century, without leading zero (0 - 99)
- `yy` year without century, with leading zero (00 - 99)
- `yyyy` year with century. For example: 2005

For numeric values there are the following special codes:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>e</code></td>
<td>scientific representation of <code>x</code>. The number of digits, alignment and zero values are respected.</td>
</tr>
<tr>
<td><code>eng</code></td>
<td>engineering forces scientific representation of <code>x</code>, but only with powers that are a multiple of 3. Same as <code>eng</code>, but replaces the exponential representation by codes. See <code>d.prefix</code>.</td>
</tr>
<tr>
<td><code>engabb</code></td>
<td>engineering abbr. will divide the given number by 100 and append the %-sign (without a separator).</td>
</tr>
<tr>
<td><code>%</code></td>
<td>percent will wrap the function <code>format.pval</code> and return a p-value format.</td>
</tr>
<tr>
<td><code>p</code></td>
<td>p-value will try to convert numbers to fractions. See <code>fractions()</code>.</td>
</tr>
</tbody>
</table>
| `frac`| fractions will produce a significance representation of a p-value consisting of * and .. while the breaks are set according to the used defaults e.g. in `lm` as `[0, 0.001] = *** (0.001, 0.01] = ** (0.01, 0.05] = * (0.05, 0.1] = . (0.1,1] =
| `p*` | p-value stars will produce p-value and significance stars |

`fmt` can as well be an object of class `format` consisting of a list out of the arguments above. This allows to store the full format in a variable or as an option and use it as format template subsequently.
If we would want to define a format for counts, we could create a list with a big mark and with 0 digits and subsequently call the `Format` function with this format:

```r
fmt.count <- as.fmt(digits=0, big.mark="")
Format(4231.2, fmt=fmt.count)
```

where the latter returns the same result as if the arguments would have been supplied directly:

```
Format(4231.2, digits=0, big.mark="").
```

Finally `fmt` can also be a function in `x`, which makes formatting very flexible.

The formats can as well be organized as options. `DescToolsOptions("fmt")` would display the currently defined formats. The function `Fmt()` can be used to get, modify and store new formats in dependency of the arguments given. See examples.

Value

the formatted values as characters.

If `x` was a matrix, then a the result will also be a matrix. (Hope this will not surprise you...)

Author(s)

Andri Signorell <andri@signorell.net>

See Also

`format`, `formatC`, `prettyNum`, `sprintf`, `symnum`,
`StrAlign`, `StrPad`, `Sys.setlocale`,
`Weekday`, `Month`, `DescToolsOptions`

Examples

```r
Format(as.Date(c("2014-11-28", "2014-1-2")), fmt="ddd, d mmmm yyyy")
Format(as.Date(c("2014-11-28", "2014-1-2")), fmt="ddd, d mmmm yyyy", lang="enl")

x <- pi * 10^(-10:10)
Format(x, digits=3, fmt="", sci=NA)
Format(x, digits=4, sci=c(4, 6), leading = "drop", width=9, align=".")

# format a matrix
m <- matrix(runif(100), nrow=10,
            dimnames=list(LETTERS[1:10], LETTERS[1:10]))
Format(m, digits=1)

# engineering format
Format(x, fmt="eng", digits=2)
Format(x, fmt="engabb", leading="00", digits=2)
# combine with grams [g]
paste(Format(x, fmt="engabb", leading="00", digits=2), "g", sep="")
```
example form symnum
pval <- rev(sort(c(outer(1:6, 10^(-(1:3)))))
noquote(cbind(Format(pval, fmt="p"), Format(pval, fmt="*")))

use Fmt() to get and define new formats stored as option
Fmt() # all defined formats
Fmt("abs") # only format named "abs"
Fmt("nexist") # only format named "nexist" (nonexisting)
Fmt("abs", "per", "nexist")
Fmt("abs", digits=3) # get Fmt("abs") and overwrite digits
Fmt("abs", na.form="-") # get Fmt("abs") and add user defined na.form

define totally new format and store as option
Fmt(nob=as.fmt(digits=10, na.form="nodat"))

overwrite an existing format
Fmt(nob=Fmt("nob", digits=5))
Fmt("nob")

change the character to be used as the decimal point
opt <- options(OutDec=".")
Format(1200, digits=2, big.mark = ".")
options(opt)

Frac

Fractional Part and Maximal Digits of a Numeric Value

Description

Frac() returns the fractional part of a numeric value. MaxDigits() return the number of digits in x.
Ndec() returns the number of decimals and Prec() the precision of a number x.

Usage

Frac(x, dpwr = NA)
MaxDigits(x)
Ndec(x)
Prec(x)

Arguments

- **x** the numeric value (or a vector of numerics), whose fractional part is to be calculated.
- **dpwr** power of 10 for a factor z, the fractional part will be multiplied with. The result will be returned rounded to integer. Defaults to NA and will then be ignored.
Frechet

Author(s)
Andri Signorell <andri@signorell.net>

See Also
format.info, as.integer, trunc

Examples

x <- rnorm(5) * 100
x
Frac(x)

multiply by 10^4
Frac(x, dpwr=4)

MaxDigits(c(1.25, 1.8, 12.0, 1.00000))

x <- c("0.0000", "0", "159.283", "1.45e+10", "1.4599E+10")
Nddec(x)
Prec(as.numeric(x))

Frechet

The Frechet Distribution

Description
Density function, distribution function, quantile function and random generation for the Frechet
distribution with location, scale and shape parameters.

Usage

dFrechet(x, loc=0, scale=1, shape=1, log = FALSE)
pFrechet(q, loc=0, scale=1, shape=1, lower.tail = TRUE)
qFrechet(p, loc=0, scale=1, shape=1, lower.tail = TRUE)
rFrechet(n, loc=0, scale=1, shape=1)

Arguments

x, q
Vector of quantiles.

p
Vector of probabilities.

n
Number of observations.

loc, scale, shape
Location, scale and shape parameters (can be given as vectors).

log
Logical; if TRUE, the log density is returned.

lower.tail
Logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
Details

The Frechet distribution function with parameters \(loc = a, \ scale = b \) and \(shape = s \) is

\[
G(z) = \exp \left\{ - \left(\frac{z - a}{b} \right)^{-s} \right\}
\]

for \(z > a \) and zero otherwise, where \(b > 0 \) and \(s > 0 \).

Value

\texttt{dFrechet} gives the density function, \texttt{pFrechet} gives the distribution function, \texttt{qFrechet} gives the quantile function, and \texttt{rFrechet} generates random deviates.

Author(s)

Alec Stephenson <alec_stephenson@hotmail.com>

See Also

\texttt{rGenExtrVal}, \texttt{rGumbel}, \texttt{rRevWeibull}

Examples

\begin{verbatim}
dFrechet(2:4, 1, 0.5, 0.8)
pFrechet(2:4, 1, 0.5, 0.8)
qFrechet(seq(0.9, 0.6, -0.1), 2, 0.5, 0.8)
rFrechet(6, 1, 0.5, 0.8)
p <- (1:9)/10
pFrechet(qFrechet(p, 1, 2, 0.8), 1, 2, 0.8)
[1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
\end{verbatim}

Description

Calculates absolute and relative frequencies of a vector \(x \). Continuous (numeric) variables will be cut using the same logic as used by the function \texttt{hist}. Categorical variables will be aggregated by \texttt{table}. The result will contain single and cumulative frequencies for both, absolute values and percentages.

Usage

\begin{verbatim}
Freq(x, breaks = hist(x, plot = FALSE)$breaks, include.lowest = TRUE,
 ord = c("level", "desc", "asc", "name"),
 useNA = c("no", "ifany", "always"), ...)

S3 method for class 'Freq'
print(x, digits = NULL, ...)
\end{verbatim}
Arguments

x
the variable to be described, can be any atomic type.

breaks
either a numeric vector of two or more cut points or a single number (greater than or equal to 2) giving the number of intervals into which x is to be cut. Default taken from the function hist(). This is ignored if x is not of numeric type.

include.lowest
logical, indicating if an x[i] equal to the lowest (or highest, for right = FALSE) "breaks" value should be included. Ignored if x is not of numeric type.

ord
how should the result be ordered? Default is "level", other choices are 'by frequency' ("descending" or "ascending") or 'by name of the levels' ("name"). The argument can be abbreviated. This is ignored if x is numeric.

useNA
one out of "no", "ifany", "always". Defines whether to include extra NA levels in the table. Defaults to "no" which is the table() default too.

digits
integer, determining the number of digits used to format the relative frequencies.

... further arguments are passed to the function cut(). Use dig.lab to control the format of numeric group names. Use the argument right to define if the intervals should be closed on the right (and open on the left) or vice versa. In print.Freq the dots are not used.

Details

If breaks is specified as a single number, the range of the data is divided into breaks pieces of equal length, and then the outer limits are moved away by 0.1% of the range to ensure that the extreme values both fall within the break intervals. (If x is a constant vector, equal-length intervals are created that cover the single value.)

Value

an object of type "Freq", which is basically a data.frame with 5 columns (earning a specific print routine), containing the following components:

level
factor. The levels of the grouping variable.

freq
integer. The absolute frequencies.

perc
numeric. The relative frequencies (percent).

cumfreq
integer. The cumulative sum of the absolute frequencies.

cumperc
numeric. The cumulative sum of the relative frequencies.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

PercTable, cut, hist, cumsum, table, prop.table
Examples

data(d.pizza)

result is a data.frame
d.freq <- Freq(d.pizza$price)
d.freq

it is printed by default with 3 digits for the percent values,
but the number of digits can be defined in the print function
print(d.freq, digits=5)

sorted by frequency
Freq(d.pizza$driver, ord="desc")

sorted by name, including NAs
Freq(d.pizza$driver, ord="name", useNA="ifany")

Freq2D

Bivariate (Two-Dimensional) Frequency Distribution

Description

Calculate a frequency distribution for two continuous variables.

Usage

Freq2D(x, ...)

S3 method for class 'formula'
Freq2D(formula, data, subset, ...)

Default S3 method:
Freq2D(x, y, n=20, pad=0, dnn=NULL, ...)

Arguments

x a vector of x values, or a data frame whose first two columns contain the x and
 y values.

y a vector of y values.

formula a formula, such as y~x.

data a data.frame, matrix, or list from which the variables in formula should be
taken.

subset an optional vector specifying a subset of observations to be used.

n the desired number of bins for the output, a scalar or a vector of length 2.

pad number of rows and columns to add to each margin, containing only zeros.

dnn the names to be given to the dimensions in the result.

... named arguments to be passed to the default method.
Details

The exact number of bins is determined by the pretty function, based on the value of n. Padding the margins with zeros can be helpful for subsequent analysis, such as smoothing. The print logical flag only has an effect when layout=1.

Value

The layout argument specifies one of the following formats for the binned frequency output:

1. matrix that is easy to read, aligned like a scatterplot.
2. list with three elements (x, y, matrix) that can be passed to various plotting functions.
3. data.frame with three columns (x, y, frequency) that can be analyzed further.

Author(s)

Arni Magnusson <arnima@hafro.is>

See Also
cut, table, and print.table are the basic underlying functions.

Examples

Freq2D(quakes$long, quakes$lat, dnn="")
Freq2D(lat-long, quakes, n=c(10,20), pad=1)

range(Freq2D(saithe, print=FALSE))

Layout, plot
Freq2D(saithe, layout=2)
Freq2D(saithe, layout=3)
contour(Freq2D(saithe, layout=2))
lattice::contourplot(Freq-Bio+HR, Freq2D(saithe,layout=3))

GCD, LCM

Greatest Common Divisor and Least Common Multiple

Description

Calculates the greatest common divisor (GCD) and least common multiple (LCM) of all the values present in its arguments.

Usage

GCD(..., na.rm = FALSE)
LCM(..., na.rm = FALSE)
Arguments

... integer or logical vectors.

na.rm logical. Should missing values (including NaN) be removed?

Details

The computation is based on the Euclidean algorithm without using the extended version. The greatest common divisor for all numbers in the integer vector x will be computed (the multiple GCD).

Value

A numeric (integer) value.

Note

The following relation is always true:

\[n \times m = \text{GCD}(n, m) \times \text{LCM}(n, m) \]

Author(s)

Dirk Eddelbuettel <edd@debian.org> (RCPP part), Andri Signorell <andri@signorell.net>, originally based on code in package numbers by Hans W Borchers <hwborchers@googlemail.com>

References

See Also

Factorize, Primes, IsPrime

Examples

\[
\begin{align*}
\text{GCD}(12, 10) & \quad \text{# Fibonacci numbers are relatively prime to each other} \\
\text{GCD}(144, 233) & \\
\text{LCM}(12, 10) & \quad \text{# = 144 \times 233} \\
\text{LCM}(144, 233) \\
\text{GCD}(2, 3, c(5, 7) \times 11) & \\
\text{GCD}(c(2\times3, 3\times5, 5\times7)) & \\
\text{LCM}(c(2, 3, 5, 7) \times 11) & \\
\text{LCM}(2\times3, 3\times5, 5\times7) &
\end{align*}
\]
The Generalized Extreme Value Distribution

Description
Density function, distribution function, quantile function and random generation for the generalized Extreme value (GenExtrVal) distribution with location, scale and shape parameters.

Usage
- `dgenextrval(x, loc=0, scale=1, shape=0, log = FALSE)`
- `pgenextrval(q, loc=0, scale=1, shape=0, lower.tail = TRUE)`
- `qgenextrval(p, loc=0, scale=1, shape=0, lower.tail = TRUE)`
- `rgenextrval(n, loc=0, scale=1, shape=0)`

Arguments
- `x`, `q` Vector of quantiles.
- `p` Vector of probabilities.
- `n` Number of observations.
- `loc`, `scale`, `shape` Location, scale and shape parameters; the shape argument cannot be a vector (must have length one).
- `log` Logical; if TRUE, the log density is returned.
- `lower.tail` Logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

Details
The GenExtrVal distribution function with parameters `loc = a`, `scale = b` and `shape = s` is

\[G(z) = \exp \left[-\{1 + s(z - a)/b\}^{-1/s} \right] \]

for `1 + s(z - a)/b > 0`, where `b > 0`. If `s = 0` the distribution is defined by continuity. If `1 + s(z - a)/b \leq 0`, the value `z` is either greater than the upper end point (if `s < 0`), or less than the lower end point (if `s > 0`).

The parametric form of the GenExtrVal encompasses that of the Gumbel, Frechet and reverse Weibull distributions, which are obtained for `s = 0`, `s > 0` and `s < 0` respectively. It was first introduced by Jenkinson (1955).

Value
dGenExtrVal gives the density function, pGenExtrVal gives the distribution function, qGenExtrVal gives the quantile function, and rGenExtrVal generates random deviates.

Author(s)
Alec Stephenson <alec_stephenson@hotmail.com>
The Generalized Pareto Distribution

Description

Density function, distribution function, quantile function and random generation for the generalized Pareto distribution (GenPareto) with location, scale and shape parameters.

Usage

\begin{verbatim}
dGenExtrVal(x = 2:4, loc = 1, scale = 0.5, shape = 0.8)
pGenExtrVal(q = seq(0.9, 0.6, -0.1), loc = 2, scale = 0.5, shape = 0.8)
qGenExtrVal(p = (1:9)/10, loc = 2, scale = 0.5, shape = 0.8)
rGenExtrVal(n = 1, loc = 0, scale = 1, shape = 0)
\end{verbatim}

Arguments

- **x, q**: Vector of quantiles.
- **p**: Vector of probabilities.
- **n**: Number of observations.
- **loc, scale, shape**: Location, scale and shape parameters; the shape argument cannot be a vector (must have length one).
- **log**: Logical; if TRUE, the log density is returned.
- **lower.tail**: Logical; if TRUE (default), probabilities are \(P[X \leq x] \), otherwise, \(P[X > x] \)
Details
The generalized Pareto distribution function (Pickands, 1975) with parameters $loc = a$, $scale = b$ and $shape = s$ is

$$G(z) = 1 - \left\{1 + s(z - a)/b\right\}^{-1/s}$$

for $1 + s(z - a)/b > 0$ and $z > a$, where $b > 0$. If $s = 0$ the distribution is defined by continuity.

Value
dGenPareto gives the density function, pGenPareto gives the distribution function, qGenPareto gives the quantile function, and rGenPareto generates random deviates.

Author(s)
Alec Stephenson <alec_stephenson@hotmail.com>

References

See Also
rGenExtrVal

Examples
dGenPareto(2:4, 1, 0.5, 0.8)
pGenPareto(2:4, 1, 0.5, 0.8)
qGenPareto(seq(0.9, 0.6, -0.1), 2, 0.5, 0.8)
rGenPareto(6, 1, 0.5, 0.8)
p <- (1:9)/10
pGenPareto(qGenPareto(p, 1, 2, 0.8), 1, 2, 0.8)
[1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

GeomSn

Description
A geometric sequence is a sequence, such that each term is given by a multiple of q of the previous one. A geometric series consists out of the sum of all former values of a geometric sequence.

Usage
GeomSn(a1, q, n)
Arguments

- `a1`: the first element of the sequence
- `q`: the factor of the sequence
- `n`: number of elements to include in the sum

Value

the sum as numeric value

Author(s)

Andri Signorell <andri@signorell.net>

See Also

`sum`

Examples

```r
gsnH1=3, q=2, n=5

# calculates the sum of the first 5 elements of the sequence
(gseq <- 3 * (2^(0:5)))
s(gseq)

GeomSn(a1=3, q=2, n=0:5)
```

Description

This function transforms geometric structures by translating, scaling and/or rotating them.

Usage

```r
GeomTrans(x, y = NULL, trans = 0, scale = 1, theta = 0)
```

Arguments

- `x, y`: vectors containing the coordinates of the vertices of the polygon, which has to be transformed. The coordinates can be passed in a plotting structure (a list with `x` and `y` components), a two-column matrix, See `xy.coords`.
- `trans`: a vector of two values for the translation in x-, resp. y-direction. If only one value is supplied it will be recycled.
- `scale`: a vector of two values for the scaling factor in x-, resp. y-direction. If only one value is supplied it will be recycled.
- `theta`: angle of the rotation in radians starting from 3 o’clock counterclockwise.
GetCurrWrd

Value

The function invisibly returns a list of the coordinates for the transformed shape(s).

Author(s)

Andri Signorell <andri@signorell.net>

See Also

 polygon, DrawRegPolygon, DrawEllipse, DrawArc

Examples

C let's have a triangle
Canvas(main="Rotation")
x <- DrawRegPolygon(nv=3)[[1]]
xt <- GeomTrans(x, trans=c(1, 3), scale=c(2, 2), theta=pi/4)
polygon(xt)

GetCurrWrd

Get a Handle to a Running Word Instance

Description

Look for a running Word instance and return its handle. NULL is returned if nothing’s found.

Usage

GetCurrWrd()
GetCurrXL()

Value

a handle (pointer) to the running Word, resp. Excel instance.

Note

Closing an instance does not update the value of the pointer. So it may contain an invalid address. Whether the pointer is still valid can be checked by IsValidWrd.

Note

This does unfortunately not work with RDCOMClient (but it would with reom)! Any better idea out there?

Author(s)

Andri Signorell <andri@signorell.net>
See Also

GetNewWrd, IsValidWrd

Examples

```r
## Not run: # Windows-specific example
x <- rnorm(100)

wrd <- GetCurrWrd()
if(IsValidWrd(wrd)){
  Desc(x, wrd=wrd)
} else {
  print("GetCurrWrd: no running word instance found...")
}
## End(Not run)
```

GetNewWrd | Create a New Word Instance

Description

Start a new instance of Word and return its handle. By means of this handle we can then control the word application. `WrdKill` ends a running MS-Word task.

Usage

```r
GetNewWrd(visible = TRUE, template = "Normal", header = FALSE,
          main = "Descriptive report")

WrdKill()
```

Arguments

- `visible` logical, should Word made visible? Defaults to TRUE.
- `template` the name of the template to be used for creating a new document.
- `header` logical, should a caption and a list of contents be inserted? Default is FALSE.
- `main` the main title of the report
GetNewWrd

Details

The package `RDCOMClient` reveals the whole VBA-world of MS-Word. So generally speaking any VBA code can be run fully controlled by R. In practise, it might be a good idea to record a macro and rewrite the VB-code in R.

Here’s a list of some frequently used commands. Let’s assume we have a handle to the application and a handle to the current selection defined as:

```r
wrd <- GetNewWrd()
sel <- wrd$Selection()
```

Then we can access the most common properties as follows:

- **new document**
  ```r
  wrd[["Documents"]]%Add(template, FALSE, 0), template is the templatename.
  ```
- **open document**
  ```r
  wrd[["Documents"]]%Open(Filename="C:\MyPath\MyDocument.docx").
  ```
- **save document**
  ```r
  wrd$ActiveDocument()%SaveAs2(FileName="P:\MyFile.docx")
  ```
- **quit word**
  ```r
  wrd$Quit()
  ```
- **kill word task**
  ```r
  Wrk$Kill kills a running word task (which might not be ended with quit.)
  ```
- **normal text**
  ```r
  Use **ToWrd** which offers many arguments as fontname, size, color, alignment etc. ToWrd("Lorem ipsum dolor sit amet, consetetur", font=list(name="Arial", size=10, col=wdConst$wdColorRed)
  ```
- **simple text**
  ```r
  sel$TypeText("sed diam nonumy eirmod tempor invidunt ut labore")
  ```
- **heading**
  ```r
  sel$TypeText("sed diam nonumy eirmod tempor invidunt ut labore")
  ```
- **insert R output**
  ```r
  ToWrd(capture.output(str(d.diamonds)))
  ```
- **pagebreak**
  ```r
  sel$InsertBreak(wdConst$wdPageBreak)
  ```
- **sectionbreak**
  ```r
  sel$InsertBreak(wdConst$wdSectionBreakContinuous)
  ```
- **move cursor right**
  ```r
  sel$MoveRight(Unit=wdConst$wdCharacter, Count=2, Extend=wdConst$wdExtend)
  ```
- **goto end**
  ```r
  sel$EndKey(Unit=wdConst$wdStory)
  ```
- **pagesetup**
  ```r
  sel[["PageSetup"]][["Bottommargin"]]<- 4 * 72
  ```
- **orientation**
  ```r
  sel[["PageSetup"]][["Orientation"]]<- wdConst$wdOrientLandscape
  ```
- **add bookmark**
  ```r
  wrd[["ActiveDocument"]][["Bookmarks"]]%Add("myBookmark")
  ```
- **goto bookmark**
  ```r
  sel$GoTo(wdConst$wdGoToBookmark, 0, 0, "myBookmark")
  ```
- **update bookmark**
  ```r
  Wrk$UpdateBookmark("myBookmark", "New text for my bookmark")
  ```
- **show document map**
  ```r
  wrd[["ActiveWindow"]][["DocumentMap"]]<- TRUE
  ```
- **create table**
  ```r
  WrkTable() which allows to define the table’s geometry
  ```
- **insert caption**
  ```r
  sel$InsertCaption(Label="Abbildung", TitleAutoText="InsertCaption", Title="My Title")
  ```
- **tables of figures**
  ```r
  wrd$ActiveDocument()%TablesOfFigures()%Add(Range=sel$range(), Caption="Figure")
  ```
- **insert header**
  ```r
  wview <- wrd[["ActiveWindow"]][["ActivePane"]][["View"]][["SeekView"]]
  ToWrd(x, ..., wrd=wrd)
  ```

Value

a handle (pointer) to the created Word instance.
Note

Note that the list of contents has to be refreshed by hand after inserting text (if inserted by header = TRUE).

Author(s)

Andri Signorell <andri@signorell.net>

See Also

GetNewXL, GetNewPP

Examples

```r
## Not run:  # Windows-specific example

wrd <- GetNewWrd()
Desc(d.pizza[,1:4], wrd=wrd)

wrd <- GetNewWrd(header=TRUE)
Desc(d.pizza[,1:4], wrd=wrd)

# enumerate all bookmarks in active document
for(i in 1:wrd[['ActiveDocument']][['Bookmarks']]->count(){
  print(wrd[['ActiveDocument']][['Bookmarks']]->Item(i)->Name())
}

## End(Not run)
```

GetNewXL

Create a New Excel Instance

Description

Start a new instance of Excel and return its handle. This is needed to address the Excel application and objects afterwards.

Usage

`GetNewXL(visible = TRUE, newdoc = TRUE)`

Arguments

- `visible` logical, should Excel made visible? Defaults to TRUE.
- `newdoc` logical, determining if a new workbook should be created. Defaults to TRUE.
Gini

Details

Here’s a list of some frequently used commands.
Let’s assume:

```r
xl <- GetNewXL()
workbooks <- xl$workbooks()$count()
quit excel <- xl$quit()
```

Author(s)

Andri Signorell <andri@signorell.net>

See Also

`XLView, XLGetRange, XLGetWorkbook`

Examples

```r
## Not run: # Windows-specific example
# get a handle to a new excel instance
xl <- GetNewXL()
# End(Not run)
```

Gini

Gini Coefficient

Description

Compute the Gini coefficient, the most commonly used measure of inequality.

Usage

```r
Gini(x, n = rep(1, length(x)), unbiased = TRUE,
    conf.level = NA, R = 1000, type = "bca", na.rm = FALSE)
```

Arguments

- `x` a vector containing at least non-negative elements. The result will be `NA`, if `x` contains negative elements.
- `n` a vector of frequencies (weights), must be same length as `x`.
- `unbiased` logical. In order for `G` to be an unbiased estimate of the true population value, calculated `gini` is multiplied by `n/(n - 1)`. Default is TRUE. (See Dixon, 1987)
conf.level confidence level for the confidence interval, restricted to lie between 0 and 1. If set to TRUE the bootstrap confidence intervals are calculated. If set to NA (default) no confidence intervals are returned.

R number of bootstrap replicates. Usually this will be a single positive integer. For importance resampling, some resamples may use one set of weights and others use a different set of weights. In this case R would be a vector of integers where each component gives the number of resamples from each of the rows of weights. This is ignored if no confidence intervals are to be calculated.

type character string representing the type of interval required. The value should be one out of the c("norm", "basic", "stud", "perc" or "bca"). This argument is ignored if no confidence intervals are to be calculated.

na.rm logical. Should missing values be removed? Defaults to FALSE.

Details

The range of the Gini coefficient goes from 0 (no concentration) to \(\sqrt{\frac{n-1}{n}} \) (maximal concentration). The bias corrected Gini coefficient goes from 0 to 1.

The small sample variance properties of the Gini coefficient are not known, and large sample approximations to the variance of the coefficient are poor (Mills and Zandvakili, 1997; Glasser, 1962; Dixon et al., 1987), therefore confidence intervals are calculated via bootstrap re-sampling methods (Efron and Tibshirani, 1997).

Two types of bootstrap confidence intervals are commonly used, these are percentile and bias-corrected (Mills and Zandvakili, 1997; Dixon et al., 1987; Efron and Tibshirani, 1997). The bias-corrected intervals are most appropriate for most applications. This is set as default for the type argument ("bca"). Dixon (1987) describes a refinement of the bias-corrected method known as 'accelerated' - this produces values very close to conventional bias corrected intervals.

Value

If conf.level is set to NA then the result will be

a single numeric value

and if a conf.level is provided, a named numeric vector with 3 elements:

gini Gini coefficient

lwr.ci lower bound of the confidence interval

upr.ci upper bound of the confidence interval

Author(s)

Andri Signorell <andri@signorell.net>
References

See Also

See Herfindahl, Rosenbluth for concentration measures, Lc for the Lorenz curve ineq() in the package ineq contains additional inequality measures

Examples

generate vector (of incomes)
x <- c(541, 1463, 2445, 3438, 4437, 5401, 6392, 8304, 11904, 22261)

compute Gini coefficient
Gini(x)

working with weights
fl <- c(2.5, 7.5, 15, 35, 75, 150) # midpoints of classes
n <- c(25, 13, 10, 5, 5, 2) # frequencies

with confidence intervals
Gini(fl, n, conf.level=0.95, unbiased=FALSE)

some special cases
x <- c(10, 10, 0, 0, 0)
plot(Lc(x))

Gini(x, unbiased=FALSE)

the same with weights
Gini(x=c(10, 0), n=c(2,3), unbiased=FALSE)

perfect balance
Gini(c(10, 10, 10))
GiniSimpson

Compute Gini-Simpson Coefficient

Description

Calculate the Gini-Simpson coefficient.

Usage

GiniSimpson(x, na.rm = FALSE)

Arguments

x a vector containing at least non-negative elements.
na.rm logical. Should missing values be removed? Defaults to FALSE.

Details

The original Simpson index λ equals the probability that two entities taken at random from the dataset of interest (with replacement) represent the same type. The Simpson index was introduced in 1949 by Edward H. Simpson to measure the degree of concentration when individuals are classified into types. The same index was rediscovered by Orris C. Herfindahl in 1950. The square root of the index had already been introduced in 1945 by the economist Albert O. Hirschman. As a result, the same measure is usually known as the Simpson index in ecology, and as the Herfindahl index or the Herfindahl-Hirschman index (HHI) in economics. Its transformation $1 - \lambda$ therefore equals the probability that the two entities represent different types. This measure is also known in ecology as the probability of interspecific encounter (PIE) and the Gini-Simpson index.

Value

A numeric value.

Author(s)

Andri Signorell <andri@signorell.net>

References

See Also

DivCoef, Entropy, Gini, Herfindahl
Examples

x <- c(261, 29, 33, 15, 39, 28, 95, 5, 6, 28, 69, 8, 105, 38, 15)

GiniSimpson(x)

is the same as
1 - Herfindahl(x)

GiniSimpson(c(783, 121, 112, 70, 201, 153, 425, 19, 37, 126, 325, 51, 442, 193, 41))

Geometric Mean and Standard Deviation

Description

Calculates the geometric mean, its confidence interval and the geometric standard deviation of a vector x.

Usage

Gmean(x, method = c("classic", "boot"), conf.level = NA,
 sides = c("two.sided","left","right"), na.rm = FALSE, ...)

Gsd(x, na.rm = FALSE)

Arguments

x a positive numeric vector. An object which is not a vector is coerced (if possible) by as.vector.

method a vector of character strings representing the type of intervals required. The value should be any subset of the values "classic", "boot". See boot.ci.

conf.level confidence level of the interval. Default is NA.

sides a character string specifying the side of the confidence interval, must be one of "two.sided" (default), "left" or "right". You can specify just the initial letter. "left" would be analogue to a hypothesis of "greater" in a t.test.

na.rm logical, indicating whether NA values should be stripped before the computation proceeds. Defaults to FALSE.

... further arguments are passed to the boot function. Supported arguments are type ("norm", "basic", "stud", "perc", "bca"), parallel and the number of bootstrap replicates R. If not defined those will be set to their defaults, being "basic" for type, option "boot.parallel" (and if that is not set, "no") for parallel and 999 for R.
Details

To compute the geometric mean, \(\log(x) \) is first calculated, before the arithmetic mean and its confidence interval are computed by \(\text{MeanCI} \).

So the geometric mean and geometric sd are restricted to positive inputs (because otherwise the answer can have an imaginary component). Hence if any argument is negative, the result will be \(\text{NA} \). If any argument is zero, then the geometric mean is zero.

The geometric mean is defined as

\[
\sqrt[n]{x_1 \cdot x_2 \cdot x_3 \cdots x_n}
\]

and its confidence interval is given as \(\exp(\text{MeanCI}(\log(x))) \). Use \(\text{sapply} \) to calculate the measures from data frame, resp. from a matrix.

Value

a numeric value.

Author(s)

Andri Signorell <andri@signorell.net>

References

See Also

\(\text{mean}, \text{Hmean} \)

Examples

\[
x <- \text{runif}(5)
\text{Gmean}(x)
\]

\[
m <- \text{matrix}(\text{runif}(50), \text{nrow} = 10)
\text{apply}(m, 2, \text{Gmean})
\]

\[
\text{sapply}(\text{as.data.frame}(m), \text{Gmean})
\]
Gompertz

The Gompertz distribution

Description

Density, distribution function, quantile function and random generation for the Gompertz distribution with unrestricted shape.

Usage

dGompertz(x, shape, rate = 1, log = FALSE)
pGompertz(q, shape, rate = 1, lower.tail = TRUE, log.p = FALSE)
qGompertz(p, shape, rate = 1, lower.tail = TRUE, log.p = FALSE)
rgompertz(n, shape = 1, rate = 1)

Arguments

- `x, q` vector of quantiles.
- `shape, rate` vector of shape and rate parameters.
- `log, log.p` logical; if TRUE, probabilities p are given as log(p).
- `lower.tail` logical; if TRUE (default), probabilities are \(P(X \leq x) \), otherwise, \(P(X > x) \).
- `p` vector of probabilities.
- `n` number of observations. If `length(n) > 1`, the length is taken to be the number required.

Details

The Gompertz distribution with shape parameter \(a \) and rate parameter \(b \) has probability density function

\[
f(x|a,b) = be^{ax} \exp(-b/a(e^{ax} - 1))
\]

For \(a = 0 \) the Gompertz is equivalent to the exponential distribution with constant hazard and rate \(b \).

The probability distribution function is

\[
F(x|a,b) = 1 - \exp(-b/a(e^{ax} - 1))
\]

Thus if \(a \) is negative, letting \(x \) tend to infinity shows that there is a non-zero probability \(1 - \exp(b/a) \) of living forever. On these occasions qGompertz and rGompertz will return Inf.

Value

dGompertz gives the density, pGompertz gives the distribution function, qGompertz gives the quantile function, and rGompertz generates random deviates.
Note
Some implementations of the Gompertz restrict \(a \) to be strictly positive, which ensures that the probability of survival decreases to zero as \(x \) increases to infinity. The more flexible implementation given here is consistent with \texttt{streg} in Stata.

The functions \texttt{dgompertz} and similar available in the package \texttt{eha} label the parameters the other way round, so that what is called the shape there is called the rate here, and what is called \(1 / \text{scale} \) there is called the shape here. The terminology here is consistent with the exponential \texttt{dexp} and Weibull \texttt{dweibull} distributions in R.

Author(s)
Christopher Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

References

See Also
\texttt{dexp}

GoodmanKruskalGamma
Goodman Kruskal's Gamma

Description
Calculate Goodman Kruskal’s Gamma statistic, a measure of association for ordinal factors in a two-way table.

The function has interfaces for a table (matrix) and for single vectors.

Usage

\[
\text{GoodmanKruskalGamma}(x, y = \text{NULL}, \text{conf.level} = \text{NA}, \ldots)
\]

Arguments

- \(x \) a numeric vector or a contingency table. A matrix will be treated as a table.
- \(y \) \text{NULL} (default) or a vector with compatible dimensions to \(x \). If \(y \) is provided, \texttt{table}(\(x \), \(y \), \ldots) is calculated.
- \text{conf.level} confidence level of the interval. If set to \text{NA} (which is the default) no confidence intervals will be calculated.
- \text{...} further arguments are passed to the function \texttt{table}, allowing i.e. to set \text{useNA}. This refers only to the vector interface.
Details
The estimator of γ is based only on the number of concordant and discordant pairs of observations. It ignores tied pairs (that is, pairs of observations that have equal values of X or equal values of Y). Gamma is appropriate only when both variables lie on an ordinal scale.
It has the range [-1, 1]. If the two variables are independent, then the estimator of gamma tends to be close to zero. For 2×2 tables, gamma is equivalent to Yule’s Q (YuleQ). Gamma is estimated by

$$G = \frac{P - Q}{P + Q}$$

where \(P\) equals twice the number of concordances and \(Q\) twice the number of discordances.

Value

a single numeric value if no confidence intervals are requested,
and otherwise a numeric vector with 3 elements for the estimate, the lower and the upper confidence interval

Author(s)

Andri Signorell <andri@signorell.net>

References

See Also

There’s another implementation of gamma in *vcdExtra* *GKgamma*
ConDisPairs yields concordant and discordant pairs

Other association measures:
KendallTauA (tau-a), *KendallTauB* (tau-b), *cor* (method="kendall") for tau-b, *StuartTauC* (tau-c), *SomersDelta*
Lambda, GoodmanKruskalTau (tau), *UncertCoef, MutInf*

Examples

example in:
pp. S. 1821
Goodman-Kruskal's Tau

Description

Calculate Goodman Kruskal's tau statistic, a measure of association for ordinal factors in a two-way table.
The function has interfaces for a table (matrix) and for single vectors.

Usage

GoodmanKruskalTau(x, y = NULL, direction = c("row", "column"), conf.level = NA, ...)

Arguments

x a numeric vector or a table. A matrix will be treated as table.
y NULL (default) or a vector with compatible dimensions to x. If y is provided, table(x, y, ...) is calculated.
direction direction of the calculation. Can be "row" (default) or "column", where "row" calculates Goodman Kruskal's tau-a (RIC) ("column dependent").
conf.level confidence level of the interval. If set to NA (which is the default) no confidence interval will be calculated.
... further arguments are passed to the function table, allowing i.e. to set useNA. This refers only to the vector interface.

Details

Goodman-Kruskal tau measures association for cross tabulations of nominal level variables. Goodman-Kruskal tau is based on random category assignment. It measures the percentage improvement in predictability of the dependent variable (column or row variable) given the value of other variables (row or column variables). Goodman-Kruskal tau is the same as Goodman-Kruskal lambda except the calculations of the tau statistic are based on assignment probabilities specified by marginal or conditional proportions. Misclassification probabilities are based on random category assignment with probabilities specified by marginal or conditional proportion.

Goodman Kruskal tau reduces to ϕ^2 (see: Phi) in the 2x2-table case.
Value

a single numeric value if no confidence intervals are requested,
and otherwise a numeric vector with 3 elements for the estimate, the lower and the upper confidence
interval

Author(s)

Andri Signorell <andri@signorell.net>, based on code from Antti Arppe <antti.arppe@helsinki.fi>

References

See Also

ConDisPairs yields concordant and discordant pairs

Other association measures:
KendallTauA (Tau a), *cor* (method="kendall") for Tau b, *StuartTauc*, *GoodmanKruskalGamma* *Lambda*, *UncertCoef*, *MutInf*

Examples

```r
# example in:
# pp. 5. 1821

tab <- as.table(rbind(c(26,26,23,18,9),c(6,7,9,14,23)))

# Goodman Kruskal's tau C|R
GoodmanKruskalTau(tab, direction="column", conf.level=0.95)
# Goodman Kruskal's tau R|C
GoodmanKruskalTau(tab, direction="row", conf.level=0.95)

# pp. 1814 (143)
tab <- as.table(cbind(c(11,2),c(4,6)))

GoodmanKruskalTau(tab, direction="row", conf.level=0.95)
GoodmanKruskalTau(tab, direction="column", conf.level=0.95)
```
GTest

G-Test for Count Data

Description

GTest performs chi-squared contingency table tests and goodness-of-fit tests.

Usage

GTest(x, y = NULL, correct = c("none", "williams", "yates"),
 p = rep(1/length(x), length(x)))

Arguments

x a numeric vector or matrix. x and y can also both be factors.
y a numeric vector; ignored if x is a matrix. If x is a factor, y should be a factor of
 the same length.
correct one out of "none" (default), "williams", "yates". See Details.
p a vector of probabilities of the same length of x. An error is given if any entry
 of p is negative.

Details

The G-test is also called "Likelihood Ratio Test" and is asymptotically equivalent to the Pearson
ChiSquare-test but not usually used when analyzing 2x2 tables. It is used in logistic regression and
loglinear modeling which involves contingency tables. The G-test is also reported in the standard
summary of Desc for tables.

If x is a matrix with one row or column, or if x is a vector and y is not given, then a goodness-of-fit
test is performed (x is treated as a one-dimensional contingency table). The entries of x must be
non-negative integers. In this case, the hypothesis tested is whether the population probabilities
equal those in p, or are all equal if p is not given.

If x is a matrix with at least two rows and columns, it is taken as a two-dimensional contingency
table: the entries of x must be non-negative integers. Otherwise, x and y must be vectors or factors
of the same length; cases with missing values are removed, the objects are coerced to factors, and
the contingency table is computed from these. Then G-test is performed on the null hypothesis that
the joint distribution of the cell counts in a 2-dimensional contingency table is the product of the
row and column marginals.

TOI Yates’ correction taken from Mike Camann’s 2x2 G-test function. GOF Yates’ correction as
described in Zar (2000)
Value

A list with class "htest" containing the following components:

- statistics: the value of the chi-squared test statistic.
- parameter: the degrees of freedom of the approximate chi-squared distribution of the test statistic, NA if the p-value is computed by Monte Carlo simulation.
- p.value: the p-value for the test.
- method: a character string indicating the type of test performed, and whether Monte Carlo simulation or continuity correction was used.
- data.name: a character string giving the name(s) of the data.
- observed: the observed counts.
- expected: the expected counts under the null hypothesis.

Author(s)

Pete Hurd <phurd@ualberta.ca>

References

See Also

chisq.test.

Examples

```r
## From Agresti(2007) p.39
M <- as.table(rbind(c(762, 327, 468), c(484, 239, 477)))
dimnames(M) <- list(gender=c("M", "F"),
party=c("Democrat","Independent", "Republican"))

(Xsq <- GTest(M))  # Prints test summary

Xsq$observed       # observed counts (same as M)
Xsq$expected       # expected counts under the null

## Testing for population probabilities
```
Case A. Tabulated data

```r
x <- c(A = 20, B = 15, C = 25)
GTest(x)
GTest(as.table(x))  # the same
```

```r
tax <- c(9, 37, 30, 28, 2)
p <- c(40, 20, 20, 15, 5)
try(
  GTest(x, p = p)  # gives an error
)
# works
p <- c(0.40, 0.20, 0.20, 0.19, 0.01)
# Expected count in category 5
# is 1.86 < 5 => chi square approx.
GTest(x, p = p)  # maybe doubtful, but is ok!
```

Case B. Raw data

```r
x <- trunc(5 * runif(100))
GTest(table(x))  # NOT 'GTest(x)'
```

The Gumbel Distribution

Description

Density function, distribution function, quantile function and random generation for the Gumbel distribution with location and scale parameters.

Usage

```r
dGumbel(x, loc=0, scale=1, log = FALSE)
pGumbel(q, loc=0, scale=1, lower.tail = TRUE)
qGumbel(p, loc=0, scale=1, lower.tail = TRUE)
rGumbel(n, loc=0, scale=1)
```

Arguments

- `x, q` Vector of quantiles.
- `p` Vector of probabilities.
- `n` Number of observations.
- `loc, scale` Location and scale parameters (can be given as vectors).
- `log` Logical; if TRUE, the log density is returned.
- `lower.tail` Logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

Details

The Gumbel distribution function with parameters `loc = a` and `scale = b` is

\[
G(z) = \exp \left\{ - \exp \left[- \frac{z - a}{b} \right] \right\}
\]

for all real `z`, where `b > 0`.
Herfindahl

Value

dGumbel gives the density function, pGumbel gives the distribution function, qGumbel gives the quantile function, and rGumbel generates random deviates.

Author(s)

Alec Stephenson <alec_stephenson@hotmail.com>

See Also

rfrechet, rGenExtrVal, rRevWeibull

Examples

dGumbel(-1:2, -1, 0.5)
pGumbel(-1:2, -1, 0.5)
qGumbel(seq(0.9, 0.6, -0.1), 2, 0.5)
rGumbel(6, -1, 0.5)
p <- (1:9)/10
pGumbel(qGumbel(p, -1, 2), -1, 2)
[1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Herfindahl

Concentration Measures

Description

Computes the concentration within a vector according to the specified concentration measure.

Usage

Herfindahl(x, n = rep(1, length(x)), parameter = 1, na.rm = FALSE)
Rosenbluth(x, n = rep(1, length(x)), na.rm = FALSE)

Arguments

- **x**: a vector containing non-negative elements
- **n**: a vector of frequencies (weights), must be same length as x.
- **parameter**: parameter of the concentration measure (if set to NULL the default parameter of the respective measure is used)
- **na.rm**: logical. Should missing values be removed? Defaults to FALSE.

Value

the value of the concentration measure
Note
The same measure is usually known as the Simpson index in ecology, and as the Herfindahl index or the Herfindahl-Hirschman index (HHI) in economics.

Note
These functions were previously published as conc() in the ineq package and have been integrated here without logical changes. NA and weights support were added.

Author(s)
Achim Zeileis <achim.zeileis@r-project.org>

References

See Also
See Gini, Atkinson and ineq() for additional inequality measures

Examples
generate vector (of sales)
x <- c(541, 1463, 2445, 3438, 4437, 5401, 6392, 8304, 11904, 22261)

compute Herfindahl coefficient with parameter 1
Herfindahl(x)

compute coefficient of Hall/Tiedemann/Rosenbluth
Rosenbluth(x)

Some more examples
Herfindahl(c(261,29,33,15,39,28,95,5,6,28,69,8,105,38,15))
Herfindahl(c(783,121,112,70,201,153,425,19,37,126,325,51,442,193,41))

HexToCol

Identify Closest Match to a Color Given by a Hexadecimal String

Description
Given a color as a hex string #rrggbb, find the closest match in the table of known (named) colors.
Usage

`HexToCol(hexstr, method = "rgb", metric = "euclidean")`

Arguments

- `hexstr` a color or a vector of colors specified as hexadecimal string of the form
 "#RRGGBB" or
 "#RRGGBBAA"

- `method` character string specifying the color space to be used. Can be
 "rgb" (default) or
 "hsv".

- `metric` character string specifying the metric to be used for calculating distances between
 the colors. Available options are
 "euclidean" (default) and
 "manhattan". Euclidean distances are root sum-of-squares of differences, and manhattan
 distances are the sum of absolute differences.

Details

Finds the color with the minimum squared distance in RGB space.

Value

The colorname(s) of the closest match(es) (if more than one).

Author(s)

Ben Bolker, vector support Andri Signorell <andri@signorell.net>

See Also

`ColToHex, ColToRgb, colors`

Examples

```r
ColToHex(c("lightblue", "salmon"))
HexToCol(c("#ADD8E6", "#FA1572"))
HexToCol(Pal("Helsana"))
x <- ColToRgb("darkmagenta")
x[2,] <- x[2,] + 155
RgbToCol(x)
```
HexToRgb

Convert a Hexstring Color to a Matrix With Three Red/Green/Blue Rows

Description

HexToRgb() converts a hexstring color the its red/green/blue representation.

Usage

HexToRgb(hex)

Arguments

hex a color or a vector of colors specified as hexadecimal string of the form "#RRGGBB" or "#RRGGBBA".

Details

A hex color is written as a hash character, ",#", followed by 3 or 4 hexadecimal numbers, say 6, resp. 8, digits (0-9A-F). The first 3 pairs of digits specify the red, green and blue components. When there are 8 digits, then the last pair is interpreted as alpha channel defining transparency, where 00 represents a fully transparent color and FF represent a fully opaque color. The result will be returned as a matrix having 3 or 4 rows, depending on if the input contained a RRGGBBA definition or not. No distinction is made between upper and lower case. A missing leading # is tolerated.

Value

a matrix with 3 or 4 rows.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

HexToCol

Examples

HexToRgb(c("#ADD8E6", "#FA1572"))

4-digit representation returns a 4 row matrix
HexToRgb(hex=c("#A52A2ABB","#A52A3B","#C52A3B"))
Harmonic Mean and Its Confidence Interval

Description
Calculates the harmonic mean and its confidence interval of a vector x.

Usage
```
hmean(x, method = c("classic", "boot"), conf.level = NA,  
      sides = c("two.sided","left","right"), na.rm = FALSE, ...)```

**Arguments**
- **x**: a positive numeric vector. An object which is not a vector is coerced (if possible) by as.vector.
- **method**: a vector of character strings representing the type of intervals required. The value should be any subset of the values "classic", "boot". See boot.ci.  
- **conf.level**: confidence level of the interval. Default is NA.  
- **sides**: a character string specifying the side of the confidence interval, must be one of "two.sided" (default), "left" or "right". You can specify just the initial letter. "left" would be analogue to a hypothesis of "greater" in a t.test. 
- **na.rm**: logical, indicating whether NA values should be stripped before the computation proceeds. Defaults to FALSE. 
- **...**: further arguments are passed to the boot function. Supported arguments are type ("norm", "basic", "stud", "perc", "bca"), parallel and the number of bootstrap replicates R. If not defined those will be set to their defaults, being "basic" for type, option "boot.parallel" (and if that is not set, "no") for parallel and 999 for R.

**Details**
To compute the harmonic mean, \(1/x\) is first calculated, before the arithmetic mean and its confidence interval are computed by MeanCI. The harmonic mean is then the reciprocal of the arithmetic mean of the reciprocals of the values. The same applies to the confidence interval.

The harmonic mean is restricted to strictly positive inputs, if any argument is negative, then the result will be NA. If the lower bound of the confidence interval is not greater than zero, then the confidence interval is not defined, and thus NA will be reported.

Use `sapply` to calculate the measures from data frame, resp. from a matrix.

**Value**
a numeric value.
**HmsToSec**

**Author(s)**
Andri Signorell <andri@signorell.net>

**References**

**See Also**
Gmean

**Examples**
```r
x <- runif(5)
Hmean(x)

m <- matrix(runif(50), nrow = 10)
apply(m, 2, Hmean)
sapply(as.data.frame(m), Hmean)
```

---

**Description**

HmsToSec - Converts a vector of h:m:s to seconds.
SecToHms - Converts a vector of seconds to h:m:s.

**Usage**

```r
HmsToSec(x)
SecToHms(x, digits = NULL)
```

**Arguments**

- `x` A vector of times in h:m:s (for HmsToSec) or seconds (for SecToHms).
- `digits` the number of digits to use for potential fractions of seconds.

**Value**

- HmsToSec - Returns a vector of times in seconds.
- SecToHms - Returns a vector of times in h:m:s format.

**Author(s)**

Tyler Rinker <tyler.rinker@gmail.com>
See Also
times

Examples

HmsToSec(c("02:00:03", "04:03:01"))
HmsToSec(SecToHms(c(222, 1234, 55)))
SecToHms(c(256, 3456, 56565))

Description

Function to compute the Hodges-Lehmann estimator of location in the one sample case. Simple wrapper to extract the value from the result of `wilcox.test`.

Usage

HodgesLehmann(x, y = NULL, conf.level = NA, na.rm = FALSE)

Arguments

x a numeric vector.
y an optional numeric vector of data values: as with x non-finite values will be omitted.
conf.level confidence level of.
na.rm logical. Should missing values be removed? Defaults to FALSE.

Details

The Hodges-Lehmann estimator is the median of the combined data points and Walsh averages. It is the same as the Pseudo Median returned as a by-product of the function `wilcox.test`. Note that in the two-sample case the estimator for the difference in location parameters does not estimate the difference in medians (a common misconception) but rather the median of the difference between a sample from x and a sample from y. The confidence interval for the "pseudo median" is extracted from `wilcox.test` (conf.int = TRUE).

Value

the Hodges-Lehmann estimator of location as a single numeric value if no confidence intervals are requested, and otherwise a numeric vector with 3 elements for the estimate, the lower and the upper confidence interval.
**Description**

Computes a matrix of Hoeffding’s (1948) $D$ statistics for all possible pairs of columns of a matrix. $D$ is a measure of the distance between $F(x, y)$ and $G(x)H(y)$, where $F(x, y)$ is the joint CDF of $X$ and $Y$, and $G$ and $H$ are marginal CDFs. Missing values are deleted in pairs rather than deleting all rows of $x$ having any missing variables. The $D$ statistic is robust against a wide variety of alternatives to independence, such as non-monotonic relationships. The larger the value of $D$, the more dependent are $X$ and $Y$ (for many types of dependencies). $D$ used here is 30 times Hoeffding’s original $D$, and ranges from -0.5 to 1.0 if there are no ties in the data. `print.HoeffD` prints the information derived by `HoeffD`. The higher the value of $D$, the more dependent are $x$ and $y$.

**Usage**

```r
HoeffD(x, y)
S3 method for class 'HoeffD'
print(x, ...)
```

**Arguments**

- `x`  
  a numeric matrix with at least 5 rows and at least 2 columns (if `y` is absent), or an object created by `HoeffD`  
- `y`  
  a numeric vector or matrix which will be concatenated to `x`  
- `...`  
  ignored

**Examples**

```r
set.seed(1)
x <- rt(100, df = 3)
HodgesLehmann(x)

same as
wilcox.test(x, conf.int = TRUE)$estimate
```
Details

Uses midranks in case of ties, as described by Hollander and Wolfe. P-values are approximated by linear interpolation on the table in Hollander and Wolfe, which uses the asymptotically equivalent Blum-Kiefer-Rosenblatt statistic. For \( P < 0.001 \) or \( > 0.5 \), P-values are computed using a well-fitting linear regression function in \( \log P \) vs. the test statistic. Ranks (but not bivariate ranks) are computed using efficient algorithms (see reference 3).

Value

- a list with elements \( D \), the matrix of D statistics, \( n \) the matrix of number of observations used in analyzing each pair of variables, and \( P \), the asymptotic P-values. Pairs with fewer than 5 non-missing values have the D statistic set to NA. The diagonals of \( n \) are the number of non-NAs for the single variable corresponding to that row and column.

Author(s)

Frank Harrell \(<f.harrell@vanderbilt.edu>\)
Department of Biostatistics
Vanderbilt University

References


See Also

- \texttt{rcorr}, \texttt{varclus}

Examples

```r
x <- c(-2, -1, 0, 1, 2)
y <- c(4, 1, 0, 1, 4)
z <- c(1, 2, 3, 4, NA)
q <- c(1, 2, 3, 4, 5)
HoeffD(cbind(x, y, z, q))

Hoeffding's test can detect even one-to-many dependency
set.seed(1)
x <- seq(-10, 10, length=200)
y <- x * sign(runif(200, -1, 1))
plot(x, y)
HoeffD(x, y)
```
**Hosmer-Lemeshow Test**

**Description**

The function computes Hosmer-Lemeshow goodness of fit tests for C and H statistic as well as the le Cessie-van Houwelingen-Copas-Hosmer unweighted sum of squares test for global goodness of fit.

**Usage**

```r
HosmerLemeshowTest(fit, obs, ngr = 10, x, verbose = FALSE)
```

**Arguments**

- `fit` numeric vector with fitted probabilities.
- `obs` numeric vector with observed values.
- `ngr` number of groups for C and H statistic.
- `x` covariate(s) for le Cessie-van Houwelingen-Copas-Hosmer global goodness of fit test.
- `verbose` logical, print intermediate results.

**Details**

Hosmer-Lemeshow goodness of fit tests are computed; see Lemeshow and Hosmer (1982).

If `x` is specified, the le Cessie-van Houwelingen-Copas-Hosmer unweighted sum of squares test for global goodness of fit is additionally determined; see Hosmer et al. (1997).

**Value**

A list of tests.

**Author(s)**

Matthias Kohl <Matthias.Kohl@stamats.de>

**References**


**See Also**

`glm`
**Examples**

```r
set.seed(111)
x1 <- factor(sample(1:3, 50, replace = TRUE))
x2 <- rnorm(50)
obs <- sample(c(0,1), 50, replace = TRUE)
fit <- glm(obs ~ x1+x2, family = binomial)
HosmerLemeshowTest(fit = fitted(fit), obs = obs, X = cbind(x1, x2))
```

---

**Description**

Hotelling's T2 test is the multivariate generalisation of the Student's t test. A one-sample Hotelling's T2 test can be used to test if a set of vectors of data (which should be a sample of a single statistical population) has a mean equal to a hypothetical mean. A two-sample Hotelling's T2 test may be used to test for significant differences between the mean vectors (multivariate means) of two multivariate data sets are different.

**Usage**

```r
HotellingsT2Test(x, ...)
```

---

**Arguments**

- `x` a numeric data frame or matrix.
- `y` an optional numeric data frame or matrix for the two sample test. If NULL a one sample test is performed.
- `mu` a vector indicating the hypothesized value of the mean (or difference in means if a two sample test is performed). NULL represents origin or no difference between the groups.
- `test` if "f", the decision is based on the F-distribution, if "chi" a chi-squared approximation is used.
- `formula` a formula of the form `x ~ g` where `x` is a numeric matrix giving the data values and `g` a factor with two levels giving the corresponding groups.
- `data` an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").
... further arguments to be passed to or from methods.

Details

The classical test for testing the location of a multivariate population or for testing the mean difference for two multivariate populations. When \texttt{test = "f"} the F-distribution is used for the test statistic and it is assumed that the data are normally distributed. If the chisquare approximation is used, the normal assumption can be relaxed to existence of second moments. In the two sample case both populations are assumed to have the same covariance matrix.

The formula interface is only applicable for the 2-sample tests.

Value

A list with class 'htest' containing the following components:

- \texttt{statistic} the value of the T2-statistic. (That is the scaled value of the statistic that has an F distribution or a chisquare distribution depending on the value of \texttt{test}).
- \texttt{parameter} the degrees of freedom for the T2-statistic.
- \texttt{p.value} the p-value for the test.
- \texttt{null.value} the specified hypothesized value of the mean or mean difference depending on whether it was a one-sample test or a two-sample test.
- \texttt{alternative} a character string with the value 'two.sided'.
- \texttt{method} a character string indicating what type of test was performed.
- \texttt{data.name} a character string giving the name of the data (and grouping vector).

Author(s)

Klaus Nordhausen, <klaus.nordhausen@uta.fi>

References

\url{https://cran.r-project.org/package=ICSNP}


Examples

\begin{verbatim}
math.teach <- data.frame(
  teacher = factor(rep(1:2, c(3, 6))),
  satis = c(1, 3, 2, 4, 6, 6, 5, 5, 4),
  know = c(3, 7, 2, 4, 8, 8, 10, 10, 6))

with(math.teach,
  HotellingsT2Test(cbind(satis, know) ~ teacher))
\end{verbatim}
Safe (generalized) Huber M-Estimator of Location

Description

(Generalized) Huber M-estimator of location with MAD scale, being sensible also when the scale is zero where huber() returns an error.

Usage

HuberM(x, k = 1.345, mu = median(x), s = mad(x, center = mu),
na.rm = FALSE, conf.level = NA, ci.type = c("wald", "boot"), ...)

Arguments

x numeric vector.
k positive factor; the algorithm winsorizes at k standard deviations.
mu initial location estimator.
s scale estimator held constant through the iterations.
na.rm logical, indicating whether NA values should be stripped before the computation proceeds. Defaults to FALSE.
conf.level confidence level of the interval. If set to NA (which is the default) no confidence interval will be calculated.
ci.type The type of confidence interval required. The value should be any subset of the values "wald", "boot".
... the dots are passed to the function boot, when confidence intervals are calculated.

Details

The standard error is computed using the $\tau$ correction factor but no finite sample correction. The original function is not exported, but can be accessed as DescTools::huberM.

Value

If conf.level is set to NA then the result will be

a single numeric value

and if a conf.level is provided, a named numeric vector with 3 elements:

huberm the estimate for location
lwr.ci lower bound of the confidence interval
upr.ci upper bound of the confidence interval
Author(s)

Martin Maechler, building on the MASS code mentioned.
Andri Signorell <andri@signorell.net> (confidence intervals and interface)

References


See Also

hubers (and huber) in package MASS; mad.

Examples

HuberM(c(1:9, 1000))
mad (c(1:9, 1000))

set.seed(7)
x <- c(round(rnorm(1000), 1), round(rnorm(50, m=10, sd = 10)))
HuberM(x, conf.level=0.95)

## Not run:

# scale zero
HuberM(rep(9, 100))
mad (rep(9, 100))

# bootstrap confidence intervals
HuberM(x, conf.level=0.95, ci.type="boot")

## End(Not run)

---

**ICC**

*Intraclass Correlations (ICC1, ICC2, ICC3 From Shrout and Fleiss)*

Description

The Intraclass correlation is used as a measure of association when studying the reliability of raters. Shrout and Fleiss (1979) outline 6 different estimates, that depend upon the particular experimental design. All are implemented and given confidence limits.

Usage

ICC(x, type = c("all", "ICC1", "ICC2", "ICC3", "ICC1k", "ICC2k", "ICC3k"),
    conf.level = NA, na.rm = FALSE)

## S3 method for class 'ICC'
print(x, digits = 3, ...)

Arguments

x n × m matrix or dataframe, k subjects (in rows) m raters (in columns).
type one out of "all", "ICC1", "ICC2", "ICC3", "ICC1k", "ICC2k", "ICC3k". See details.
conf.level confidence level of the interval. If set to NA (which is the default) no confidence intervals will be calculated.
na.rm logical, indicating whether NA values should be stripped before the computation proceeds. If set to TRUE only the complete cases of the ratings will be used. Defaults to FALSE.
digits number of digits to use in printing
... further arguments to be passed to or from methods.

Details

Shrout and Fleiss (1979) consider six cases of reliability of ratings done by k raters on n targets.

ICC1 Each target is rated by a different judge and the judges are selected at random. (This is a one-way ANOVA fixed effects model and is found by (MSB - MSW)/(MSB + (nr-1)*MSW))

ICC2 A random sample of k judges rate each target. The measure is one of absolute agreement in the ratings. Found as (MSB - MSE)/(MSB + (nr-1)*MSE + nr*(MSJ-MSE)/nc)

ICC3 A fixed set of k judges rate each target. There is no generalization to a larger population of judges. (MSB - MSE)/(MSB + (nr-1)*MSE)

Then, for each of these cases, is reliability to be estimated for a single rating or for the average of k ratings? (The 1 rating case is equivalent to the average intercorrelation, the k rating case to the Spearman Brown adjusted reliability.)

ICC1 is sensitive to differences in means between raters and is a measure of absolute agreement.

ICC2 and ICC3 remove mean differences between judges, but are sensitive to interactions of raters by judges.

The difference between ICC2 and ICC3 is whether raters are seen as fixed or random effects.

ICC1k, ICC2k, ICC3k reflect the means of k raters.

The intraclass correlation is used if raters are all of the same "class". That is, there is no logical way of distinguishing them. Examples include correlations between pairs of twins, correlations between raters. If the variables are logically distinguishable (e.g., different items on a test), then the more typical coefficient is based upon the inter-class correlation (e.g., a Pearson r) and a statistic such as alpha or omega might be used.

Value

if method is set to "all", then the result will be
results A matrix of 6 rows and 8 columns, including the ICCs, F test, p values, and confidence limits
summary The anova summary table
stats The anova statistics
MSW Mean Square Within based upon the anova

if a specific type has been defined, the function will first check, whether no confidence intervals are requested: if so, the result will be the estimate as numeric value

else a named numeric vector with 3 elements

ICcX estimate (name is the selected type of coefficient)
lwr.ci lower confidence interval
upr.ci upper confidence interval

Note
The results for the lower and upper Bounds for ICC(2,k) do not match those of SPSS 9 or 10, but do match the definitions of Shrout and Fleiss. SPSS seems to have been using the formula in McGraw and Wong, but not the errata on p 390. They seem to have fixed it in more recent releases (15).

Author(s)
William Revelle <revelle@northwestern.edu>, some editorial amendments Andri Signorell <andri@signorell.net>

References

Examples
```
sf <- matrix(c(
 9, 2, 5, 8,
 6, 1, 3, 2,
 8, 4, 6, 8,
 7, 1, 2, 6,
 10, 5, 6, 9,
 6, 2, 4, 7),
 ncol=4, byrow=TRUE,
 dimnames=list(paste("S", 1:6, sep=""), paste("I", 1:4, sep=""))
)

sf #example from Shrout and Fleiss (1979)
ICC(sf)
```
**identify.formula**  

*Identify Points In a Plot Using a Formula*

---

**Description**

The function `identify` reads the position of the graphics pointer when the (first) mouse button is pressed. It then searches the coordinates given in `x` and `y` for the point closest to the pointer. If this point is close enough to the pointer, its index will be returned as part of the value of the call.

**Usage**

```r
S3 method for class 'formula'
identify(formula, data, subset, na.action, ...)
```

**Arguments**

- `formula`  
  a formula of the form `lhs ~ rhs` where `lhs` gives the data values and `rhs` the corresponding groups.

- `data`  
  The data frame from which the formula should be evaluated.

- `subset`  
  an optional vector specifying a subset of observations to be used.

- `na.action`  
  a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

- `...`  
  Other arguments to be passed to `identify`.

**Details**

This function is meant to make it easier to call `identify` after `plot` has been called using a formula and the data argument.

A two dimensional plot must be active and the vectors in `x` and data frame in `data` must correspond to the x- and y-axes and the data of the plot.

**Value**

If `pos` is `FALSE`, an integer vector containing the indices of the identified points, in the order they were identified. If `pos` is `TRUE`, a list containing a component `ind`, indicating which points were identified and a component `pos`, indicating where the labels were placed relative to the identified points (1=below, 2=left, 3=above, 4=right and 0=no offset, used if atpen = TRUE).

**Author(s)**

Derek Ogle <dogle@northland.edu>

**See Also**

`identify`, `locator`, `text`  
[http://www.rforge.net/NCStats/files/](http://www.rforge.net/NCStats/files/)
Examples

```r
Not run:
Copy and try in an interactive R session
plot(dist ~ speed, data = cars, subset = speed < 17)
identify(dist ~ speed, data = cars, subset = speed < 17)
End(Not run)
```

**Identify**

**Identify Points in Plot Lying Within a Rectangle or Polygon**

**Description**

Find all the points lying either in a rectangle area spanned by an upper left and a bottom-right point or by a polygon area consisting of any number of points defined by point and click.

**Usage**

```r
Identify(x, ...)
S3 method for class 'formula'
Identify(formula, data, subset, poly = FALSE, ...)
Default S3 method:
Identify(x, y = NULL, poly = FALSE, ...)
```

**Arguments**

- `x, y` x and y values of the points used to create the plot.
- `formula` a formula, such as `y ~ x` specifying x and y values. Here the formula must be entered that was used to create the scatterplot.
- `data` a data frame (or list) from which the variables in `formula` should be taken.
- `subset` an optional vector specifying a subset of observations to be used.
- `poly` logical. Defines if a polygon or a rectangle should be used to select the points. Default is rectangle. If a polygon should be used, set this argument to TRUE and select all desired points. The polygon will be closed automatically when finished.
- `...` Other arguments to be passed to `Identify`.

**Value**

Index vector with the points lying within the selected area. The coordinates are returned as text in the attribute "cond".

**Author(s)**

Andri Signorell <andri@signorell.net>
ImportFileDlg

See Also
identify, locator

Examples

```r
Not run:
run the example via copy and paste

plot(temperature ~ delivery_min, data=d.pizza)
idx <- IdentifyA(temperature ~ delivery_min, data=d.pizza)

you selected the following points
d.pizza[idx,]
points(temperature ~ delivery_min, data = d.pizza[idx,], col="green")

use the attr("cond") for subsets in code
attr(idx, "cond")

create a group variable for the found points
d.pizza$grp <- seq(nrow(d.pizza)) %in% idx

try the polygon option
idx <- IdentifyA(temperature ~ delivery_min, data=d.pizza, poly=TRUE)
points(temperature ~ delivery_min, data = d.pizza[idx,], col="red")

End(Not run)
```

---

### Description

Import a file in SPSS, Stata, SAS, Minitab or Systat format interactively.

### Usage

```r
ImportFileDlg(auto_type = TRUE, env = .GlobalEnv)
```

### Arguments

- **auto_type**: determines if the type dialog should be displayed. Default is FALSE, so that if the file extensions are ".sav", ".dta" the appropriate dialog will be called directly.
- **env**: environment in which the dataset should be created.

### Details

The imported file will be assigned to the given variablename.
**Indots**

*Is a Specific Argument in the Dots-Arguments?*

**Description**

Returns TRUE if a specific named argument was given in the dots.

**Usage**

`Indots(..., arg, default)`

**Arguments**

- `...`: the dots arguments of the function whose arguments are to be checked.
- `arg`: the name of argument to test for.
- `default`: the default value to return, if the argument `arg` does not exist in the dots.

**Value**

the value of the argument, if it exists else the specified default value.

**Author(s)**

Andri Signorell <andri@signorell.net>

---

**IsDate**

*Check If an Object Is of Type Date*

**Description**

Check if the given `x` is of any known Date type.

**Usage**

`IsDate(x, what = c("either", "both", "timeVaries"))`
**IsDichotomous**

Test if a variable contains only two unique values. The variable does not need to be a numerical value, factors and logicals are supported as well. NAs can be skipped by setting na.rm to TRUE.

### Usage

```r
IsDichotomous(x, strict = FALSE, na.rm = FALSE)
Flags(x, na.rm = FALSE)
```

### Arguments

- **x**: a numeric or integer vector, a logical vector or a factor (ordered and unordered)
- **strict**: logical. If set to TRUE, the result will only be TRUE, if x contains exactly 2 levels. If set to FALSE the result will be TRUE for 1 and for 2 levels.
- **na.rm**: logical, indicating whether NA values should be stripped before the computation proceeds. Defaults to FALSE.
Details

IsDichotomous tests a single variable. Flags returns the names of all the dichotomous variables in a
list or data.frame.

Value

TRUE if x contains only two unique values, FALSE else

Author(s)

Andri Signorell <andri@signorell.net>

Examples

IsDichotomous(sample(10, 5, replace=TRUE))

---

IsEuclid Is a Distance Matrix Euclidean?

Description

Confirmation of the Euclidean nature of a distance matrix by the Gower’s theorem. IsEuclid is used in summary.dist.

Usage

IsEuclid(distmat, plot = FALSE, print = FALSE, tol = 1e-07)

Arguments

distmat an object of class 'dist'
plot a logical value indicating whether the eigenvalues bar plot of the matrix of the term $-\frac{1}{2}d_{ij}^2$ centred by rows and columns should be displayed
print a logical value indicating whether the eigenvalues of the matrix of the term $-\frac{1}{2}d_{ij}^2$ centred by rows and columns should be printed
tol a tolerance threshold: an eigenvalue is considered positive if it is larger than $\text{tol} \times \lambda_1$ where $\lambda_1$ is the largest eigenvalue.

Value

returns a logical value indicating if all the eigenvalues are positive or equal to zero

Author(s)

Daniel Chessel
Stephane Dray <dray@biomserv.univ-lyon1.fr>
IsOdd

References


Examples

```r
w <- matrix(runif(10000), 100, 100)
w <- dist(w)
summary(w)
IsEuclid(w) # TRUE
```

---

**IsOdd**  
**Checks If An Integer Is Even Or Odd**

Description

Checks if the elements of an integer vector \( x \) are even or odd.

Usage

```r
IsOdd(x)
```

Arguments

- \( x \)  
  vector of integers

Value

a logic vector

Author(s)

Andri Signorell <andri@signorell.net>

See Also

*IsWhole*

Examples

```r
IsOdd(1:10)
```
Description

Returns for a vector or matrix of positive integers a logical object of the same dimension(s) containing TRUE for the elements that are prime and FALSE otherwise.

Usage

IsPrime(x)

Arguments

x 
vector or matrix of nonnegative integers

Details

Given a vector or a matrix of positive integers returns a vector of the same size of FALSE and TRUE. Use which(IsPrime(1:21)) to get the positions.

Value

logical vector

Author(s)

Hans W. Borchers <hwborchers@googlemail.com>

See Also

Factorize, Primes

Examples

x <- matrix(1:10, nrow=10, ncol=10, byrow=TRUE)
x * IsPrime(x)

# Find first prime number octett:
octett <- c(0, 2, 6, 8, 30, 32, 36, 38) - 19
while (TRUE) {
octett <- octett + 210
if (all(IsPrime(octett))) {
cat(octett, "\n", sep=" ")
break
}
}
IsValidWrd  

**Check Word Pointer**

**Description**

Check if a pointer points to a valid and running Word instance. The function does this by trying to get the current selection of the Word instance and returns `FALSE` if it's `NULL`.

**Usage**

```
IsValidWrd(wrd = DescToolsOptions("lastWord"))
```

**Arguments**

- `wrd`  
  the pointer to a word instance as created by `GetNewWrd()` or `GetCurrWrd()`.
  Default is the last created pointer stored in `DescToolsOptions("lastWord")`.

**Value**

logical value

**Author(s)**

Andri Signorell <andri@signorell.net>

**See Also**

- `GetCurrWrd()`

---

JarqueBeraTest  

**(Robust) Jarque Bera Test**

**Description**

This function performs the Jarque-Bera tests of normality either the robust or the classical way.

**Usage**

```
JarqueBeraTest(x, robust = TRUE, method = c("chisq", "mc"),
N = 0, na.rm = FALSE)
```
Arguments

- **x**: a numeric vector of data values.
- **robust**: defines, whether the robust version should be used. Default is TRUE.
- **method**: a character string out of chisq or mc, specifying how the critical values should be obtained. Default is approximated by the chisq-distribution or empirically via Monte Carlo.
- **N**: number of Monte Carlo simulations for the empirical critical values
- **na.rm**: defines if NAs should be omitted. Default is FALSE.

Details

The test is based on a joint statistic using skewness and kurtosis coefficients. The robust Jarque-Bera (RJB) version of utilizes the robust standard deviation (namely the mean absolute deviation from the median, as provided e. g. by `meanAD(x, FUN=median)`) to estimate sample kurtosis and skewness. For more details see Gel and Gastwirth (2006).

Setting robust to FALSE will perform the original Jarque-Bera test (see Jarque, C. and Bera, A (1980)).

Value

A list with class htest containing the following components:

- **statistic**: the value of the test statistic.
- **parameter**: the degrees of freedom.
- **p.value**: the p-value of the test.
- **method**: type of test was performed.
- **data.name**: a character string giving the name of the data.

Note

This function is melted from the `jarque.bera.test` in tseries package and the `rjb.test` from the package lawstat.

Author(s)

W. Wallace Hui, Yulia R. Gel, Joseph L. Gastwirth, Weiwen Miao

References


See Also

Alternative tests for normality as `shapiro.test`, `AndersonDarlingTest`, `CramerVonMisesTest`, `LillieTest`, `PearsonTest`, `ShapiroFranciaTest`, `qqnorm`, `qqline` for producing a normal quantile-quantile plot.

Examples

```r
x <- rnorm(100) # null hypothesis
JarqueBeraTest(x)

x <- runif(100) # alternative hypothesis
JarqueBeraTest(x, robust=TRUE)
```

---

JonckheereTerpstraTest

*Exact Version of Jonckheere-Terpstra Test*

Description

Jonckheere-Terpstra test to test for ordered differences among classes.

Usage

```r
JonckheereTerpstraTest(x, ...)
```

```r
Default S3 method:
JonckheereTerpstraTest(x, g, alternative = c("two.sided", "increasing", "decreasing"),
nperm = NULL, ...)

S3 method for class 'formula'
JonckheereTerpstraTest(formula, data, subset, na.action, ...)
```

Arguments

- `x` a numeric vector of data values, or a list of numeric data vectors.
- `g` a vector or factor object giving the group for the corresponding elements of `x`. Ignored if `x` is a list.
- `alternative` means are monotonic (two.sided), increasing, or decreasing
- `nperm` number of permutations for the reference distribution. The default is NULL in which case the permutation p-value is not computed. It's recommended to set `nperm` to 1000 or higher if permutation p-value is desired.
- `formula` a formula of the form `lhs ~ rhs` where `lhs` gives the data values and `rhs` the corresponding groups.
data an optional matrix or data frame (or similar: see \texttt{model.frame}) containing the variables in the formula \texttt{formula}. By default the variables are taken from \texttt{environment(formula)}.

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

... further argument to be passed to methods.

Details
JonckheereTerpstraTest is the exact (permutation) version of the Jonckheere-Terpstra test. It uses the statistic
\[ \sum_{k<l} \sum_{ij} I(X_{ik} < X_{jl}) + 0.5 I(X_{ik} = X_{jl}), \]
where \( i, j \) are observations in groups \( k \) and \( l \) respectively. The asymptotic version is equivalent to \texttt{cor.test(x, g, method="k")}. The exact calculation requires that there be no ties and that the sample size is less than 100. When data are tied and sample size is at most 100 permutation p-value is returned.

If \( x \) is a list, its elements are taken as the samples to be compared, and hence have to be numeric data vectors. In this case, \( g \) is ignored, and one can simply use \texttt{JonckheereTerpstraTest(x)} to perform the test. If the samples are not yet contained in a list, use \texttt{JonckheereTerpstraTest(list(x, ...))}.

Otherwise, \( x \) must be a numeric data vector, and \( g \) must be a vector or factor object of the same length as \( x \) giving the group for the corresponding elements of \( x \).

Note
The function was previously published as \texttt{jonckheere.test()} in the \texttt{clinfun} package and has been integrated here without logical changes. Some argument checks and a formula interface were added.

Author(s)
Venkatraman E. Seshan <seshanv@mskcc.org>, minor adaptations Andri Signorell

References

Terpstra, T. J. (1952). The asymptotic normality and consistency of Kendall’s test against trend, when ties are present in one ranking. \textit{Indagationes Mathematicae} 14:327-333.

Examples
\begin{verbatim}
set.seed(1234)
g <- ordered(rep(1:5, rep(10,5)))
x <- rnorm(50) + 0.3 * as.numeric(g)
\end{verbatim}
KappaM

Kappa for m Raters

Description
Computes kappa as an index of interrater agreement between m raters on categorical data.

Usage
KappaM(x, method = c("Fleiss", "Conger", "Light"), conf.level = NA)

Arguments

x  
n x m matrix or dataframe, n subjects m raters.

method  
a logical indicating whether the exact Kappa (Conger, 1980), the Kappa described by Fleiss (1971) or Light’s Kappa (1971) should be computed.

conf.level  
confidence level of the interval. If set to NA (which is the default) no confidence intervals will be calculated.

Details
Missing data are omitted in a listwise way.
The coefficient described by Fleiss (1971) does not reduce to Cohen’s Kappa (unweighted) for m=2 raters. Therefore, the exact Kappa coefficient, which is slightly higher in most cases, was proposed by Conger (1980).
Light’s Kappa equals the average of all possible combinations of bivariate Kappas between raters. The confidence levels can only be reported using Fleiss’ formulation of Kappa.
Value

a single numeric value if no confidence intervals are requested, and otherwise a numeric vector with 3 elements for the estimate, the lower and the upper confidence interval.

Note

This function was previously published as kappam.fleiss() in the irr package and has been integrated here with some changes in the interface.

Author(s)

Matthias Gamer, with some modifications by Andri Signorell <andri@signorell.net>

References


See Also

CohenKappa

Examples

statement <- data.frame(
  A=c(2,3,1,3,1,2,1,2,3,3,3,3,3,2,1,3,3,2,2,1,
       2,1,3,3,2,2,1,2,1,1,2,3,3,3,3,3,1,2,1,1),
  B=c(2,2,2,1,1,2,1,2,3,3,2,3,1,3,1,1,3,2,1,2,
       2,1,3,2,2,2,3,2,1,1,2,2,3,3,3,3,2,2,2,2,3),
  C=c(2,2,2,1,1,2,1,2,3,3,2,3,1,3,1,1,3,2,1,2,
       2,1,3,2,2,2,3,2,1,1,2,2,3,3,3,3,2,2,2,2,3),
  D=c(2,2,2,1,1,2,1,2,3,3,2,3,1,3,1,1,3,2,1,2,
       3,1,3,2,2,2,1,2,1,2,3,3,3,3,3,3,2,2,2,2,1),
  E=c(2,2,2,3,2,3,1,3,3,2,3,3,3,3,3,3,2,2,2,2,3,
       2,3,3,2,2,2,3,2,1,3,2,3,3,1,3,3,3,2,2,2,1)
)

KappaM(statement)

KappaM(statement, method="Conger") # Exact Kappa
KappaM(statement, conf.level=0.95) # Fleiss' Kappa and confidence intervals
KappaM(statement, method="Light") # Exact Kappa
Kendall's Tau-a

**Description**

Calculate Kendall's tau-a statistic, a measure of association for ordinal factors in a two-way table. The function has interfaces for a table (matrix) and for single vectors.

**Usage**

KendallTauA(x, y = NULL, direction = c("row", "column"), conf.level = NA, ...)

**Arguments**

- **x**: a numeric vector or a table. A matrix will be treated as table.
- **y**: NULL (default) or a vector with compatible dimensions to x. If y is provided, table(x, y, ...) is calculated.
- **direction**: direction of the calculation. Can be "row" (default) or "column", where "row" calculates Kendall's tau-a (RIC) ("column dependent").
- **conf.level**: confidence level of the interval. If set to NA (which is the default) no confidence interval will be calculated.
- **...**: further arguments are passed to the function table, allowing i.e. to set useNA. This refers only to the vector interface.

**Details**

Kendall's tau coefficient (sometimes called "Kendall rank correlation coefficient"), is a statistic used to measure the association between two measured quantities. It is a measure of rank correlation: the similarity of the orderings of the data when ranked by each of the quantities. Kendall's tau-a is computed as

$$\tau_a(C|R) = \frac{P - Q}{\frac{1}{2} \cdot n \cdot (n - 1)}$$

where P equals twice the number of concordances and Q twice the number of discordances. Its range is [-1, 1]. (Note that Kendall tau-a does not take into consideration any ties, which makes it unpractical. Consider using KendallTaub (Tau-b) when ties are present.)

**Value**

- a single numeric value if no confidence intervals are requested,
- and otherwise a numeric vector with 3 elements for the estimate, the lower and the upper confidence interval

**Author(s)**

Andri Signorell <andri@signorell.net>
References


See Also

`ConDisPairs` yields concordant and discordant pairs

Other association measures: `cor` (method="kendall") for Tau b, `StuartTauC`, `GoodmanKruskalGamma`, `Lambda`, `UncertCoef`, `MutInf`

Examples

```r
example in:
pp. 5. 1821

tab <- as.table(rbind(c(26,26,23,18,9),c(6,7,9,14,23)))

Kendall's tau-a C|R
KendallTauA(tab, direction="column", conf.level=0.95)
KendallTauA(tab, direction="row", conf.level=0.95)

pp. 1814 (143)
tab <- as.table(cbind(c(11,2),c(4,6)))

KendallTauA(tab, direction="row", conf.level=0.95)
KendallTauA(tab, direction="column", conf.level=0.95)

Liebetrau, pp. 52
x <- c(1,2,2,3,3,3,4,5)
y <- c(1,3,2,1,5,3,4,5)

ConDisPairs(table(x, y))
KendallTauA(x, y, conf.level=0.95)
```
Description

Calculate Kendall’s tau-b. The estimator could also be calculated with `cor(..., method="kendall")`. The calculation of confidence intervals however would not be found there.

Usage

```r
KendallTauB(x, y = NULL, conf.level = NA, ...)
```

Arguments

- `x` a numeric vector, matrix or data.frame.
- `y` NULL (default) or a vector with compatible dimensions to `x`. If `y` is provided, `table(x, y, ...)` is calculated.
- `conf.level` confidence level of the interval. If set to `NA` (which is the default) no confidence interval will be calculated.
- `...` further arguments are passed to the function `table`, allowing i.e. to set `useNA`. This refers only to the vector interface.

Value

- a single numeric value if no confidence intervals are requested,
- and otherwise a numeric vector with 3 elements for the estimate, the lower and the upper confidence interval

Author(s)

Andri Signorell <andri@signorell.net>

References


See Also

- `condispairs` yields concordant and discordant pairs

Other association measures:
- `GoodmanKruskalGamma,KendallTauA` (tau-a), `cor` (method="kendall") for tau-b, `StuartTauc` (tau-c), `SomersDelta`.
- `Lambda,GoodmanKruskalTau,UncertCoef,MutInf`
Examples

```r
example in:
pp. S. 1821

tab <- as.table(rbind(c(26,26,23,18,9),c(6,7,9,14,23)))

KendallTauB(tab, conf.level=0.95)
```

---

KendallW  
**Kendall’s Coefficient of Concordance** W

Description

Computes Kendall’s coefficient of concordance, a popular measure of association. It is an index of interrater reliability of ordinal data. The coefficient could be corrected for ties within raters.

Usage

```r
KendallW(x, correct = FALSE, test = FALSE, na.rm = FALSE)
```

Arguments

- **x**: $n \times m$ matrix or dataframe, k subjects (in rows) m raters (in columns).
- **correct**: a logical indicating whether the coefficient should be corrected for ties within raters.
- **test**: a logical indicating whether the test statistic and p-value should be reported.
- **na.rm**: logical, indicating whether NA values should be stripped before the computation proceeds. If set to TRUE only the complete cases of the ratings will be used. Defaults to FALSE.

Details

The test for Kendall’s W is completely equivalent to `friedman.test`. The only advantage of this test over Friedman’s is that Kendall’s W has an interpretation as the coefficient of concordance. The test itself is only valid for large samples. Kendall’s W should be corrected for ties, if raters did not use a true ranking order for the subjects.

Value

Either a single value if test is set to FALSE or else

a list with class “htest” containing the following components:

- **statistic**: the value of the chi-square statistic.
- **p.value**: the p-value for the test.
Kendall's coefficient of concordance W

### Method

- **data.name**: a character string giving the name(s) of the data.
- **estimate**: the coefficient of concordance.
- **parameter**: the degrees of freedom df, the number of subjects examined and the number of raters.

### Note

This function was previously published as `kendall()` in the `irr` package and has been integrated here without logical changes, but with some adaptations in the result structure.

### Author(s)

Matthias Gamer <m.gamer@uke.uni-hamburg.de>

### References


### See Also

- `cor`, `KappaM`, `CronbachAlpha`, `ICC`, `friedman.test`

### Examples

```r
anxiety <- data.frame(rater1=c(3,3,3,4,5,5,2,3,5,2,2,6,1,5,2,1,2,4,3),
 rater2=c(3,6,4,6,2,4,2,4,3,3,3,3,2,2,1,3,3,4),
 rater3=c(2,1,4,4,3,2,1,6,1,1,1,2,3,1,1,3,3,2,2))

KendallW(anxiety, TRUE)
```

# with test results

```r
KendallW(anxiety, TRUE, test=TRUE)
```

# example from Siegel and Castellan (1988)

```r
d.att <- data.frame(
 id = c(4,21,11),
 airfare = c(5,1,4),
 climate = c(6,7,5),
 season = c(7,6,1),
 people = c(1,2,3),
 program = c(2,3,2),
 publicity = c(4,5,7),
 present = c(3,4,6),
 interest = c(8,8,8)
)

KendallW(t(d.att[, -1]), test = TRUE)
```

# which is perfectly the same as

```r
friedman.test(y=as.matrix(d.att[, -1]), groups = d.att$id)
```
Keywords

List Keywords For R Manual Pages

Description

List the keywords for specific R man pages or return a list of valid R keywords.

Usage

Keywords(topic)

Arguments

topic optional, object or man page topic

Details

If topic is provided, return a list of the Keywords associated with topic. Otherwise, display the list of valid R Keywords from the R doc/Keywords file.

Author(s)

Gregory R. Warnes <greg@warnes.net>

See Also

help

Examples

## Show all valid R Keywords
Keywords()

## Show Keywords associated with the 'merge' function
Keywords(merge)
Keywords("merge")
KrippAlpha

KrippAlpha

Krippendorff’s Alpha Reliability Coefficient

Description

Calculate the alpha coefficient of reliability proposed by Krippendorff.

Usage

KrippAlpha(x, method=c("nominal", "ordinal", "interval", "ratio"))

Arguments

x
classifier x object matrix of classifications or scores

method
data level of x

Value

A list with class “irrlist” containing the following components:

method
a character string describing the method.

subjects
the number of data objects.

raters
the number of raters.

irr.name
a character string specifying the name of the coefficient.

value
value of alpha.

stat.name
here "nil" as there is no test statistic.

statistic
the value of the test statistic (NULL).

p.value
the probability of the test statistic (NULL).

cm
the concordance/discordance matrix used in the calculation of alpha

data.values
a character vector of the unique data values

levx
the unique values of the ratings

nmatchval
the count of matches, used in calculation

data.level
the data level of the ratings ("nominal","ordinal", "interval","ratio")

Note

Krippendorff’s alpha coefficient is particularly useful where the level of measurement of classification data is higher than nominal or ordinal.

Note

This function was previously published as kripp.alpha() in the irr package and has been integrated here without logical changes, but with some adaptations in the result structure.
Author(s)

Jim Lemon <jim@bitwrit.com.au>

References


Examples

```r
the "C" data from Krippendorff
nmm <- matrix(c(1,1,NA,1,2,2,3,3,3,3,3,3,2,2,1,2,3,4,4,4,4,4,4,1,1,2,1,2,2,2,NA,5,5,5,NA,NA,1,1,NA,NA,3,NA), nrow=4)

first assume the default nominal classification
KrippAlpha(nmm)

now use the same data with the other three methods
KrippAlpha(nmm, "ordinal")
KrippAlpha(nmm, "interval")
KrippAlpha(nmm, "ratio")
```

Label, Unit

*Label, Unit Attribute of an Object*

Description

Set and retrieve the label, resp. unit attribute of `x`. This can be helpful for documenting the specific meaning of a variable, of an entire data.frame or any other object. For single vectors it can be useful to store the unit.

Usage

```r
label(x)
label(x) <- value

unit(x)
unit(x) <- value
```

Arguments

- `x`: any object
- `value`: a single string describing the object

Details

The label should consist of a single text (length of 1). The text may contain line feeds. It can be deleted by setting the label to `NULL`. 
Lambda

Value

Label and Unit return the label attribute of x, if any; otherwise, NULL.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

A more elaborated label version can be found in package Hmisc label().

Examples

# add a descriptive label to a variable
Label(d.diamonds$colour) <- "The rating scale applied to diamonds ranges from colorless to yellow, as any other color is extremely rare."

# technically just appending the text as attribute to the variable
attributes(d.diamonds$colour)

# label is supported while describing data
Desc(d.diamonds$colour)

# The label can be deleted by setting it to NULL
Label(d.diamonds$colour) <- NULL

# Labelling the columns of a data.frame is best done with a loop
# (all so far seen *apply* approaches lead to more complicated code...)
lbl <- RndWord(16, 7)
for(i in seq_along(lbl))
  Label(d.pizza[, i]) <- lbl[i]

Str(d.pizza)

Lambda

Goodman Kruskal Lambda

Description

Calculate symmetric and asymmetric Goodman Kruskal lambda and their confidence intervals. Lambda is a measure of proportional reduction in error in cross tabulation analysis. For any sample with a nominal independent variable and dependent variable (or ones that can be treated nominally), it indicates the extent to which the modal categories and frequencies for each value of the independent variable differ from the overall modal category and frequency, i.e. for all values of the independent variable together

Usage

Lambda(x, y = NULL, direction = c("symmetric", "row", "column"), conf.level = NA, ...)
Arguments

- **x**: a numeric vector, a matrix or a table.
- **y**: NULL (default) or a vector with compatible dimensions to x. If y is provided, \( \text{table}(x, y, \ldots) \) is calculated.
- **direction**: type of lambda. Can be one out of "symmetric" (default), "row", "column" (abbreviations are allowed). If direction is set to "row" then Lambda(R|C) (column dependent) will be reported. See details.
- **conf.level**: confidence level for the returned confidence interval, restricted to lie between 0 and 1.
- **...**: further arguments are passed to the function \( \text{table} \), allowing i.e. to set `useNA = c("no", "ifany", "always")`.

Details

Asymmetric lambda is interpreted as the probable improvement in predicting the column variable \( Y \) given knowledge of the row variable \( X \).

The nondirectional lambda is the average of the two asymmetric lambdas, Lambda(C|R) and Lambda(R|C).

Lambda (asymmetric and symmetric) has a scale ranging from 0 to 1.

Data can be passed to the function either as matrix or data.frame in \( x \), or as two numeric vectors \( x \) and \( y \). In the latter case \( \text{table}(x, y, \ldots) \) is calculated. Thus NAs are handled the same way as \( \text{table} \) does. Note that tables are by default calculated without NAs (which breaks the package's law to in general not omit NAs silently). The specific argument `useNA` can be passed via the `...` argument.

`PairApply` can be used to calculate pairwise lambdas.

Value

- if no confidence intervals are requested: the estimate as numeric value
- else a named numeric vector with 3 elements

  - **lambda**: estimate
  - **lwr.ci**: lower confidence interval
  - **upr.ci**: upper confidence interval

Author(s)

Andri Signorell <andri@signorell.net> based on code from Antti Arppe <antti.arppe@helsinki.fi>, Nanina Anderegg (confidence interval symmetric lambda)

References


See Also

*GoodmanKruskalTau, GoodmanKruskalGamma, KendallTauA, KendallTauB, StuartTauC, SomersDelta, cor*

Examples

```r
example from Goodman Kruskal (1954)
m <- as.table(cbind(c(1768,946,115), c(807,1387,438), c(189,746,288), c(47,53,16)))
dimnames(m) <- list(paste("A", 1:3), paste("B", 1:4))
m

direction default is "symmetric"
Lambda(m)
Lambda(m, conf.level=0.95)

Lambda(m, direction="row")
Lambda(m, direction="column")
```

---

**Lc**

*Lorenz Curve*

Description

Lc computes the (empirical) ordinary and generalized Lorenz curve of a vector x. Desc calculates some key figures for a Lorenz curve and produces a quick description.

Usage

```r
Lc(x, ...)
```

## Default S3 method:
```
Lc(x, n = rep(1, length(x)), na.rm = FALSE, ...)
```

## S3 method for class 'formula'
```
Lc(formula, data, subset, na.action, ...)
```

## S3 method for class 'Lc'
```
plot(x, general = FALSE, lwd = 2, type = "l", xlab = "p", ylab = "L(p)",
 main = "Lorenz curve", las = 1, pch = NA, ...)
```

## S3 method for class 'Lclist'
```
Arguments

- **x**: a vector containing non-negative elements, or a `Lc`-object for plot and lines.
- **n**: a vector of frequencies, must be same length as `x`.
- **na.rm**: logical. Should missing values be removed? Defaults to FALSE.
- **general**: logical. If TRUE the empirical Lorenz curve will be plotted.
- **col**: color of the curve
- **lwd**: the linewidth of the curve
- **lty**: the linetype of the curve
- **type**: type of the plot, default is line ("l").
- **xlab**, **ylab**: label of the x-, resp. y-axis.
- **pch**: the point character (default is NA, meaning no points will be drawn)
- **main**: main title of the plot.
- **las**: las of the axis.
- **formula**: a formula of the form `lhs ~ rhs` where `lhs` gives the data values and `rhs` the corresponding groups.
- **data**: an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
- **subset**: an optional vector specifying a subset of observations to be used.
- **na.action**: a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.
- **conf.level**: confidence level for the bootstrap confidence interval. Set this to NA, if no confidence band should be plotted. Default is NA.
- **args.cband**: list of arguments for the confidence band, such as color or border (see `DrawBand`).
- **object**: object of class inheriting from "Lc"
- **newdata**: an optional vector of percentages p for which to predict. If omitted, the original values of the object are used.
- **...**: further argument to be passed to methods.
Details

Lc(x) computes the empirical ordinary Lorenz curve of x as well as the generalized Lorenz curve (= ordinary Lorenz curve * mean(x)). The result can be interpreted like this: p*100 percent have L(p)*100 percent of x.

If n is changed to anything but the default x is interpreted as a vector of class means and n as a vector of class frequencies: in this case Lc will compute the minimal Lorenz curve (= no inequality within each group).

Value

A list of class "Lc" with the following components:

- p vector of percentages
- L vector with values of the ordinary Lorenz curve
- L.g vector with values of the generalized Lorenz curve
- x the original x values (needed for computing confidence intervals)
- n the original n values

Note

These functions were previously published as Lc() in the ineq package and have been integrated here without logical changes.

Author(s)

Achim Zeileis <Achim.Zeileis@R-project.org>, extensions Andri Signorell <andri@signorell.net>

References

See Also

The original location Lc(),
inequality measures Gini(), Atkinson()

Examples

priceCarpenter <- d.pizza$price[d.pizza$driver=="Carpenter"]
priceMiller <- d.pizza$price[d.pizza$driver=="Miller"]

compute the Lorenz curves
Lc.p <- Lc(priceCarpenter, na.rm=TRUE)
Lc.u <- Lc(priceMiller, na.rm=TRUE)
plot(Lc.p)
lines(Lc.u, col=2)

the picture becomes even clearer with generalized Lorenz curves
plot(Lc.p, general=TRUE)
lines(Lc.u, general=TRUE, col=2)

inequality measures emphasize these results, e.g. Atkinson’s measure
Atkinson(priceCarpenter, na.rm=TRUE)
Atkinson(priceMiller, na.rm=TRUE)

income distribution of the USA in 1968 (in 10 classes)
x vector of class means, n vector of class frequencies
x <- c(541, 1463, 2445, 3438, 4437, 5401, 6392, 8304, 11904, 22261)
n <- c(482, 825, 722, 690, 661, 760, 745, 2140, 1911, 1024)

compute minimal Lorenz curve (= no inequality in each group)
Lc.min <- Lc(x, n=n)
plot(Lc.min)

input of frequency tables with midpoints of classes
fl <- c(2.5, 7.5, 15, 35, 75, 150) # midpoints
n <- c(25, 13, 10, 5, 5, 2) # frequencies
plot(Lc(fl, n),
 panel.first=grid(10, 10),
 main="Lorenz-curve Farmers",
 xlab="Percent farmers (cumulative)",
 ylab="Percent of area (%)"
)
add confidence band
lines(Lc(fl, n), conf.level=0.95,
 args.cband=list(col=SetAlpha(DescToolsOptions("col")[2], 0.3)))

Gini(fl, n)

find specific function values using predict
x <- c(1, 1.4)
xLc <- Lc(x)
plot(xLc)

get interpolated function value at p=0.55
y0 <- predict(xLc, newdata=0.55)
abline(v=0.55, h=y0$L, lty="dotted")

and for the inverse question use approx
y0 <- approx(x=xLc$L, y=xLc$p, xout=0.6)
abline(h=0.6, v=y0$y, col="red")

text(x=0.1, y=0.65, label=expression(L^{-1}\times(0.6) == 0.8), col="red")
text(x=0.65, y=0.2, label=expression(L(0.55) == 0.275))
LehmacherTest

input of frequency tables with midpoints of classes
fl <- c(2.5,7.5,15,35,75,150) # midpoints
n <- c(25,13,18,5,5,2) # frequencies

the formula interface for Lc
lst <- Lc(count ~ cut(price, breaks=5), data=d.pizza)

plot(lst, col=1:length(lst), panel.first=grid(), lwd=2)
legend(x="topleft", legend=names(lst), fill=1:length(lst))

Describe with Desc-function
lx <- Lc(fl, n)
Desc(lx)

LehmacherTest

Lehmacher's Test for Marginal Homogeneity

Description

Performs Lehmacher's chi-squared test for marginal homogeneity in a symmetric two-dimensional contingency table.

Usage

```r
LehmacherTest(x, y = NULL)
```

Arguments

- **x**
 - either a two-dimensional contingency table in matrix form, or a factor object.
- **y**
 - a factor object; ignored if x is a matrix.
- **digits**
 - a non-null value for digits specifies the minimum number of significant digits to be printed in values. See details in `print.default`.
- **...**
 - further arguments to be passed to or from other methods. They are ignored in this function.

Details

The null is that the probabilities of being classified into cells [i,j] and [j,i] are the same.

If x is a matrix, it is taken as a two-dimensional contingency table, and hence its entries should be nonnegative integers. Otherwise, both x and y must be vectors or factors of the same length. Incomplete cases are removed, vectors are coerced into factors, and the contingency table is computed from these.
Value

A list with class "mtest" containing the following components:

- statistic: a vector with the value of the test statistics.
- parameter: the degrees of freedom, which is always 1 in LehmacherTest.
- p.value: a vector with the p-values of the single tests.
- p.value.corr: a vector with the "hochberg" adjusted p-values of the single tests. (See p.adjust)
- method: a character string indicating what type of test was performed.
- data.name: a character string giving the name of the data.

Author(s)

Andri Signorell <andri@signorell.net>

References

See Also

mcnemar.test (resp. BowkerTest for a CxC-matrix), StuartMaxwellTest, WoolfTest

Examples

```r
x <- matrix(c(400,40,20,10,
              50,300,60,20,
              10,40,120,5,
              5,90,50,80), nrow=4, byrow=TRUE)

lehmachertest(x)
```

LeveneTest

Levene’s Test for Homogeneity of Variance

Description

Computes Levene’s test for homogeneity of variance across groups.

Usage

```r
LeveneTest(y, ...)
```

S3 method for class 'formula'

```r
LeveneTest(formula, data, ...)
```

S3 method for class 'lm'

```r
LeveneTest(y, ...)
```

Default S3 method:

```r
LeveneTest(y, group, center=median, ...)
```
Arguments

- **y**: response variable for the default method, or a `lm` or `formula` object. If `y` is a linear-model object or a formula, the variables on the right-hand-side of the model must all be factors and must be completely crossed.
- **group**: factor defining groups.
- **center**: The name of a function to compute the center of each group; `mean` gives the original Levene's test; the default, `median`, provides a more robust test (Brown-Forsythe-Test).
- **formula**: a formula of the form `lhs ~ rhs` where `lhs` gives the data values and `rhs` the corresponding groups.
- **data**: an optional matrix or data frame (or similar; see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
- **...**: arguments to be passed down, e.g., `data` for the `formula` and `lm` methods; can also be used to pass arguments to the function given by `center` (e.g., `center=mean` and `trim=0.1` specify the 10% trimmed mean).

Value

returns an object meant to be printed showing the results of the test.

Note

This function was previously published as `leveneTest()` in the library(car) and has been integrated here without logical changes.

Author(s)

John Fox <jfox@mcmaster.ca>; original generic version contributed by Derek Ogle adapted from a response posted by Brian Ripley to the r-help email list.

References

See Also

- `fligner.test` for a rank-based (nonparametric) k-sample test for homogeneity of variances; `mood.test` for another rank-based two-sample test for a difference in scale parameters; `var.test` and `bartlett.test` for parametric tests for the homogeneity in variance.
- `ansari_test` in package coin for exact and approximate conditional p-values for the Ansari-Bradley test, as well as different methods for handling ties.
Examples

```r
## example from ansari.test:
## Hollander & Wolfe (1973, p. 86f):
## Serum iron determination using Hyland control sera
ramsay <- c(111, 107, 100, 99, 102, 106, 109, 108, 104, 99, 
           101, 96, 97, 102, 107, 113, 116, 113, 110, 98)
jung.parekh <- c(107, 108, 106, 98, 105, 103, 110, 105, 104, 

LeveneTest( c(ramsay, jung.parekh),
            factor(c(rep("ramsay",length(ramsay)), rep("jung.parekh",length(jung.parekh)))))

LeveneTest( c(rnorm(10), rnorm(10, 0, 2)), factor(rep(c("A","B"),each=10))
# Not run:
# original example from package car

with(Moore, LeveneTest(conformity, fcategory))
with(Moore, LeveneTest(conformity, interaction(fcategory, partner.status)))

LeveneTest(conformity ~ fcategory * partner.status, data = Moore)
LeveneTest(conformity ~ fcategory * partner.status, data = Moore, center = mean)
LeveneTest(conformity ~ fcategory * partner.status, data = Moore, center = mean, trim = 0.1)

LeveneTest(lm(conformity ~ fcategory*partner.status, data = Moore))
# End(Not run)
```

LillieTest

Lilliefors (Kolmogorov-Smirnov) Test for Normality

Description

Performs the Lilliefors (Kolmogorov-Smirnov) test for the composite hypothesis of normality, see e.g. Thode (2002, Sec. 5.1.1).

Usage

`LillieTest(x)`

Arguments

- `x` a numeric vector of data values, the number of which must be greater than 4. Missing values are allowed.
Details

The Lilliefors (Kolmogorov-Smirnov) test is an EDF omnibus test for the composite hypothesis of normality. The test statistic is the maximal absolute difference between empirical and hypothetical cumulative distribution function. It may be computed as

\[D = \max \{ D^+, D^- \} \]

with

\[D^+ = \max_{i=1,\ldots,n} \{ i/n - p(i) \}, \quad D^- = \max_{i=1,\ldots,n} \{ p(i) - (i-1)/n \}, \]

where \(p(i) = \Phi([x(i) - \bar{x}] / s) \). Here, \(\Phi \) is the cumulative distribution function of the standard normal distribution, and \(\bar{x} \) and \(s \) are mean and standard deviation of the data values. The p-value is computed from the Dallal-Wilkinson (1986) formula, which is claimed to be only reliable when the p-value is smaller than 0.1. If the Dallal-Wilkinson p-value turns out to be greater than 0.1, then the p-value is computed from the distribution of the modified statistic \(Z = D(\sqrt{n} - 0.01 + 0.85/\sqrt{n}) \), see Stephens (1974), the actual p-value formula being obtained by a simulation and approximation process.

Value

A list of class htest, containing the following components:

- statistic the value of the Lilliefors (Kolmogorov-Smirnov) statistic.
- p.value the p-value for the test.
- method the character string “Lilliefors (Kolmogorov-Smirnov) normality test”.
- data.name a character string giving the name(s) of the data.

Note

The Lilliefors (Kolomorov-Smirnov) test is the most famous EDF omnibus test for normality. Compared to the Anderson-Darling test and the Cramer-von Mises test it is known to perform worse. Although the test statistic obtained from \texttt{lillietest(x)} is the same as that obtained from \texttt{ks.test(x, "pnorm", mean(x), sd(x))}, it is not correct to use the p-value from the latter for the composite hypothesis of normality (mean and variance unknown), since the distribution of the test statistic is different when the parameters are estimated.

The function call \texttt{lillietest(x)} essentially produces the same result as the S-PLUS function call \texttt{ks.gof(x)} with the distinction that the p-value is not set to 0.5 when the Dallal-Wilkinson approximation yields a p-value greater than 0.1. (Actually, the alternative p-value approximation is provided for the complete range of test statistic values, but is only used when the Dallal-Wilkinson approximation fails.)

Author(s)

Juergen Gross <gross@statistik.uni-dortmund.de>

References

See Also

shapiro.test for performing the Shapiro-Wilk test for normality. AndersonDarlingTest, CramerVonMisesTest, PearsonTest, ShapiroFranciaTest for performing further tests for normality. qqnorm for producing a normal quantile-quantile plot.

Examples

lillietest(rnorm(100, mean = 5, sd = 3))
lillietest(runif(100, min = 2, max = 4))

lines.lm

Add a Linear Regression Line

Description

Add a linear regression line to an existing plot. The function first calculates the prediction of a lm object for a reasonable amount of points, then adds the line to the plot and inserts a polygon with the confidence and, if required, the prediction intervals. In addition to abline the function will also display polynomial models.

Usage

```r
## S3 method for class 'lm'
lines(x, col = Pal()[1], lwd = 2, lty = "solid",
    type = "l", n = 100, conf.level = 0.95, args.cband = NULL,
    pred.level = NA, args.pband = NULL, ...)  
```

Arguments

- `x`: linear model object as result from `lm(y~x)`.
- `col`: linecolor of the line. Default is the color returned by `Pal()[1]`.
- `lwd`: line width of the line.
- `lty`: line type of the line.
- `type`: character indicating the type of plotting; actually any of the types as in `plot.default`. Type of plot, defaults to "l".
- `n`: number of points used for plotting the fit.
- `conf.level`: confidence level for the confidence interval. Set this to NA, if no confidence band should be plotted. Default is 0.95.
- `args.cband`: list of arguments for the confidence band, such as color or border (see `DrawBand`).
- `pred.level`: confidence level for the prediction interval. Set this to NA, if no prediction band should be plotted. Default is 0.95.
- `args.pband`: list of arguments for the prediction band, such as color or border (see `DrawBand`).
- `...`: further arguments are not used specifically.
Details

It's sometimes illuminating to plot a regression line with its prediction, resp. confidence intervals over an existing scatterplot. This only makes sense, if just a simple linear model explaining a target variable by (a function of) one single predictor is to be visualized.

Value

nothing

Author(s)

Andri Signorell <andri@signorell.net>

See Also

lines, lines.loess, lm

Examples

```R
par(mfrow=c(1,2))

plot(hp ~ wt, mtcars)
lines(lm(hp ~ wt, mtcars), col="steelblue")

# add the prediction intervals in different color
plot(hp ~ wt, mtcars)
r.lm <- lm(hp ~ wt, mtcars)
lines(r.lm, col="red", pred.level=0.95, args.pband=list(col=SetAlpha("grey", 0.3)))

# works with transformations too
plot(dist ~ speed, cars)
lines(lm(dist ~ poly(speed, degree=2), cars), col="red")
```

Add a Loess or a Spline Smoother

Description

Add a loess smoother to an existing plot. The function first calculates the prediction of a loess object for a reasonable amount of points, then adds the line to the plot and inserts a polygon with the confidence intervals.

Usage

```R
## S3 method for class 'loess'
lines(x, col = Pal()[1], lwd = 2, lty = "solid",
    type = "l", n = 100, conf.level = 0.95, args.band = NULL, ...)
```
S3 method for class 'smooth.spline'
lines(x, col = Pal()[1], lwd = 2, lty = "solid",
 type = "l", conf.level = 0.95, args.band = NULL, ...)

S3 method for class 'SmoothSpline'
lines(x, col = Pal()[1], lwd = 2, lty = "solid",
 type = "l", conf.level = 0.95, args.band = NULL, ...)

Arguments

- **x**: the loess or smooth.spline object to be plotted.
- **col**: linecolor of the smoother. Default is DescTools's col1.
- **lwd**: line width of the smoother.
- **lty**: line type of the smoother.
- **type**: type of plot, defaults to "l".
- **n**: number of points used for plotting the fit.
- **conf.level**: confidence level for the confidence interval. Set this to NA, if no confidence band should be plotted. Default is 0.95.
- **args.band**: list of arguments for the confidence band, such as color or border (see `DrawBand`).
- **...**: further arguments are passed to the smoother (loess() or SmoothSpline()).

Note

Loess can result in heavy computational load if there are many points!

Author(s)

Andri Signorell <andri@signorell.net>

See Also

- loess, scatter.smooth, smooth.spline, SmoothSpline

Examples

```r
par(mfrow=c(1,2))

x <- runif(100)
y <- rnorm(100)
plot(x, y)
lines(loess(y~x))

plot(temperature ~ delivery_min, data=d.pizza)
lines(loess(temperature ~ delivery_min, data=d.pizza))

plot(temperature ~ delivery_min, data=d.pizza)
lines(loess(temperature ~ delivery_min, data=d.pizza), conf.level = 0.99,
```
args.band = list(col=SetAlpha("red", 0.4), border="black")

the default values from scatter.smooth
lines(loess(temperature ~ delivery_min, data=d.pizza,
 span=2/3, degree=1, family="symmetric"), col="red")

LineToUser

Convert Line Coordinates To User Coordinates

Description

Functions like mtext or axis use the line argument to set the distance from plot. Sometimes it’s useful to have the distance in user coordinates. LineToUser() does this nontrivial conversion.

Usage

```
LineToUser(line, side)
```

Arguments

- **line**: the number of lines
- **side**: the side of the plot

Details

For the LineToUser function to work, there must be an open plot.

Value

the user coordinates for the given lines

Author(s)

Andri Signorell <andri@signorell.net>

See Also

mtext

Examples

```
plot(1:10)
LineToUser(line=2, side=4)
```
LinScale

Linear Scaling

Description

This will scale the numeric vector \(x \) linearly from an old scale between \(\text{low} \) and \(\text{high} \) to a new one between \(\text{newlow} \) and \(\text{newhigh} \).

Usage

\[
\text{LinScale}(x, \text{low} = \text{NULL}, \text{high} = \text{NULL}, \text{newlow} = 0, \text{newhigh} = 1)
\]

Arguments

- \(x \): a numeric matrix (like object).
- \(\text{low} \): numeric. The minimum value of the scale, defaults to \(\text{min}(x) \). This is calculated columnwise by default; defined \(\text{low} \) or \(\text{high} \) arguments will be recycled if necessary.
- \(\text{high} \): numeric. The maximum value of the scale, defaults to \(\text{max}(x) \). This is calculated columnwise by default; when a maxval is entered, it will be recycled.
- \(\text{newlow} \): numeric. The minimum value of the new scale, defaults to 0, resulting in a 0-1 scale for \(x \). \(\text{newlow} \) is recycled if necessary.
- \(\text{newhigh} \): numeric. The maximum value of the scale, defaults to 1. \(\text{newhigh} \) is recycled if necessary.

Details

Hmm, hardly worth coding...

Value

The centered and scaled matrix. The numeric centering and scalings used (if any) are returned as attributes "scaled:center" and "scaled:scale"

Author(s)

Andri Signorell <andri@signorell.net>

See Also

scale, RobScale, sweep
Examples

```r
# transform the temperature from Celsius to Fahrenheit
LinScale(d.pizza[,1:20, "temperature"], 0, 100, -17.8, 37.8)

# and the price from Dollar to Euro
LinScale(d.pizza[,1:20, "price"], 0, 1, 0, 0.76)

# together
LinScale(d.pizza[,1:20, c("temperature", "price")],
         0, c(100, 1), c(-17.8, 0), c(37.8, 0.76))
```

```r
## Not run:
par(mfrow=c(3,1), mar=c(0,5,0,3), oma=c(5,0,5,0))
plot(LinScale(d.frm[,1]), ylim=c(-2,2), xaxt="n", ylab="LinScale")
plot(RobScale(d.frm[,1]), ylim=c(-2,2), xaxt="n", ylab="RobScale")
plot(scale(d.frm[,1]), ylim=c(-2,2), ylab="scale")
title("Compare scales", outer = TRUE)
```

End(Not run)

List Variety Of Objects

List Objects, Functions Or Data in a Package

Description

List all the objects, functions or data in a package.

Usage

```r
LsObj(package)
LsFct(package)
```

Arguments

package the name of the package

Details

This is just a wrapper for \code{ls}, \code{ls.str} and \code{lsf.str} with the appropriate arguments (as I always forgot how to do the trick). \code{LsObj()} lists all objects, \code{LsFct()} just the functions in a package.

Author(s)

Andri Signorell <andri@signorell.net>
References

See Also
ls, ls.str, lsf.str

Examples

```r
LsFct("DescTools")
```

Description
In longitudinal studies it’s common that individuals drop out before all responses can be obtained. Measurements obtained before the individual dropped out can be used to impute the unknown measurement(s). The last observation carried forward method is one way to impute values for the missing observations. For the last observation carried forward (LOCF) approach the missing values are replaced by the last observed value of that variable for each individual regardless of when it occurred.

Usage

```r
LOCF(x)
```

Arguments

- `x` a vector, a data.frame or a matrix containing NAs.

Details

The function will replace all NAs found in a vector with the last earlier value not being NA. In data.frames each column will be treated as described.

It should be noted, that the last observation carried forward approach may result in biased estimates and may underestimate the variability.
Value

a vector with the same dimension as x.

Author(s)

Daniel Wollschlaeger <dwoll@psychologie.uni-kiel.de>

See Also

See also the package Hmisc for less coarse imputation functions.

Examples

d.frn <- data.frame(
 tag=rep(c("mo", "di", "mi", "do", "fr", "sa", "so"), 4)
 , val=rep(c(runif(5), rep(NA,2)), 4)
)
d.frn$lof <- LOF(d.frn$val)
d.frn

<table>
<thead>
<tr>
<th>LOF</th>
<th>Local Outlier Factor</th>
</tr>
</thead>
</table>

Description

A function that finds the local outlier factor (Breunig et al., 2000) of the matrix "data" using k neighbours. The local outlier factor (LOF) is a measure of outlyingness that is calculated for each observation. The user decides whether or not an observation will be considered an outlier based on this measure. The LOF takes into consideration the density of the neighborhood around the observation to determine its outlyingness.

Usage

LOF(data, k)

Arguments

data The data set to be explored

k The kth-distance to be used to calculate the LOF’s.

Details

The LOFs are calculated over a range of values, and the max local outlier factor is determined over this range.

Value

lof A vector with the local outlier factor of each observation
Note

This function was originally published in the library dprep.

Author(s)

Caroline Rodriguez

References

Examples

Detecting the top 10 outliers using the LOF algorithm

(iris.lof <- LOF(iris[, -5], 10))

Logit

Generalized Logit and Inverse Logit Function

Description

Compute generalized logit and generalized inverse logit functions.

Usage

Logit(x, min = 0, max = 1)
LogitInv(x, min = 0, max = 1)

Arguments

- **x**: value(s) to be transformed
- **min**: lower end of logit interval
- **max**: upper end of logit interval

Details

The generalized logit function takes values on [min, max] and transforms them to span [−∞, ∞]. It is defined as:

\[y = \log \left(\frac{p}{1-p} \right) \]

where \(p = \frac{x - \text{min}}{\text{max} - \text{min}} \)

The generalized inverse logit function provides the inverse transformation:

\[x = p' \cdot (\text{max} - \text{min}) + \text{min} \]

where \(p' = \frac{\exp(y)}{1 + \exp(y)} \)
Value
Transformed value(s).

Author(s)
Gregory R. Warnes <greg@warnes.net>

See Also
logit

Examples

x <- seq(0,10, by=0.25)
x <- Logit(x, min=0, max=10)
cbind(x, x)
y <- LogitInv(x, min=0, max=10)
cbind(x, x, y)

LogSt Started Logarithmic Transformation and Its Inverse

Description
Transforms the data by a log transformation, modifying small and zero observations such that the transformation is linear for \(x <= \text{threshold} \) and logarithmic for \(x > \text{threshold} \). So the transformation yields finite values and is continuously differentiable.

Usage
\[
\text{LogSt}(x, \text{base} = 10, \text{calib} = x, \text{threshold} = \text{NULL}, \text{mult} = 1)\\
\text{LogStInv}(x, \text{base} = \text{NULL}, \text{threshold} = \text{NULL})
\]

Arguments

<table>
<thead>
<tr>
<th>x</th>
<th>a vector or matrix of data, which is to be transformed</th>
</tr>
</thead>
<tbody>
<tr>
<td>base</td>
<td>a positive or complex number: the base with respect to which logarithms are computed. Defaults to 10. Use=exp(1) for natural log.</td>
</tr>
<tr>
<td>calib</td>
<td>a vector or matrix of data used to calibrate the transformation(s), i.e., to determine the constant (c) needed</td>
</tr>
<tr>
<td>threshold</td>
<td>constant (c) that determines the transformation. The inverse function LogStInv will look for an attribute named "threshold" if the argument is set to NULL.</td>
</tr>
<tr>
<td>mult</td>
<td>a tuning constant affecting the transformation of small values, see Details.</td>
</tr>
</tbody>
</table>
Details

In order to avoid \(\log(x) = -\infty \) for \(x = 0 \) in log-transformations there’s often a constant added to the variable before taking the \(\log \). This is not always a pleasable strategy. The function LogSt handles this problem based on the following ideas:

- The modification should only affect the values for "small" arguments.
- What "small" is should be determined in connection with the non-zero values of the original variable, since it should behave well (be equivariant) with respect to a change in the "unit of measurement".
- The function must remain monotone, and it should remain (weakly) convex.

These criteria are implemented here as follows: The shape is determined by a threshold \(c \) at which - coming from above - the log function switches to a linear function with the same slope at this point. This is obtained by

\[
g(x) = \begin{cases}
\log_{10}(x) & \text{for } x \geq c \\
\log_{10}(c) - \frac{c-x}{c\log(10)} & \text{for } x < c
\end{cases}
\]

Small values are determined by the threshold \(c \). If not given by the argument threshold, it is determined by the quartiles \(q_1 \) and \(q_3 \) of the non-zero data as those smaller than \(c = \frac{q_1^{1+r}}{q_3^{1-r}} \) where \(r \) can be set by the argument mult. The rationale is, that, for lognormal data, this constant identifies 2 percent of the data as small.

Beyond this limit, the transformation continues linear with the derivative of the log curve at this point.

Another idea for choosing the threshold \(c \) was: \(\text{median}(x) / (\text{median}(x)/\text{quantile}(x, 0.25))^{2.9} \)

The function chooses \(\log_{10} \) rather than natural logs by default because they can be backtransformed relatively easily in mind.

A generalized log (see: Rocke 2003) can be calculated in order to stabilize the variance as:

function (x, a) {
 return(log((x + sqrt(x^2 + a^2)) / 2))
}

Value

the transformed data. The value \(c \) used for the transformation and needed for inverse transformation is returned as attr(.,”threshold”) and the used base as attr(.,”base”).

Author(s)

Werner A. Stahel, ETH Zurich
slight modifications Andri Signorell <andri@signorell.net>
References

See Also

`log`, `log10`

Examples

```r
dd <- c(seq(0,1,0.1), 5 * 10^3*rnorm(100, 0, 0.2))
dd <- sort(dd)
r.dl <- LogSt(dd)
plot(dd, r.dl, type="l")
abline(v=attr(r.dl, "threshold"), lty=2)

x <- rchisq(df=3, n=100)
# should give 0 (or at least something small):
LogStInv(LogSt(x)) - x
```

MAD
Median Absolute Deviation

Description

Compute the median absolute deviation, i.e., the (lo-/hi-) median of the absolute deviations from the median, and (by default) adjust by a factor for asymptotically normal consistency.

Usage

```r
mad(x, center = median(x), constant = 1.4826, na.rm = FALSE,
low = FALSE, high = FALSE)
```

Arguments

- `x` a numeric vector.
- `center` Optionally, the centre: defaults to the median.
- `constant` scale factor.
- `na.rm` if TRUE then NA values are stripped from x before computation takes place.
- `low` if TRUE, compute the ‘lo-median’, i.e., for even sample size, do not average the two middle values, but take the smaller one.
- `high` if TRUE, compute the ‘hi-median’, i.e., take the larger of the two middle values for even sample size.
Details

The actual value calculated is constant * cMedian(abs(x - center)) with the default value of center being median(x), and cMedian being the usual, the ‘low’ or ‘high’ median, see the arguments description for low and high above.

The default constant = 1.4826 (approximately 1/Φ−1(3/4) = 1/qnorm(3/4)) ensures consistency, i.e.,

\[E[|\text{mad}(X_1, \ldots, X_n)|] = \sigma \]

for \(X_i \) distributed as \(N(\mu, \sigma^2) \) and large \(n \).

If na.rm is TRUE then NA values are stripped from \(x \) before computation takes place. If this is not done then an NA value in \(x \) will cause MAD to return NA.

See Also

\api{iqr} which is simpler but less robust, \api{median}, \api{var}.

Examples

mad(c(1:9))
print(MAD(c(1:9), constant = 1)) ==
 MAD(c(1:9), constant = 1) # = 2 ; TRUE
x <- c(1,2,3,5,7,8)
print(abs(x - median(x)))
c(MAD(x, constant = 1),
 MAD(x, constant = 1, low = TRUE),
 MAD(x, constant = 1, high = TRUE))

Description

Plot margins are normally set by \api{par("mar")}. However one is forced to define all margins, even if just one should be altered. This convenience function allows to set one single margin (or several) while leaving the others unchanged.

Usage

\api{Mar(bottom = NULL, left = NULL, top = NULL, right = NULL, outer = FALSE)}

Arguments

- **bottom**: the bottom margin, if set to \api{NULL} the current value will be maintained.
- **left**: the left margin, if set to \api{NULL} the current value will be maintained.
- **top**: the top margin, if set to \api{NULL} the current value will be maintained.
- **right**: the right margin, if set to \api{NULL} the current value will be maintained.
- **outer**: logical, defining if inner margins (\api{par("mar")}) or the outer margins (\api{par("oma")}) should be set. Default is \api{FALSE}, meaning that the inner margins will be concerned.
matpow

Author(s)

Andri Signorell <andri@signorell.net>

See Also

par

Examples

Large the left margin only
Mar(left=10.1) # or as alternative: Mar(), 10.1
barplot(1:7, names=levels(d.pizza$driver))

Description

Compute the k-th power of a matrix. Whereas x^k computes \textit{element wise} powers, x^{**k} corresponds to $k - 1$ matrix multiplications, $x^{**k} x^{**k} \ldots^{**k} x$.

Usage

x^{**k}

Arguments

x a square \texttt{matrix}.

k an integer, $k \geq 0$.

Details

Argument \texttt{k} is coerced to integer using \texttt{as.integer}.

The algorithm uses $O(\log_2(k))$ matrix multiplications.

Value

A matrix of the same dimension as x.

Note

If you think you need x^k for $k < 0$, then consider instead \texttt{solve(x^{-k})}.

Author(s)

Based on an R-help posting of Vicente Canto Casasola, and Vincent Goulet’s C implementation in \texttt{actuar}.
Mean

(Weighted) Arithmetic Mean

Description

Generic function for the (trimmed) arithmetic mean, possibly with given weights.

Usage

Mean(x, ...)

S3 method for class 'Freq'
Mean(x, breaks, ...)

Default S3 method:
Mean(x, weights = NULL, trim = 0, na.rm = FALSE, ...)

Arguments

x An R object. Currently there are methods for numeric/logical vectors and date, date-time and time interval objects. Complex vectors are allowed for trim = 0, only.
weights a numerical vector of weights the same length as x giving the weights to use for elements of x.
trim the fraction (0 to 0.5) of observations to be trimmed from each end of x before the mean is computed. Values of trim outside that range are taken as the nearest endpoint.
breaks breaks for calculating the mean for classified data as composed by Freq.
na.rm a logical value indicating whether NA values should be stripped before the computation proceeds.
... further arguments passed to or from other methods.

See Also

%*% for matrix multiplication.

Examples

A <- cbind(1, 2 * diag(3)[,-1])
A
A %*% 2
stopifnot(identical(A, A %*% 1),
 A %*% 2 == A %*% A)
Value

If trim is zero (the default), the arithmetic mean of the values in \(x \) is computed, as a numeric or complex vector of length one. If \(x \) is not logical (coerced to numeric), numeric (including integer) or complex, \(\text{NA}_{\text{real}} \) is returned, with a warning.

If trim is non-zero, a symmetrically trimmed mean is computed with a fraction of trim observations deleted from each end before the mean is computed.

trim and weights can’t be used together at the same time.

References

See Also

weighted.mean, *mean.POSIXct*, *colMeans* for row and column means.

Examples

```r
x <- c(0:10, 50)
xm <- mean(x)
c(xm, mean(x, trim = 0.10))
```

MeanAD

Mean Absolute Deviation From a Center Point

Description

Calculates the mean absolute deviation from a center point, typically the sample mean or the median.

Usage

```
MeanAD(x, FUN = mean, na.rm = FALSE)
```

Arguments

- **x**: a vector containing the observations.
- **FUN**: the name of a function to be used as center. Can as well be a self defined function. Default is mean.
- **na.rm**: a logical value indicating whether or not missing values should be removed. Defaults to FALSE.
Details

The MeanAD function calculates the mean absolute deviation from the mean value (or from another supplied center point) of \(x \), after having removed NA values (if requested):

\[
\frac{1}{n} \cdot \sum_{i=1}^{n} |x_i - c| \quad \text{where } c = \text{mean}(x) \text{ or } c = \text{med}(x)
\]

It exists primarily to simplify the discussion of descriptive statistics during an introductory stats class.

Value

Numeric value.

Author(s)

Andri Signorell <andri@signorell.net> following an idea of Daniel Navarro (aad in the lsr package)

See Also

mad

Examples

```r
x <- runif(100)
MeanAD(x)

speed <- c(58, 88, 40, 60, 72, 66, 80, 48, NA)
MeanAD(speed)
MeanAD(speed, na.rm=TRUE)

# using the median as centerpoint
x <- c(2,3,5,3,1,15,23)
MeanAD(x, FUN=mean)
MeanAD(x, FUN=median)

# define a fix center
MeanAD(x, 4)
```

MeanCI

Confidence Interval for the Mean

Description

Collection of several approaches to determine confidence intervals for the mean. Both, the classical way and bootstrap intervals are implemented for both, normal and trimmed means.
MeanCI

Usage

MeanCI(x, sd = NULL, trim = 0, method = c("classic", "boot"),
 conf.level = 0.95, sides = c("two.sided", "left", "right"),
 na.rm = FALSE, ...)

Arguments

 x a (non-empty) numeric vector of data values.
 sd the standard deviation of x. If provided it's interpreted as sd of the population
 and the normal quantiles will be used for constructing the confidence intervals.
 If left to NULL (default) the sample sd(x) will be calculated and used in combi-
 nation with the t-distribution.
 trim the fraction (0 to 0.5) of observations to be trimmed from each end of x before
 the mean is computed. Values of trim outside that range are taken as the nearest
 endpoint.
 method A vector of character strings representing the type of intervals required. The
 value should be any subset of the values "classic", "boot". See boot.ci.
 conf.level confidence level of the interval.
 sides a character string specifying the side of the confidence interval, must be one
 of "two.sided" (default), "left" or "right". You can specify just the initial
 letter. "left" would be analogue to a hypothesis of "greater" in a t.test.
 na.rm a logical value indicating whether NA values should be stripped before the com-
 putation proceeds. Defaults to FALSE.
 ... further arguments are passed to the boot function. Supported arguments are
 type ("norm", "basic", "stud", "perc", "bca"), parallel and the number
 of bootstrap replicates R. If not defined those will be set to their defaults, being
 "basic" for type, option "boot.parallel" (and if that is not set, "no") for
 parallel and 999 for R.

Details

The confidence intervals for the trimmed means use winsorized variances as described in the refer-
ences.

Use do.call, rbind and lapply for getting a matrix with estimates and confidence intervals for
more than 1 column. (See examples!)

Value

 a numeric vector with 3 elements:

 mean mean
 lwr.ci lower bound of the confidence interval
 upr.ci upper bound of the confidence interval
Author(s)

Andri Signorell <andri@signorell.net>

References

See Also

t.test, MeanDiffCI, MedianCI, VarCI

Examples

```r
x <- d.pizza$price[1:20]

MeanCI(x, na.rm=TRUE)
MeanCI(x, conf.level=0.99, na.rm=TRUE)

MeanCI(x, sides="left")
# same as:
  t.test(x, alternative="greater")

MeanCI(x, sd=25, na.rm=TRUE)

# the different types of bootstrap confints
MeanCI(x, method="boot", type="norm", na.rm=TRUE)
MeanCI(x, trim=0.1, method="boot", type="norm", na.rm=TRUE)
MeanCI(x, trim=0.1, method="boot", type="basic", na.rm=TRUE)
MeanCI(x, trim=0.1, method="boot", type="stud", na.rm=TRUE)
MeanCI(x, trim=0.1, method="boot", type="perc", na.rm=TRUE)
MeanCI(x, trim=0.1, method="boot", type="bca", na.rm=TRUE)

MeanCI(x, trim=0.1, method="boot", type="bca", R=1999, na.rm=TRUE)

# Getting the MeanCI for more than 1 column
round( do.call("rbind", lapply(d.pizza[, 1:4], MeanCI, na.rm=TRUE)), 3)
```

MeanDiffCI
Confidence Interval For Difference of Means

Description

Calculates the confidence interval for the difference of two means either the classical way or with the bootstrap approach.
Usage

MeanDiffCI(x, ...)

Default S3 method:
MeanDiffCI(x, y, method = c("classic", "norm", "basic", "stud", "perc", "bca"),
 conf.level = 0.95, sides = c("two.sided", "left", "right"), paired = FALSE,
 na.rm = FALSE, R = 999, ...)

S3 method for class 'formula'
MeanDiffCI(formula, data, subset, na.action, ...)

Arguments

x a (non-empty) numeric vector of data values.
y a (non-empty) numeric vector of data values.
method a vector of character strings representing the type of intervals required. The value should be any subset of the values "classic", "norm", "basic", "stud", "perc", "bca". See boot.ci.
conf.level confidence level of the interval.
sides a character string specifying the side of the confidence interval, must be one of "two.sided" (default), "left" or "right". You can specify just the initial letter. "left" would be analogue to a hypothesis of "greater" in a t.test.
paired a logical indicating whether you want confidence intervals for a paired design. Defaults to FALSE.
na.rm logical. Should missing values be removed? Defaults to FALSE.
R the number of bootstrap replicates. Usually this will be a single positive integer. For importance resampling, some resamples may use one set of weights and others use a different set of weights. In this case R would be a vector of integers where each component gives the number of resamples from each of the rows of weights. See boot.
formula a formula of the form lhs ~ rhs where lhs is a numeric variable giving the data values and rhs a factor with two levels giving the corresponding groups.
data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. Defaults togetOption("na.action").
... further argument to be passed to or from methods.

Details

This function collects code from two sources. The classical confidence interval is calculated by means of t.test. The bootstrap intervals are strongly based on the example in boot.
Value

A numeric vector with 3 elements:

- `mean_diff`: the difference: mean(x) - mean(y)
- `lwr.ci`: lower bound of the confidence interval
- `upr.ci`: upper bound of the confidence interval

Author(s)

Andri Signorell <andri@signorell.net>

See Also

`meanci`, `varci`, `medianci`, `bootci`

Examples

```r
x <- d.pizza$price[d.pizza$driver=="Carter"]
y <- d.pizza$price[d.pizza$driver=="Miller"]

MeanDiffCI(x, y, na.rm=TRUE)
MeanDiffCI(x, y, conf.level=0.99, na.rm=TRUE)

# the different types of bootstrap confints
MeanDiffCI(x, y, method="norm", na.rm=TRUE)
MeanDiffCI(x, y, method="basic", na.rm=TRUE)
# MeanDiffCI(x, y, method="stud", na.rm=TRUE)
MeanDiffCI(x, y, method="perc", na.rm=TRUE)
MeanDiffCI(x, y, method="bca", na.rm=TRUE)

# the formula interface
MeanDiffCI(price ~ driver, data=d.pizza, subset=driver %in% c("Carter","Miller"))
```

MeanSE

Standard Error of Mean

Description

Calculates the standard error of mean.

Usage

```r
MeanSE(x, sd = NULL, na.rm = FALSE)
```
Arguments

x a (non-empty) numeric vector of data values.

sd the standard deviation of x. If provided it’s interpreted as sd of the population. If left to NULL (default) the sample sd(x) will be used.

na.rm logical. Should missing values be removed? Defaults to FALSE.

Details

MeanSE calculates the standard error of the mean defined as:

\[\frac{\sigma}{\sqrt{n}} \]

\(\sigma\) being standard deviation of x and n the length of x.

Value

the standard error as numeric value.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

MeanCI

Examples

data(d.pizza)

MeanSE(d.pizza$price, na.rm=TRUE)

evaluate data.frame
sapply(d.pizza[,1:4], MeanSE, na.rm=TRUE)

Description

Some measures of model accuracy like mean absolute error (MAE), mean absolute percentage error (MAPE), symmetric mean absolute percentage error (SMAPE), mean squared error (MSE) and root mean squared error (RMSE).
Usage

MAE(x, ...)
Default S3 method:
MAE(x, ref, na.rm = FALSE, ...)
S3 method for class 'lm'
MAE(x, ...)

MAPE(x, ...)
Default S3 method:
MAPE(x, ref, na.rm = FALSE, ...)
S3 method for class 'lm'
MAPE(x, ...)

SMAPE(x, ...)
Default S3 method:
SMAPE(x, ref, na.rm = FALSE, ...)
S3 method for class 'lm'
SMAPE(x, ...)

MSE(x, ...)
Default S3 method:
MSE(x, ref, na.rm = FALSE, ...)
S3 method for class 'lm'
MSE(x, ...)

RMSE(x, ...)
Default S3 method:
RMSE(x, ref, na.rm = FALSE, ...)
S3 method for class 'lm'
RMSE(x, ...)

NMAE(x, ref, train.y)
NMSE(x, ref, train.y)

Arguments

x
the predicted values of a model or a model-object itself.

ref
the observed true values.

train.y
the observed true values in a train dataset.

na.rm
a logical value indicating whether or not missing values should be removed.
Defaults to FALSE.

...
further arguments
Details
The function will remove NA values first (if requested).
MAE calculates the mean absolute error:

$$\frac{1}{n} \cdot \sum_{i=1}^{n} |ref_i - x_i|$$

MAPE calculates the mean absolute percentage error:

$$\frac{1}{n} \cdot \sum_{i=1}^{n} \left| \frac{ref_i - x_i}{ref_i} \right|$$

SMAPE calculates the symmetric mean absolute percentage error:

$$\frac{1}{n} \cdot \sum_{i=1}^{n} 2 \cdot \left| \frac{ref_i - x_i}{|ref_i| + |x_i|} \right|$$

MSE calculates mean squared error:

$$\frac{1}{n} \cdot \sum_{i=1}^{n} (ref_i - x_i)^2$$

RMSE calculates the root mean squared error:

$$\sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} (ref_i - x_i)^2}$$

Value
the specific numeric value

Author(s)
Andri Signorell <andri@signorell.net>

References
http://en.wikipedia.org/wiki/Symmetric_mean_absolute_percentage_error
Measures of Shape

See Also

lm, resid

Examples

r.lm <- lm(Fertility ~ ., data=swiss)
MAE(r.lm)

the same as:
MAE(predict(r.lm), swiss$Fertility)
MAPE(r.lm)
MSE(r.lm)
RMSE(r.lm)

Measures of Shape Skewness and Kurtosis

Description

Skew computes the skewness, Kurt the kurtosis of the values in x.

Usage

Skew(x, na.rm = FALSE, method = 3, conf.level = NA, ci.type = "bca", R = 1000, ...)
Kurt(x, na.rm = FALSE, method = 3, conf.level = NA, ci.type = "bca", R = 1000, ...)

Arguments

x a numeric vector. An object which is not a vector is coerced (if possible) by
na.rm logical, indicating whether NA values should be stripped before the computation
method integer out of 1, 2 or 3 (default). See Details.
conf.level confidence level of the interval. If set to NA (which is the default) no confidence
 interval will be calculated.
ci.type The type of confidence interval required. The value should be any subset of the
 values "classic", "norm", "basic", "stud", "perc" or "bca" ("all" which
 would compute all five types of intervals, is not supported).
Measures of Shape

R

The number of bootstrap replicates. Usually this will be a single positive integer. For importance resampling, some resamples may use one set of weights and others use a different set of weights. In this case R would be a vector of integers where each component gives the number of resamples from each of the rows of weights.

... the dots are passed to the function boot, when confidence intervals are calculated.

Details

If na.rm is TRUE then missing values are removed before computation proceeds.

The methods for calculating the skewness can either be:

- method = 1: \(g_1 = \frac{m_3}{m_2^{3/2}} \)
- method = 2: \(g_1 = \frac{g_1 \sqrt{n(n-1)}}{n(n-2)} \)
- method = 3: \(b_1 = \frac{m_3}{s^3} = \left(\frac{(n-1)}{n}\right)^{3/2} \)

and the ones for the kurtosis:

- method = 1: \(g_2 = \frac{m_4}{m_2^{2}} - 3 \)
- method = 2: \(g_2 = \frac{(n+1) g_2 + 6}{n(n-1) (n-2)(n-3)} \)
- method = 3: \(b_2 = \frac{m_4}{s^4} - 3 = \left(\frac{g_2 + 3}{1 - 1/n} \right)^{2} - 3 \)

method = 1 is the typical definition used in many older textbooks.
method = 2 is used in SAS and SPSS.
method = 3 is used in MINITAB and BMDP.

Cramer et al. (1997) mention the asymptotic standard error of the skewness, resp. kurtosis:

\[
\text{ASE.skew} = \sqrt{\frac{6n(n-1)}{((n-2)(n+1)(n+3))}}
\]
\[
\text{ASE.kurt} = \sqrt{\frac{n^2 - 1}{((n-3)(n+5))}}
\]

to be used for calculating the confidence intervals. This is implemented here with ci.type="classic". However, Joanes and Gill (1998) advise against this approach, pointing out that the normal assumptions would virtually always be violated. They suggest using the bootstrap method. That’s why the default method for the confidence interval type is set to "bca".

This implementation of the two functions is comparably fast, as the expensive sums are coded in C.

Value

If conf.level is set to NA then the result will be

a single numeric value

and if a conf.level is provided, a named numeric vector with 3 elements:

skew, kurt the specific estimate, either skewness or kurtosis
Author(s)
Andri Signorell <andri@signorell.net>, David Meyer <david.meyer@r-project.org> (method = 3)

References

See Also
mean, sd, similar code in library(e1071)

Examples
Skew(d.pizza$price, na.rm=TRUE)
Kurt(d.pizza$price, na.rm=TRUE)

use sapply to calculate skewness for a data.frame
sapply(d.pizza[,c("temperature","price","delivery_min")], Skew, na.rm=TRUE)

or apply to do that columnwise with a matrix
apply(as.matrix(d.pizza[,c("temperature","price","delivery_min")]), 2, Skew, na.rm=TRUE)

Median

(Weighted) Median Value

Description

Compute the sample median.

Usage

```
Median(x, ...)
```

S3 method for class 'factor'
Median(x, na.rm = FALSE, ...)

S3 method for class 'Freq'
Median(x, breaks, ...)

Default S3 method:
Median(x, weights = NULL, na.rm = FALSE, ...)

lwr.ci lower bound of the confidence interval
upr.ci upper bound of the confidence interval
Arguments

- **x**: an object for which a method has been defined, or a numeric vector containing the values whose median is to be computed.
- **weights**: a numerical vector of weights the same length as `x` giving the weights to use for elements of `x`.
- **breaks**: breaks for calculating the mean for classified data as composed by `Freq`.
- **na.rm**: a logical value indicating whether `NA` values should be stripped before the computation proceeds.
- **...**: further arguments passed to or from other methods.

Details

This is a generic function for which methods can be written. However, the default method makes use of `is.na`, `sort` and `mean` from package `base` all of which are generic, and so the default method will work for most classes (e.g., "Date") for which a median is a reasonable concept.

Calculating the median for ordered factors is not implemented in standard R, as it’s not well defined (it is not clear what to do if the median sits between two levels in factors of even length). This function returns the high median and prints a warning if the low median would be different (which is supposed to be a rare event). There’s a vivid discussion between experts going on whether this should be defined or not. We’ll wait for definitive results and enjoy the function’s comfort so far...

Value

The default method returns a length-one object of the same type as `x`, except when `x` is integer of even length, when the result will be double.

If there are no values or if `na.rm = FALSE` and there are `NA` values the result is `NA` of the same type as `x` (or more generally the result of `x[!is.na(x)]`).

References

See Also

Examples

```
Median(1:4)  # = 2.5 [even number]
Median(c(1:3, 100, 1000))  # = 3 [odd, robust]

# Approximation for classified data
breaks <- seq(10,70,10)
Median(
```
MedianCI

Confidence Interval for the Median

Description

Calculates the confidence interval for the median.

Usage

MedianCI(x, conf.level = 0.95, sides = c("two.sided", "left", "right"),
 na.rm = FALSE, method = c("exact", "boot"), R = 999)

Arguments

x a (non-empty) numeric vector of data values.
conf.level confidence level of the interval
sides a character string specifying the side of the confidence interval, must be one of "two.sided" (default), "left" or "right". You can specify just the initial letter. "left" would be analogue to a hypothesis of "greater" in a t.test.
na.rm logical. Should missing values be removed? Defaults to FALSE.
method defining the type of interval that should be calculated (one out of "exact", "boot"). Default is "exact". See Details.
R The number of bootstrap replicates. Usually this will be a single positive integer. See boot.ci for details.

Details

The exact method is the way SAS is said to calculate the confidence interval. This is implemented in SignTest and is extracted from there. The boot confidence interval type is calculated by means of boot.ci with default type "basic". Use sapply, resp.apply, to get the confidence intervals from a data.frame or from a matrix.

Value

a numeric vector with 3 elements:

median median
lwr.ci lower bound of the confidence interval
upr.ci upper bound of the confidence interval

Freq(cut(d.pizza$temperature, breaks=breaks),
 breaks=breaks)

compared to
Median(d.pizza$temperature)
Description

The Mantel-Haenszel chi-square statistic tests the alternative hypothesis that there is a linear association between the row variable and the column variable. Both variables must lie on an ordinal scale.

Usage

```
MHChisqTest(x, srow = 1:nrow(x), scol = 1:ncol(x))
```

Arguments

- **x**: a frequency table or a matrix.
- **srow**: scores for the row variable, defaults to 1:nrow.
- **scol**: scores for the column variable, defaults to 1:ncol.

Details

The statistic is computed as $Q_{MH} = (n - 1) \cdot r^2$, where r^2 is the Pearson correlation between the row variable and the column variable. The Mantel-Haenszel chi-square statistic uses the scores specified by srow and scol. Under the null hypothesis of no association, Q_{MH} has an asymptotic chi-square distribution with one degree of freedom.
Value
A list with class "htest" containing the following components:

- statistic: the value the Mantel-Haenszel chi-squared test statistic.
- parameter: the degrees of freedom of the approximate chi-squared distribution of the test statistic.
- p.value: the p-value for the test.
- method: a character string indicating the type of test performed.
- data.name: a character string giving the name(s) of the data.

Author(s)
Andri Signorell <andri@signorell.net>

References

See Also
chisq.test, for calculating correlation of a table: corr

Examples
```r
# A r x c table  Agresti (2002, p. 57) Job Satisfaction
Job <- matrix(c(1,2,1,0, 3,3,6,1, 10,10,14,9, 6,7,12,11), 4, 4,
  dimnames = list(income = c("< 15k", "15-25k", "25-40k", "> 40k"),
                 satisfaction = c("VeryD", "LittleD", "ModerateS", "VeryS"))

MHChisqTest(Job, srow=c(7.5,20,32.5,60))
```

Midx
Find the Midpoints of a Numeric Vector

Description
Calculate the midpoints of a sequence of numbers. This is e.g. useful for labelling stacked barplots.

Usage
```r
Midx(x, incl.zero = FALSE, cumulate = FALSE)
```
MixColor

Compute the Convex Combination of Two Colors

Description

This function can be used to compute the result of color mixing (it assumes additive mixing).

Usage

MixColor(col1, col2, amount1 = 0.5)
Arguments

- col1: the first color.
- col2: the second color.
- amount1: the amount of color1. The amount of color2 results in (1-amount1).

Value

The mixed color as hexstring

Author(s)

Andri Signorell <andri@signorell.net>

See Also

`colorRamp`, `rgb`

Examples

```r
# a mix between red and yellow with rates 3:7
MixColor("red", "yellow", 0.3)
```

Mode

Mode, Most Frequent Value(s)

Description

Calculates the mode, the most frequent value, of a variable x. This makes mostly sense for qualitative data.

Usage

```r
Mode(x, na.rm = FALSE)
```

Arguments

- `x`: a (non-empty) numeric vector of data values.
- `na.rm`: logical. Should missing values be removed? Defaults to FALSE.

Value

Returns the most frequent value. If there are more than one, all of them are returned in a vector.
Note

Consider using `density(x)[which.max(density(x))]` for quantitative data or alternatively use `hist()`. Another interesting idea:

```r
peak <- optimize(function(x, model) predict(model, data.frame(x = x)),
  c(min(x), max(x)),
  maximum = TRUE,
  model = y.loess)

points(peak$max, peak$objective, pch=FILLED.CIRCLE <- 19)
```

Author(s)

Andri Signorell <andri@signorell.net>

See Also

`mean`, `median`

Examples

```r
data(d.pizza)
Mode(d.pizza$driver)

# use sapply for evaluating data.frames (resp. apply for matrices)
sapply(d.pizza[,c("driver","temperature","date")], Mode, na.rm=TRUE)
```

MosesTest

Moses Test of Extreme Reactions

Description

Perform Moses test of extreme reactions, which is a distribution-free non-parametric test for the difference between two independent groups in the extremity of scores (in both directions) that the groups contain. Scores from both groups are pooled and converted to ranks, and the test statistic is the span of scores (the range plus 1) in one of the groups chosen arbitrarily. An exact probability is computed for the span and then recomputed after dropping a specified number of extreme scores from each end of its range. The exact one-tailed probability is calculated.

Usage

```r
MosesTest(x, ...)

## Default S3 method:
MosesTest(x, y, extreme = NULL, ...)
```
S3 method for class 'formula'

MosesTest(formula, data, subset, na.action, ...)

Arguments

- **x**: numeric vector of data values. x will be treated as control group. Non-finite (e.g. infinite or missing) values will be omitted.
- **y**: numeric vector of data values. y will be treated as experiment group. Non-finite (e.g. infinite or missing) values will be omitted.
- **formula**: a formula of the form lhs ~ rhs where lhs gives the data values and rhs the corresponding groups.
- **data**: an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula formula. By default the variables are taken from environment(formula).
- **subset**: an optional vector specifying a subset of observations to be used.
- **na.action**: a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.
- **extreme**: integer, defines the number of extreme values to be dropped from the control group before calculating the span. Default (NULL) is the integer part of 0.05 * length(x) or 1, whichever is greater. If extreme is too large, it will be cut down to `floor(length(x)/2)`.
- **...**: further arguments to be passed to or from methods.

Details

For two independent samples from a continuous field, this tests whether extreme values are equally likely in both populations or if they are more likely to occur in the population from which the sample with the larger range was drawn.

Note that the ranks are calculated in decreasing mode.

Value

A list with class "htest" containing the following components:

- **statistic**: the value of the Moses Test statistic.
- **p.value**: the p-value for the test.
- **method**: the character string "Moses Test of Extreme Reactions".
- **data.name**: a character string giving the name(s) of the data.

Author(s)

Andri Signorell <andri@signorell.net>
Refernces

See Also

wilcox.test, ks.test

Examples

x <- c(0.80, 0.83, 1.89, 1.04, 1.45, 1.38, 1.91, 1.64, 0.73, 1.46)
y <- c(1.15, 0.88, 0.90, 0.74, 1.21)
MosesTest(x, y)

set.seed(1479)
x <- sample(1:20, 10, replace=TRUE)
y <- sample(5:25, 6, replace=TRUE)
MosesTest(x, y)

MoveAvg

Moving Average

Description

Compute a simple moving average (running mean).

Usage

MoveAvg(x, order, align = c("center", "left", "right"),
endrule = c("NA", "keep", "constant"))

Arguments

x univariate time series.
order order of moving average.
align specifies whether result should be centered (default), left-aligned or right-aligned.
endrule character string indicating how the values at the beginning and the end (of the data) should be treated.
"keep" keeps the first and last \(k_2 \) values at both ends, where \(k_2 \) is the half-bandwidth \(k_2 \) \(= k \) \%/\% 2, i.e., \(y[j] = x[j] \) for \(j \in \{1, \ldots, k_2, n - k_2 + 1, \ldots, n\} \);
"constant" fill the ends with first and last calculated value in output array
\(\text{out}[1:k2] = \text{out}[k2+1] \)
"NA" the default, leaves the values to NA, as they are returned by \text{filter}.
Details
The implementation is using the function filter to calculate the moving average.

Value
Returns a vector of the same size and same class as x.

Author(s)
Andri Signorell <andri@signorell.net>

See Also
There’s a faster implementation of running mean in the package caTools runmean() and a slower one in forecast ma(). There’s similar code in Midx().

Examples
MoveAvg(AirPassengers, order=5)

MultinomCI

Confidence Intervals for Multinomial Proportions

Description
Confidence intervals for multinomial proportions are often approximated by single binomial confidence intervals, which might in practice often yield satisfying results, but is properly speaking not correct. This function calculates simultaneous confidence intervals for multinomial proportions either according to the methods of Sison and Glaz, Goodman, Wald, Wald with continuity correction or Wilson.

Usage
MultinomCI(x, conf.level = 0.95, sides = c("two.sided", "left", "right"),
method = c("sisonglaz", "cplus1", "goodman", "wald", "waldcc", "wilson"))

Arguments
- x: A vector of positive integers representing the number of occurrences of each class. The total number of samples equals the sum of such elements.
- conf.level: confidence level, defaults to 0.95.
- sides: a character string specifying the side of the confidence interval, must be one of "two.sided" (default), "left" or "right". You can specify just the initial letter. "left" would be analogue to a hypothesis of "greater" in a t.test.
- method: character string specifying which method to use; can be one out of "sisonglaz", "cplus1", "goodman", "wald", "waldcc", "wilson". Method can be abbreviated. See details. Defaults to "sisonglaz".
Details

Given a vector of observations with the number of samples falling in each class of a multinomial distribution, builds the simultaneous confidence intervals for the multinomial probabilities according to the method proposed by the mentioned authors. The R code for Sison and Glaz (1995) has been translated from the SAS code written by May and Johnson (2000).

Some approaches for the confidence intervals can potentially yield negative results or values beyond 1. These would be reset such as not to exceed the range of [0, 1].

Value

A matrix with 3 columns:

- est: estimate
- lwr.ci: lower bound of the confidence interval
- upr.ci: upper bound of the confidence interval

The number of rows correspond to the dimension of x.

Author(s)

Pablo J. Villacorta Iglesias <pjvi@decsai.ugr.es>
Department of Computer Science and Artificial Intelligence, University of Granada (Spain) (Sison-Glaz)

Andri Signorell <andri@signorell.net> (Goodman, Wald, Wilson)

References

Wald, A. Tests of statistical hypotheses concerning several parameters when the number of observations is large, *Trans. Am. Math. Soc.* 54 (1943) 426-482.

Examples

Multinomial distribution with 3 classes, from which a sample of 79 elements
were drawn: 23 of them belong to the first class, 12 to the
second class and 44 to the third class. Punctual estimations
of the probabilities from this sample would be 23/79, 12/79
and 44/79 but we want to build 95% simultaneous confidence intervals
for the true probabilities

MultinomCI(c(23, 12, 44), conf.level=0.95)

x <- c(35, 74, 22, 69)

MultinomCI(x, method="goodman")
MultinomCI(x, method="sisonglaz")
MultinomCI(x, method="cplus1")
MultinomCI(x, method="wald")
MultinomCI(x, method="waldcc")
MultinomCI(x, method="wilson")

compare to
BinomCI(x, n=sum(x))

NemenyiTest

Description
Performs Nemenyi’s test of multiple comparisons.

Usage

```
NemenyiTest(x, ...)
```

```r
## Default S3 method:
NemenyiTest(x, g, dist = c("tukey", "chisq"), out.list = TRUE, ...)
```

```r
## S3 method for class 'formula'
NemenyiTest(formula, data, subset, na.action, ...)
```

Arguments

- **x**: a numeric vector of data values, or a list of numeric data vectors.
- **g**: a vector or factor object giving the group for the corresponding elements of x. Ignored if x is a list.
- **dist**: the distribution used for the test. Can be tukey (default) or chisq.
- **out.list**: logical, defining if the output should be organized in listform.
- **formula**: a formula of the form lhs ~ rhs where lhs gives the data values and rhs the corresponding groups.
- **data**: an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

... further arguments to be passed to or from methods.

Details

Nemenyi proposed a test based on rank sums and the application of the family-wise error method to control Type I error inflation, if multiple comparisons are done. The Tukey and Kramer approach uses mean rank sums and can be employed for equally as well as unequally sized samples without ties.

Value

A list of class htest, containing the following components:

- statistic Nemenyi test
- p.value the p-value for the test
- null.value is the value of the median specified by the null hypothesis. This equals the input argument mu.
- alternative a character string describing the alternative hypothesis.
- method the type of test applied
- data.name a character string giving the names of the data.

Author(s)

Andri Signorell <andri@signorell.net>

References

Nemenyi, P. B. (1963) *Distribution-Free Multiple Comparisons* New York, State University of New York, Downstate Medical Center

See Also

DunnTest, ConoverTest
Examples

Hollander & Wolfe (1973), 116.
Mucociliary efficiency from the rate of removal of dust in normal
subjects, subjects with obstructive airway disease, and subjects
with asbestosis.
x <- c(2.9, 3.0, 2.5, 2.6, 3.2) # normal subjects
y <- c(3.8, 2.7, 4.0, 2.4) # with obstructive airway disease
z <- c(2.8, 3.4, 3.7, 2.2, 2.0) # with asbestosis

NemenyiTest(list(x, y, z))

Equivalently,
x <- c(x, y, z)
g <- factor(rep(1:3, c(5, 4, 5)),
 labels = c("Normal subjects",
 "Subjects with obstructive airway disease",
 "Subjects with asbestosis"))

NemenyiTest(x, g)

Formula interface.
boxplot(Ozone ~ Month, data = airquality)
NemenyiTest(Ozone ~ Month, data = airquality)

Hedderich & Sachs, 2012, p. 555
d.frm <- data.frame(x=c(28,30,33,35,38,41, 36,39,40,43,45,50, 44,45,47,49,53,54),
g=c(rep(LETTERS[1:3], each=6)))

NemenyiTest(x~g, d.frm)

NPV

Short Selection of Financial Mathematical Functions

Description

Calculate the one period returns, the net present value (NPV()), the internal rate of return (IRR()) of a sequence of payments. NPVFixBond() returns the net present value for a fixed-rate bond, YTM() the yield to maturity for a bond.

Usage

OPR(K, D = NULL, log = FALSE)
NPV(i, cf, t = seq(along = cf) - 1)
IRR(cf, t = seq(along = cf) - 1, interval = c(-1.5, 1.5), ...)

NPVFixBond(i, Co, RV, n)
YTM(Co, PP, RV, n)
Arguments

- **i**: the interest rate
- **cf**: numeric vector with the payments
- **t**: periods
- **K**: the capital at time \(t \)
- **D**: dividend at time \(t \)
- **log**: logical, determining if the simple returns (default) or log returns are to be calculated.
- **interval**: a vector containing the end-points of the interval to be searched for the root in the function \(\text{IRR} \).
- **Co**: coupon payments of a fixed-rate bond
- **PP**: purchase price for a fixed-rate bond
- **RV**: redemption value
- **n**: the term of the bond, total number of periods
- **...**: the dots are passed to the \texttt{unirootAll} function in \(\text{IRR} \)

Details

The one period returns are calculated as

\[
r_t = \frac{D_t + K_t - K_{t-1}}{K_t - 1}
\]

Value

a numeric value

Author(s)

Andri Signorell <andri@signorell.net>

See Also

\texttt{Gmean}

Examples

one root
\texttt{IRR(cf <- c(-900, -250+450-90, 460-100, 500-120, 550-140))}
several IRR solutions
\texttt{IRR(cf = c(-100, 500, -600))}
no solution
\texttt{IRR(cf = c(-100, 400, -600))}
negative and huge solution
\texttt{IRR(cf = c(-100, 1000, -600), interval = c(-1.5, 1000))}
OddsRatio

Odds Ratio Estimation and Confidence Intervals

Description

Calculates odds ratio by unconditional maximum likelihood estimation (wald), conditional maximum likelihood estimation (mle) or median-unbiased estimation (midp). Confidence intervals are calculated using normal approximation (wald) and exact methods (midp, mle).

Usage

```r
OddsRatio(x, conf.level = NULL, ...)  
## S3 method for class 'glm'
OddsRatio(x, conf.level = NULL, digits = 3, use.profile = TRUE, ...)

## S3 method for class 'multinom'
OddsRatio(x, conf.level = NULL, digits = 3, ...)

## S3 method for class 'zeroinfl'
OddsRatio(x, conf.level = NULL, digits = 3, ...)

## Default S3 method:
OddsRatio(x, conf.level = NULL, y = NULL, method = c("wald", "mle", "midp"), interval = c(0, 1000), ...)
```

Arguments

- **x**: a vector or a 2×2 numeric matrix, resp. table.
- **y**: NULL (default) or a vector with compatible dimensions to x. If y is provided, `table(x, y, ...)` will be calculated.
- **digits**: the number of fixed digits to be used for printing the odds ratios.
- **method**: method for calculating odds ratio and confidence intervals. Can be one out of "wald", "mle", "midp". Default is "wald" (not because it is the best, but because it is the most commonly used.)
- **conf.level**: confidence level. Default is NA for tables and numeric vectors, meaning no confidence intervals will be reported. 0.95 is used as default for models.
- **interval**: interval for the function `uniroot` that finds the odds ratio median-unbiased estimate and `midp` exact confidence interval.
- **use.profile**: logical. Defines if profile approach should be used, which normally is a good choice. Calculating profile can however take ages for large datasets and not be necessary there. So we can fallback to normal confidence intervals.
- **...**: further arguments are passed to the function `table`, allowing i.e. to set `useNA`. This refers only to the vector interface.
Details

If a 2×2 table is provided the following table structure is preferred:

<table>
<thead>
<tr>
<th></th>
<th>disease=0</th>
<th>disease=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>exposed=0 (ref)</td>
<td>n00</td>
<td>n01</td>
</tr>
<tr>
<td>exposed=1</td>
<td>n10</td>
<td>n11</td>
</tr>
</tbody>
</table>

however, for odds ratios the following table is equivalent:

<table>
<thead>
<tr>
<th></th>
<th>disease=1</th>
<th>disease=0</th>
</tr>
</thead>
<tbody>
<tr>
<td>exposed=1</td>
<td>n11</td>
<td>n10</td>
</tr>
<tr>
<td>exposed=0</td>
<td>n01</td>
<td>n00</td>
</tr>
</tbody>
</table>

If the table to be provided to this function is not in the preferred form, the function `Rev()` can be used to "reverse" the table rows, resp. columns. Reversing columns or rows (but not both) will lead to the inverse of the odds ratio.

In case of zero entries, 0.5 will be added to the table.

Value

- a single numeric value if conf.level is set to NA
- a numeric vector with 3 elements for estimate, lower and upper confidence interval if conf.level is provided

Author(s)

Andri Signorell <andri@signorell.net>, strongly based on code from Tomas Aragon, <aragon@berkeley.edu>

References

Agresti, Alan (2013) Categorical Data Analysis. NY: John Wiley and Sons, Chapt. 3.1.1

See Also

RelRisk
Examples

```r
# Case-control study assessing whether exposure to tap water is associated with cryptosporidiosis among AIDS patients

tab <- matrix(c(29, 35, 64, 12, 6), 3, 2, byrow=TRUE)
dimnames(tab) <- list("Tap water exposure" = c("Lowest", "Intermediate", "Highest"),
  "Outcome" = c("Case", "Control"))
tab <- Rev(tab, direction="column")
OddsRatio(tab[1:2,])
OddsRatio(tab[2,])

OddsRatio(tab[1:2,], method="mle")
OddsRatio(tab[1:2,], method="midp")
OddsRatio(tab[1:2,], method="wald", conf.level=0.95)

# in case of zeros consider using glm for calculating OR
dp <- data.frame(a=c(20, 7, 0, 0, 0, 12), b=c(0, 0, 0, 1, 1, 0))
fit <- glm(cbind(a, b) ~ t, data=dp, family=binomial)
exp(coef(fit))

# calculation of log oddsrations in a 2x2xk table
migraine <- xtabs(freq ~ ,
  cbind(expand.grid(treatment=c("active","placebo"),
    response=c("better","same"),
    gender=c("female","male")),
  freq=c(16,5,11,20,12,7,16,19))

log(apply(migraine, 3, OddsRatio))

# OddsRatio table for logistic regression models
r.glm <- glm(type ~ , data=MASS::Pima.tr2, family=binomial)
OddsRatio(r.glm)

plot(OddsRatio(r.glm), xlim=c(0.5, 2), main="OddsRatio - glm", pch=NA,
  lbcolor=hred, args.errbars=list(col=horange, pch=21, col.pch=hblue,
  bg.pch=hyellow, cex.pch=1.5))
```

<table>
<thead>
<tr>
<th>Order</th>
<th>Distributions of Order Statistics</th>
</tr>
</thead>
</table>

Description

Density function, distribution function and random generation for a selected Order statistic of a given number of independent variables from a specified distribution.
Usage

\[d\text{Order}(x, \text{densfun, distnfun, ..., distn, mlen = 1, } j = 1, \text{ largest = TRUE, log = FALSE})\]
\[p\text{Order}(q, \text{distnfun, ..., distn, mlen = 1, } j = 1, \text{ largest = TRUE, lower.tail = TRUE})\]
\[r\text{Order}(n, \text{quantfun, ..., distn, mlen = 1, } j = 1, \text{ largest = TRUE})\]

Arguments

\text{x, q} \quad \text{Vector of quantiles.}
\text{n} \quad \text{Number of observations.}
\text{densfun, distnfun, quantfun}

\text{Density, distribution and quantile function of the specified distribution. The density function must have a log argument (a simple wrapper can always be constructed to achieve this).}

\text{...} \quad \text{Parameters of the specified distribution.}
\text{distn} \quad \text{A character string, optionally specified as an alternative to densfun, distnfun and quantfun such that the density, distribution and quantile functions are formed upon the addition of the prefixes d, p and q respectively.}
\text{mlen} \quad \text{The number of independent variables.}
\text{j} \quad \text{The Order statistic, taken as the jth largest (default) or smallest of mlen, according to the value of largest.}
\text{largest} \quad \text{Logical; if TRUE (default) use the jth largest Order statistic, otherwise use the jth smallest.}
\text{log} \quad \text{Logical; if TRUE, the log density is returned.}
\text{lower.tail} \quad \text{Logical; if TRUE (default) probabilities are P[X <= x], otherwise P[X > x].}

Value

\text{d\text{Order} gives the density function, p\text{Order} gives the distribution function and q\text{Order} gives the quantile function of a selected Order statistic from a sample of size mlen, from a specified distribution. r\text{Order} generates random deviates.}

Author(s)

Alec Stephenson <alec_stephenson@hotmail.com>

See Also

\text{rExtrVal, rGenExtrVal}

Examples

\[d\text{Order}(2:4, \text{dnorm, pnorm, mean = 0.5, sd = 1.2, mlen = 5, } j = 2)\]
\[d\text{Order}(2:4, \text{distn = "norm", mean = 0.5, sd = 1.2, mlen = 5, } j = 2)\]
\[d\text{Order}(2:4, \text{distn = "exp", mlen = 2, } j = 2)\]
\[p\text{Order}(2:4, \text{distn = "exp", rate = 1.2, mlen = 2, } j = 2)\]
\[r\text{Order}(5, \text{qgamma, shape = 1, mlen = 10, } j = 2)\]
Description

Transform a given odds-ratio (OR) to the respective relative risk (RR).

Usage

\[
\text{ORToRelRisk}(or, \ pP)
\]

Arguments

- `or` numeric vector: OR (odds-ratio).
- `pP` numeric vector: incidence of the outcome of interest in the nonexposed group.

Details

The function transforms a given odds-ratio (OR) to the respective relative risk (RR). It can also be used to transform the limits of confidence intervals. It uses the formula of Zhang and Yu (1998).

Value

relative risk.

Author(s)

Matthias Kohl <matthias.kohl@stamats.de>

References

Examples

```r
## We use data from Zhang and Yu (1998)

## single OR to RR
ORToRelRisk(14.1, 0.05)

## OR and 95% confidence interval
ORToRelRisk(c(14.1, 7.8, 27.5), 0.05)

## Logistic OR and 95% confidence interval
logisticOR <- rbind(c(14.1, 7.8, 27.5),
                   c(8.7, 5.5, 14.3),
                   c(8.7, 5.5, 14.3),
                   c(8.7, 5.5, 14.3))

ORToRelRisk(logisticOR)"
```r
Tukey's boxplot rule

outlier(x, method = c("boxplot"), value = TRUE, na.rm = FALSE)

Arguments

x a (non-empty) numeric vector of data values.
method the method to be used. So far only Tukey's boxplot rule is implemented.
value logical. If FALSE, a vector containing the (integer) indices of the outliers is returned, and if TRUE (default), a vector containing the matching elements themselves is returned.
na.rm logical. Should missing values be removed? Defaults to FALSE.
```

Description

Return outliers following Tukey's boxplot definition.

Usage

```
Outlier(x, method = c("boxplot"), value = TRUE, na.rm = FALSE)
```
Outlier detection is a tricky problem and should be handled with care. We implement only Tukey’s boxplot rule as a rough idea of spotting extreme values.

Value

the values of x lying outside the whiskers in a boxplot or the indices of them

Author(s)

Andri Signorell <andri@signorell.net>

See Also

boxplot

Examples

Outlier(d.pizza$temperature, na.rm=TRUE)

# it's the same as the result from boxplot
sort(d.pizza$temperature[Outlier(d.pizza$temperature, value=FALSE, na.rm=TRUE)])
b <- boxplot(d.pizza$temperature, plot=FALSE)
sort(b$out)

# nice to find the corresponding rows
d.pizza[Outlier(d.pizza$temperature, value=FALSE, na.rm=TRUE),]

# outliers for the each driver
tapply(d.pizza$temperature, d.pizza$driver, Outlier, na.rm=TRUE)

# the same as:
boxplot(temperature ~ driver, d.pizza$out

---

PageTest

**Exact Page Test for Ordered Alternatives**

Description

Performs a Page test for ordered alternatives using an exact algorithm by Stefan Wellek (1989) with unreplicated blocked data.
Usage

PageTest(y, ...)

## Default S3 method:
PageTest(y, groups, blocks, ...)

## S3 method for class 'formula'
PageTest(formula, data, subset, na.action, ...)

Arguments

y
either a numeric vector of data values, or a data matrix.
groups
a vector giving the group for the corresponding elements of y if this is a vector; ignored if y is a matrix. If not a factor object, it is coerced to one.
blocks
a vector giving the block for the corresponding elements of y if this is a vector; ignored if y is a matrix. If not a factor object, it is coerced to one.
formula
a formula of the form a ~ b | c, where a, b and c give the data values and corresponding groups and blocks, respectively.
data
an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset
an optional vector specifying a subset of observations to be used.
na.action
a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").
...
进一步的参数可以传递给方法。  

Details

PageTest can be used for analyzing unreplicated complete block designs (i.e., there is exactly one observation in y for each combination of levels of groups and blocks) where the normality assumption may be violated.

The null hypothesis is that apart from an effect of blocks, the location parameter of y is the same in each of the groups.

The implemented alternative is, that the location parameter will be monotonically greater along the groups,

\[ H_A : \theta_1 \leq \theta_2 \leq \theta_3 \ldots \]  

(where at least one inequality is strict).

If the other direction is required, the order of the groups has to be reversed.

The Page test for ordered alternatives is slightly more powerful than the Friedman analysis of variance by ranks.

If y is a matrix, groups and blocks are obtained from the column and row indices, respectively. NA’s are not allowed in groups or blocks; if y contains NA’s, corresponding blocks are removed.

For small values of k (methods) or N (data objects), ‘PageTest’ will calculate the exact p-values. For ‘k, N > 15, Inf’, a normal approximation is returned. Only one of these values will be returned.
Value

A list with class "htest" containing the following components:

- statistic: the L-statistic with names attribute "L".
- p.value: the p-value of the test.
- method: the character string "Page test for ordered alternatives".
- data.name: a character string giving the names of the data.

Note

Special thanks to Prof. S. Wellek for porting old GAUSS code to R.

Author(s)

Stefan Wellek <stefan.wellek@zi-mannheim.de> (exact p-values), Andri Signorell <andri@signorell.net> (interface) (strongly based on R-Core code)

References


See Also

*friedman.test*

Examples

```r
Craig's data from Siegel & Castellan, p 186
soa.mat <- matrix(c(0.797, 0.873, 0.888, 0.923, 0.942, 0.956, 0.794, 0.772, 0.908, 0.982, 0.946, 0.913, 0.838, 0.801, 0.853, 0.951, 0.883, 0.837, 0.815, 0.801, 0.747, 0.859, 0.887, 0.902), nrow=4, byrow=TRUE)
PageTest(soa.mat)

Duller, pg. 236
pers <- matrix(c(1, 72, 72, 71.5, 69, 70, 69.5, 68, 68, 67, 68, 2, 83, 81, 82, 82.5, 81, 79, 80.5, 80, 81, 3, 95, 92, 91.5, 89, 89, 90.5, 89, 89, 88, 88, 4, 71, 72, 71, 70.5, 70, 71, 71, 70, 69.5, 69, 5, 79, 79, 78.5, 77, 77.5, 78, 77.5, 76, 76.5, 76, 6, 80, 80.5, 78, 77, 77.5, 77, 76, 76, 5, 75.5, 75.5), nrow=6, byrow=TRUE)
PageTest(pers)
```
colnames(pers) <- c("person", paste("week",1:10))

# Alternative: week10 < week9 < week8 ...
PageTest(pers[, 11:2])

# Sachs, pg. 464
pers <- matrix(c(
  3,2,1,4,
  4,2,3,1,
  4,1,2,3,
  4,2,3,1,
  3,2,1,4,
  4,1,2,3,
  4,3,2,1,
  3,1,2,4,
  3,1,4,2),
  nrow=9, byrow=TRUE, dimnames=list(1:9, LETTERS[1:4]))

# Alternative: B < C < D < A
PageTest(pers[, c("B","C","D","A")])

# long shape and formula interface
plng <- data.frame(expand.grid(1:9, c("B","C","D","A")),
  as.vector(pers[, c("B","C","D","A")]))
colnames(plng) <- c("block","group","x")
PageTest(plng$x, plng$group, plng$block)
PageTest(x ~ group | block, data = plng)

score <- matrix(c(
  3,4,6,9,
  4,3,7,8,
  3,4,4,6,
  5,6,8,9,
  4,4,9,9,
  6,7,11,10
  ), nrow=6, byrow=TRUE)
PageTest(score)
Description

Implements a logic to run pairwise calculations on the columns of a data.frame or a matrix.

Usage

PairApply(x, FUN = NULL, ..., symmetric = FALSE)

Arguments

x
  a list, a data.frame or a matrix with columns to be processed pairwise.

FUN
  a function to be calculated. It is assumed, that the first 2 arguments denominate x and y.

... 
  the dots are passed to FUN.

symmetric
  logical. Does the function yield the same result for FUN(x, y) and FUN(y, x)? If TRUE just the lower triangular matrix is calculated and transposed. Default is FALSE.

Details

This code is based on the logic of cor() and extended for asymmetric functions.

Value

a matrix with the results of FUN.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

outer, CombPairs, pairwise.table

Examples

PairApply(d.diamonds[,c("colour","clarity","cut","polish")], FUN = CramerV,
  symmetric=TRUE)

# user defined functions are ok as well
PairApply(d.diamonds[,c("clarity","cut","polish","symmetry")],
  FUN = function(x,y) wilcox.test(as.numeric(x), as.numeric(y))$p.value, symmetric=TRUE)

# asymmetric measure
PairApply(d.diamonds[,c("colour", "clarity", "cut", "polish")],
  FUN = Lambda, direction = "row")

# ... compare to:
Lambda(x=d.diamonds$colour, y=d.diamonds$clarity, direction="row")
Lambda(x=d.diamonds$colour, y=d.diamonds$clarity, direction="column")
Parse a Formula and Create a Model Frame

Description

Create a model frame for a formula object, by handling the left hand side the same way the right hand side is handled in model.frame. Especially variables separated by + are interpreted as separate variables.

Usage

ParseFormula(formula, data = parent.frame(), drop = TRUE)

Arguments

- formula: an object of class "formula" (or one that can be coerced to that class): a symbolic description for the variables to be described.
- data: an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which lm is called.
- drop: if drop is TRUE, unused factor levels are dropped from the result when creating interaction terms. The default is to drop all unused factor levels.

Details

This is used by Desc.formula for describing data by groups while remaining flexible for using I(...) constructions, functions or interaction terms.

Value

- a list of 3 elements
  - formula: the formula which had to be parsed
ParseSASDatalines

1hs

a list of 3 elements:
- mf: data.frame, the model.frame of the left hand side of the formula
- mf.eval: data.frame, the evaluated model.frame of the left hand side of the formula
- vars: the names of the evaluated model.frame

rhs

a list of 3 elements:
- mf: data.frame, the model.frame of the right hand side of the formula
- mf.eval: data.frame, the evaluated model.frame of the right hand side of the formula
- vars: the names of the evaluated model.frame

Author(s)

Andri Signorell <andri@signorell.net>

See Also

The functions used to handle formulas: model.frame, terms, formula
Used in: Desc.formula

Examples

```r
set.seed(17)
piz <- d.pizza[sample(nrow(d.pizza),10), c("temperature","price","driver","weekday")]

f1 <- formula(~ driver)
f2 <- formula(temperature ~ .)
f3 <- formula(temperature + price ~ .)
f4 <- formula(temperature ~ . - driver)
f5 <- formula(temperature + price ~ - driver)
f6 <- formula(temperature + price ~ driver * weekday)
f7 <- formula(temperature^2) + sqrt(price) ~ driver + weekday)
f8 <- formula(temperature + price ~ - 1)
f9 <- formula(temperature + price ~ driver * weekday - price)
```

ParseFormula(f1, data=piz)
ParseFormula(f2, data=piz)
ParseFormula(f3, data=piz)
ParseFormula(f4, data=piz)
ParseFormula(f5, data=piz)
ParseFormula(f6, data=piz)
ParseFormula(f7, data=piz)
ParseFormula(f8, data=piz)

```
Description

A parser for simple SAS dataline command texts. A data.frame is being built with the column-names listed in the input section. The data object will be created in the given environment.

Usage

ParseSASDatalines(x, env = .GlobalEnv, overwrite = FALSE)

Arguments

x the SAS text
env environment in which the dataset should be created.
overwrite logical. If set to TRUE, the function will silently overwrite a potentially existing object in env with the same name as declared in the SAS DATA section. If set to FALSE (default) an error will be raised if there already exists an object with the same name.

Details

The SAS function DATA is designed for quickly creating a dataset from scratch. The whole step normally consists out of the DATA part defining the name of the dataset, an INPUT line declaring the variables and a DATALINES command followed by the values.

The default delimiter used to separate the different variables is a space (thus each variable should be one word). The $ after the variable name indicates that the variable preceding contain character values and not numeric values. Without specific instructions, SAS assumes that variables are numeric. The function will fail, if it encounters a character in the place of an expected numeric value.

Each new row in datalines will create a corresponding unique row in the dataset. Notice that a ; is not needed after every row, rather it is included at the end of the entire data step.

More complex command structures, i.e. other delimiters (dlm), in the INPUT-section are not (yet) supported.

Value

a data.frame

Author(s)

Andri Signorell <andri@signorell.net>

See Also

scan

Examples

txt <- "
DATA asurvey;
INPUT id sex $ age inc r1 r2 r3 ;
DATALINES;
"
PasswordDlg

Description

Brings up a tcltk dialog centered on the screen, designed for entering passwords while displaying only ****.

Usage

PasswordDlg()

Value

the entered password

Author(s)

Markus Naepflin <markus@naepfl.in>

Examples

```r
gg <- PasswordDlg()
gg
```
Description

PDF versions of the manual are usually not included as vignettes in R packages. Still this format is convenient for reading and doing full text search. This function creates the appropriate link to the pdf file on CRAN and opens the pdf manual in a browser window.

Usage

PDFManual(package)

Arguments

package name of the package.

Author(s)

Andri Signorell <andri@signorell.net>

Examples

Not run:
PDFManual(DescTools)

End(Not run)

PearsonTest Pearson Chi-Square Test for Normality

Description

Performs the Pearson chi-square test for the composite hypothesis of normality.

Usage

PearsonTest(x, n.classes = ceiling(2 * (n^2/5)), adjust = TRUE)

Arguments

x a numeric vector of data values. Missing values are allowed.
n.classes The number of classes. The default is due to Moore (1986).
adjust logical; if TRUE (default), the p-value is computed from a chi-square distribution with n.classes-3 degrees of freedom, otherwise from a chi-square distribution with n.classes-1 degrees of freedom.
Details

The Pearson test statistic is \(P = \sum (C_i - E_i)^2 / E_i \), where \(C_i \) is the number of counted and \(E_i \) is the number of expected observations (under the hypothesis) in class \(i \). The classes are build in such a way that they are equiprobable under the hypothesis of normality. The p-value is computed from a chi-square distribution with \(n \).classes - 3 degrees of freedom if \(\text{adjust} \) is \text{TRUE} and from a chi-square distribution with \(n \).classes - 1 degrees of freedom otherwise. In both cases this is not (!) the correct p-value, lying somewhere between the two, see also Moore (1986).

Value

A list of class \texttt{htest}, containing the following components:

- \texttt{statistic} the value of the Pearson chi-square statistic.
- \texttt{p.value} the p-value for the test.
- \texttt{method} the character string “Pearson chi-square normality test”.
- \texttt{data.name} a character string giving the name(s) of the data.
- \texttt{n.classes} the number of classes used for the test.
- \texttt{df} the degrees of freedom of the chi-square distribution used to compute the p-value.

Note

The Pearson chi-square test is usually not recommended for testing the composite hypothesis of normality due to its inferior power properties compared to other tests. It is common practice to compute the p-value from the chi-square distribution with \(n \).classes - 3 degrees of freedom, in order to adjust for the additional estimation of two parameters. (For the simple hypothesis of normality (mean and variance known) the test statistic is asymptotically chi-square distributed with \(n \).classes - 1 degrees of freedom.) This is, however, not correct as long as the parameters are estimated by \(\text{mean}(x) \) and \(\text{var}(x) \) (or \(\text{sd}(x) \)), as it is usually done, see Moore (1986) for details. Since the true p-value is somewhere between the two, it is suggested to run \texttt{PearsonTest} twice, with \(\text{adjust} = \text{TRUE} \) (default) and with \(\text{adjust} = \text{FALSE} \). It is also suggested to slightly change the default number of classes, in order to see the effect on the p-value. Eventually, it is suggested not to rely upon the result of the test.

The function call \texttt{PearsonTest(x)} essentially produces the same result as the S-PLUS function call \texttt{chisq.gof((x-mean(x))/sqrt(var(x))), n.param.est=2)}.

Author(s)

Juergen Gross \textless gross\text@statistik.uni-dortmund.de\textgreater

References

See Also

shapiro.test for performing the Shapiro-Wilk test for normality. AndersonDarlingTest, CramerVonMisesTest, LillieTest, ShapiroFNCiaTest for performing further tests for normality. qqnorm for producing a normal quantile-quantile plot.

Examples

PearsonTest(rnorm(100, mean = 5, sd = 3))
PearsonTest(runif(100, min = 2, max = 4))

PercTable
Percentage Table

Description

Prints a 2-way contingency table along with percentages, marginal, and conditional distributions. All the frequencies are nested into one single table.

Usage

```r
## Default S3 method:
PercTable(x, y = NULL, ...)

## S3 method for class 'table'
PercTable(tab, row.vars = NULL, col.vars = NULL, justify = "right",
          freq = TRUE, rfreq = "100", expected = FALSE, residuals = FALSE,
          stdres = FALSE, margins = NULL, digits = NULL, ...)

## S3 method for class 'formula'
PercTable(formula, data, subset, na.action, ...)

## S3 method for class 'PercTable'
print(x, vsep = NULL, ...)

Margins(tab, ...)
```

Arguments

- `x, y`
 objects which can be interpreted as factors (including character strings). `x` and `y` will be tabulated via `table(x, y)`. If `x` is a matrix, it will be coerced to a table via `as.table(x)`.

- `tab`
 an r x c-contingency table

- `row.vars`
 a vector of row variables (see Details).
col.vars a vector of column variables (see Details). If this is left to NULL the table structure will be preserved.

justify either "left" or "right" for defining the alignment of the table cells.

freq boolean. Should absolute frequencies be included? Defaults to TRUE.

rfrq a string with 3 characters, each of them being 1 or 0. The first position means total percentages, the second means row percentages and the third column percentages. "011" produces a table output with row and column percentages.

expected the expected counts under the null hypothesis.

residuals the Pearson residuals, \((\text{observed} - \text{expected}) / \sqrt{\text{expected}}\).

stdres standardized residuals, \((\text{observed} - \text{expected}) / \sqrt{\text{V}}\), where \(\text{V}\) is the residual cell variance (for the case where \(x\) is a matrix, \(n * p * (1 - p)\) otherwise).

margins a vector, consisting out of 1 and/or 2. Defines the margin sums to be included. 1 stands for row margins, 2 for column margins, c(1,2) for both. Default is NULL (none).

digits integer. With how many digits should the relative frequencies be formatted? Default can be set by \text{DescToolsOptions}(\text{digits=}x) \text{.}

formula a formula of the form \(\text{lhs} \sim \text{rhs}\) where \(\text{lhs}\) will be tabled versus \(\text{rhs}\) (\text{table(lhs, rhs)}).

data an optional matrix or data frame (or similar: see \text{model.frame}) containing the variables in the formula \text{formula}. By default the variables are taken from \text{environment(formula)}.

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults to \text{getOption("na.action")}.

vsep logical, defining if an empty row should be introduced between the table rows. Default is FALSE, if only a table with one single description (either frequencies or percents) should be returned and TRUE in any other case.

... the dots are passed from \text{PercTable.default()} to \text{PercTable.table()} and from \text{Margins} to the function \text{Freq}.

Details

\text{PercTable} prints a 2-dimensional table. The absolute and relative frequencies are nested into one flat table by means of \text{ftable}. \text{row.vars}, resp. \text{col.vars} can be used to define the structure of the table. \text{row.vars} can either be the names of the dimensions (included percentages are named "idx") or numbers (1:3, where 1 is the first dimension of the table, 2 the second and 3 the percentages). Use \text{Sort()} if you want to have your table sorted by rows.

The style in which numbers are formatted is selected by \text{Fmt()} from the \text{DescTools options}. Absolute frequencies will use \text{Fmt("abs")} and \text{Fmt("per")} will do it for the percentages. The options can be changed with \text{Fmt(abs=as.fmt(...))} which is basically a "fmt"-object containing any format information used in \text{Format}.

\text{Margins()} returns a list containing all the one dimensional margin tables of a n-dimensional table along the given dimensions. It uses \text{margin.table()} for all the dimensions and adds the appropriate percentages.
Value

Returns an object of class "ftable".

Author(s)

Andri Signorell <andri@signorell.net>

References

Agresti, Alan (2007) Introduction to categorical data analysis. NY: John Wiley and Sons, Section 2.4.5

See Also

Freq, table, ftable, prop.table, addmargins, DescToolsOptions,Fmt

There are similar functions in package sfsmisc printTable2 and package vcd table2d_summary, both lacking some of the flexibility we needed here.

Examples

```R
# create a table
tab <- table(driver=d.pizza$driver, area=d.pizza$area)

# create a PercTable object
PercTable(tab)

# create a PercTable object with specified margins
PercTable(tab, margins=c(1,2))

# create a PercTable object with specified margins
PercTable(tab, margins=c(2))

# create a PercTable object with specified margins
PercTable(tab, margins=NULL)

# create a PercTable object with specified margins and frequencies
PercTable(tab, margins=2, rfreq="000")

# just the percentages without absolute values
PercTable(tab, col.vars=2, rfreq="110", freq=FALSE)

# just the row percentages in percent format (pfmt = TRUE)
PercTable(tab, freq= FALSE, rfreq="010", pfmt=TRUE, digits=1)

# just the expected frequencies and the standard residuals
PercTable(tab, rfreq="000", expected = TRUE, stdres = TRUE)

# rearrange output such that freq are inserted as columns instead of rows
PercTable(tab, col.vars=c(3,2), rfreq="111")

# putting the areas in rows
PercTable(tab, col.vars=c(3,1), rfreq="100", margins=c(1,2))

# formula interface with subset
PercTable(driver ~ area, data=d.pizza, subset=wine_delivered==0)
```
sort the table by rows, order first column (Zurich), then third, then row.names (0)
PercTable(tab=Sort(tab, ord=c(1,3,0)))

reverse the row variables, so that absolute frequencies and percents
are not nested together
PercTable(tab, row.vars=c(3, 1))

the vector interface
PercTable(x=d.pizza$driver, y=d.pizza$area)
PercTable(x=d.pizza$driver, y=d.pizza$area, margins=c(1,2), rfrq="000", useNA="ifany")

one dimensional x falls back to the function Freq()
PercTable(x=d.pizza$driver)

the margin tables
Margins(Titanic)

Permn
Number and Samples for Permutations or Combinations of a Set

Description

Return the set of permutations for a given set of values. The values can be numeric values, characters or factors. Combn computes the number of combinations with and without replacement and order, whereas CombSet returns the value sets.

Usage

```r
Permn(x, sort = FALSE)
Combn(x, m, repl = FALSE, ord = FALSE)
CombSet(x, m, repl = FALSE, ord = FALSE, as.list = FALSE)
```

Arguments

- **x**
 - a vector of numeric values or characters. Characters need not be unique.

- **m**
 - number of elements to choose. For CombSet can m be a numeric vector too.

- **repl**
 - logical. Should repetition of the same element be allowed? Defaults to FALSE

- **ord**
 - logical. Does the order matter? Default is FALSE.

- **sort**
 - logical, defining if the result set should be sorted. Default is FALSE.

- **as.list**
 - logical, defining if the results should be returned in a flat list, say every sample is a single element of the resulting list. Default is FALSE.
Details

The vector x need not contain unique values. The permutations will automatically be filtered for unique sets, if the same element is given twice or more.

Value

A matrix with all possible permutations or combinations of the values in x for `permn` and `CombSet` if m contains more than one element the result will be a list of matrices or a flat list if as.list is set to TRUE

An integer value for `combn`

Author(s)

Friederich Leisch <Friederich.Leisch@boku.ac.at>
Andri Signorell <andri@signorell.net> (CombSet, CombN)

See Also

`combn`, `choose`, `factorial`, `Combpairs`

vignette("Combinatorics")

Examples

```r
permn(letters[2:5])
permn(2:5)

# containing the same element more than once
permn(c("a", "b", "c", "a"))

# only combinations of 2, but in every possible order
x <- letters[1:4]
m <- 2

# the samples
CombSet(x, m, repl=TRUE, ord=FALSE)
CombSet(x, m, repl=TRUE, ord=TRUE)
CombSet(x, m, repl=FALSE, ord=TRUE)
CombSet(x, m, repl=FALSE, ord=FALSE)

# the number of the samples
Combn(x, m, repl=TRUE, ord=FALSE)
Combn(x, m, repl=TRUE, ord=TRUE)
Combn(x, m, repl=FALSE, ord=TRUE)
Combn(x, m, repl=FALSE, ord=FALSE)

# build all subsets of length 1, 3 and 5 and return a flat list
x <- letters[1:5]
CombSet(x=x, m=c(1, 3, 5), as.list=TRUE)
```
Formulating the results of a comparison of means is quite common. This function assembles a
descriptive text about the results of a t-test, describing group sizes, means, p-values and confidence
intervals.

Usage
Phrase(x, g, glabels = NULL, xname = NULL, unit = NULL, lang = "en", na.rm = FALSE)

Arguments
x a (non-empty) numeric vector of data values.
g a vector or factor object giving the group for the corresponding elements of x.
 The number of levels must equal 2.
glables the labels of the two groups, if left to NULL, the levels will be used.
xname the name of the variable to be used in the text.
unit an optional unit for be appended to the numeric results.
lang the language to be used. Only English (default) and German implemented (so far).
na.rm logical, should NAs be omitted? Defaults to FALSE.

Value
a text

Author(s)
Andri Signorell <andri@signorell.net>

See Also
t.test

Examples
data("cats", package = "MASS")
cat(Phrase(cats$Bwt, cats$Sex, xname="weight", unit="grams", glabels=c("female", "male")))

oder auf Deutsch
cat(Phrase(cats$Bwt, cats$Sex, xname="Geburtsgewicht",
 glabels=c("weiblich", "maennlich"), lang="german"))
PlotACF

Combined Plot of a Time Series and Its ACF and PACF

Description

Combined plot of a time Series and its autocorrelation and partial autocorrelation

Usage

```r
PlotACF(series, lag.max = 10 * log10(length(series)), ...)  
PlotGACF(series, lag.max = 10 * log10(length(series)), type = "cor", ylab = NULL, ...)  
```

Arguments

- `series`: univariate time series.
- `lag.max`: integer. Defines the number of lags to be displayed. The default is `10 * log10(length(series))`.
- `type`: character string giving the type of acf to be computed. Allowed values are "cor" (the default), "cov" or "part" for autocorrelation, covariance or partial correlation.
- `ylab`: a title for the y axis: see `title`.
- `...`: the dots are passed to the plot command.

Details

`PlotACF` plots a combination of the time series and its autocorrelation and partial autocorrelation. `PlotGACF` is used as subfunction to produce the acf- and pacf-plots.

Author(s)

Markus Huerzeler (ETH Zurich), some minor modifications Andri Signorell <andri@signorell.net>

See Also

- `ts`

Examples

```r
PlotACF(AirPassengers)  
```
Description

Produce a stacked area plot, or add polygons to an existing plot.

Usage

Default S3 method:
PlotArea(x, y = NULL, prop = FALSE, add = FALSE, xlab = NULL, ylab = NULL, col = NULL, frame.plot = FALSE, ...)

S3 method for class 'formula'
PlotArea(formula, data, subset, na.action, ...)

Arguments

- **x**: numeric vector of x values, or if y=NULL a numeric vector of y values. Can also be a 1-dimensional table (x values in names, y values in array), matrix or 2-dimensional table (x values in row names and y values in columns), a data frame (x values in first column and y values in subsequent columns), or a time-series object of class ts/mts.
- **y**: numeric vector of y values, or a matrix containing y values in columns.
- **prop**: whether data should be plotted as proportions, so stacked areas equal 1.
- **add**: whether polygons should be added to an existing plot.
- **xlab**: label for x axis.
- **ylab**: label for y axis.
- **col**: fill color of polygon(s). The default is a vector of gray colors.
- **frame.plot**: a logical indicating whether a box should be drawn around the plot.
- **formula**: a formula, such as y ~ x or cbind(y1, y2) ~ x, specifying x and y values. A dot on the left-hand side, formula = . ~ x, means all variables except the one specified on the right-hand side.
- **data**: a data frame (or list) from which the variables in formula should be taken.
- **subset**: an optional vector specifying a subset of observations to be used.
- **na.action**: a function which indicates what should happen when the data contain NA values. Defaults to getOption("na.action").

Value

Matrix of cumulative sums that was used for plotting.
Author(s)

Arni Magnusson <arnima@hafro.is>

References

http://r.789695.n4.nabble.com/areaplot-td2255121.html

See Also

barplot, polygon

Examples

PlotArea with stapled areas
tab <- table(d.pizza$date, d.pizza$driver)
PlotArea(x=as.Date(rownames(tab)), y=tab, xaxt="n", xlab="Date", ylab="Pizzas delivered")

add x-axis and some text labels
xrng <- pretty(range(as.Date(rownames(tab))))
axis(side=1, at=xrng, labels=xrng)
text(x=min(d.pizza$date + .5, na.rm=TRUE), y=cumsum(tab[2,])-2.5, label=levels(d.pizza$driver),
adj=c(0,0.5), col=TextContrastColor(gray.colors(7)))

formula
PlotArea(ARMed.Forces~year, data=longley)
PlotArea(cbind(ARMed.Forces,Unemployed)~year, data=longley)

add=TRUE
plot(1940:1970, 500*runif(31), ylim=c(0,500))
PlotArea(ARMed.Forces~year, data=longley, add=TRUE)

matrix
PlotArea(WorldPhones)
PlotArea(WorldPhones, prop=TRUE, col=rainbow(10))

table
PlotArea(table(d.pizza$weekday))
PlotArea(table(d.pizza$weekday, d.pizza$driver))

ts/mts
PlotArea(austres)
PlotArea(Seatbelts[,c("drivers","front","rear")],
ylab="Killed or seriously injured")
abline(v=1983+1/12, lty=3)
PlotBag

Bivariate Boxplot

Description

PlotBag() creates a two-dimensional boxplot called "bagplot" based on two numerical variables x and y. plot PlotBag() is the plotting routine for a bagplot object. compute PlotBag() contains the computation logic the object.

Usage

PlotBag(x, y, factor = 3, na.rm = FALSE, approx.limit = 300,
 show.outlier = TRUE, show.whiskers = TRUE,
 show.looppoints = TRUE, show.bagpoints = TRUE,
 show.loophull = TRUE, show.baghull = TRUE,
 create.plot = TRUE, add = FALSE, pch = 16, cex = 0.4,
 dkmethod = 2, precision = 1, verbose = FALSE,
 debug.plots = "no", col.loophull = "#aacccf",
 col.looppoints = "#3355ff", col.baghull = "#7799ff",
 col.bagpoints = "#000088", transparency = FALSE, ...)

plotbagpairs(dm, trim = 0.0, main, numeric.only = TRUE,
 factor = 3, approx.limit = 300, pch = 16,
 cex = 0.8, precision = 1, col.loophull = "#aacccf",
 col.looppoints = "#3355ff", col.baghull = "#7799ff",
 col.bagpoints = "#000088", ...)

compute.bagplot(x, y, factor = 3, na.rm = FALSE, approx.limit = 300,
 dkmethod = 2, precision = 1, verbose = FALSE, debug.plots = "no")

S3 method for class 'bagplot'
plot(x, show.outlier = TRUE, show.whiskers = TRUE,
 show.looppoints = TRUE, show.bagpoints = TRUE,
 show.loophull = TRUE, show.baghull = TRUE, add = FALSE,
 pch = 16, cex = .4, verbose = FALSE, col.loophull = "#aacccf",
 col.looppoints = "#3355ff", col.baghull = "#7799ff",
 col.bagpoints = "#000088", transparency = FALSE,...)

Arguments

x
 x values of a data set; in PlotBag: an object of class PlotBag computed by
 compute.PlotBag

y
 y values of the data set

factor
 factor defining the loop

na.rm
 if TRUE 'NA' values are removed otherwise exchanged by median
approx.limit if the number of data points exceeds approx.limit a sample is used to compute some of the quantities; default: 300
show.outlier if TRUE outlier are shown
show.whiskers if TRUE whiskers are shown
show.looppoints if TRUE loop points are plottet
show.bagpoints if TRUE bag points are plottet
show.loop hull if TRUE the loop is plotted
show.bag hull if TRUE the bag is plotted
create.plot if FALSE no plot is created
add if TRUE the bagplot is added to an existing plot
pch sets the plotting character
cex sets characters size
dkmethod 1 or 2, there are two method of approximating the bag, method 1 is very rough (only based on observations
precision precision of approximation, default: 1
verbose automatic commenting of calculations
debug.plots if TRUE additional plots describing intermediate results are constructed
col.loop hull color of loop hull
col.loop points color of the points of the loop
col.bag hull color of bag hull
col.bag points color of the points of the bag
transparency see section details
dm x
trim x
main x
numeric.only x
... additional graphical parameters

Details

A bagplot is a bivariate generalization of the well known boxplot. It has been proposed by Rousseeuw, Ruts, and Tukey. In the bivariate case the box of the boxplot changes to a convex polygon, the bag of bagplot. In the bag are 50 percent of all points. The fence separates points within the fence from points outside. It is computed by increasing the the bag. The loop is defined as the convex hull containing all points inside the fence. If all points are on a straight line you get a classical boxplot. plotbag() plots bagplots that are very similar to the one described in Rousseeuw et al. Remarks: The two dimensional median is approximated. For large data sets the error will be very small. On the other hand it is not very wise to make a (graphical) summary of e.g. 10 bivariate data points.

In case you want to plot multiple (overlapping) bagplots, you may want plots that are semi-transparent. For this you can use the transparency flag. If transparency==TRUE the alpha layer is set to '99'
This causes the bagplots to appear semi-transparent, but ONLY if the output device is PDF and opened using: `pdf(file="filename.pdf", version="1.4")`. For this reason, the default is `transparency==FALSE`. This feature as well as the arguments to specify different colors has been proposed by Wouter Meuleman.

Value

compute.bagplot returns an object of class bagplot that could be plotted by `plot.bagplot()`. An object of the bagplot class is a list with the following elements: `center` is a two dimensional vector with the coordinates of the center. `hull.center` is a two column matrix, the rows are the coordinates of the corners of the center region. `hull.bag` and `hull.loop` contain the coordinates of the hull of the bag and the hull of the loop. `pxy.bag` shows you the coordinates of the points of the bag. `pxy.outer` is the two column matrix of the points that are within the fence. `pxy.outlier` represent the outliers. The vector `hdepths` shows the depths of data points. `is.one.dim` is `TRUE` if the data set is (nearly) one dimensional. The dimensionality is decided by analysing the result of `prcomp` which is stored in the element `prdata`. `xy` shows you the data that are used for the bagplot. In the case of very large data sets subsets of the data are used for constructing the bagplot. A data set is very large if there are more data points than `approx.limit`. `xydata` are the input data structured in a two column matrix.

Note

Version of bagplot: 10/2012

Author(s)

Hans Peter Wolf <pwolf@wiwi.uni-bielefeld.de>

References

See Also

`boxplot`

Examples

```r
# example: 100 random points and one outlier
dat <- cbind(rnorm(100) + 100, rnorm(100) + 300)
dat <- rbind(dat, c(105, 295))

PlotBag(dat,factor=2.5,create.plot=TRUE,approx.limit=300,
show.outlier=TRUE,show.looppoints=TRUE,
show.bagpoints=TRUE,dkmethod=2,
show.whiskers=TRUE,show.loophull=TRUE,
show.baghull=TRUE,verbose=FALSE)

# example of Rousseeuw et al., see R-package rpart
cardata <- structure(as.integer( c(2500, 2345, 1845, 2260, 2440,
```
PlotBubble

Draw a Bubble Plot

Description

Draw a bubble plot, defined by a pair of coordinates x, y to place the bubbles, an area definition configuring the dimension and a color vector setting the color of the bubbles. The legitimation to define a new function instead of just using plot(symbols(...)) is the automated calculation of the axis limits, ensuring that all bubbles will be fully visible.

Usage

PlotBubble(x, ...)

Default S3 method:
PlotBubble(x, y, area, col = NA, cex = 1, border = par("fg"),
 xlim = NULL, ylim = NULL, na.rm = FALSE, ...)

S3 method for class 'formula'
PlotBubble(formula, data = parent.frame(), ..., subset, ylab = varnames[response])

```r
2285, 2275, 2350, 2295, 1900, 2390, 2075, 2330, 3320, 2885,
3310, 2695, 2170, 2710, 2775, 2840, 2485, 2670, 2640, 2655,
3065, 2750, 2920, 2780, 2745, 3110, 2920, 2645, 2575, 2935,
2920, 2985, 3265, 2880, 2975, 3450, 3145, 3190, 3610, 2885,
3480, 3200, 2765, 3220, 3480, 3325, 3855, 3850, 3195, 3735,
3605, 3735, 3415, 3185, 3690, 97, 114, 81, 91, 113, 97, 97,
98, 109, 73, 97, 89, 109, 305, 153, 302, 133, 97, 125, 146,
107, 109, 121, 151, 133, 181, 141, 132, 133, 122, 181, 146,
151, 116, 135, 122, 141, 163, 151, 153, 202, 180, 182, 232,
143, 180, 180, 151, 189, 180, 231, 305, 302, 151, 202, 182,
181, 143, 146, 146), .Dim = as.integer(c(60, 2)),
  .Dimnames = list(NULL, c("Weight", "Disp.")))

PlotBag(car.data, factor=3, show.baghull=TRUE,
  show.loophull=TRUE, precision=1, dkmethod=2)

title("car data Chambers/Hastie 1992")

# points of y=x*x
PlotBag(x=1:30, y=(1:30)^2, verbose=FALSE, dkmethod=2)

# one dimensional subspace
PlotBag(x=1:50, y=1:50)

# pairwise bagplots
par(las=1)
PlotBagPairs(swiss[, 1:2],
  main="Swiss Fertility and Socioeconomic Indicators (1888) Data")
```
Arguments

x, y
the x and y co-ordinates for the centres of the bubbles. They can be specified in any way which is accepted by `xy.coords`.

area
a vector giving the area of the bubbles.

col
colors for the bubbles, passed to `symbol`. The default NA (or also NULL) means do not fill, i.e., draw transparent bubbles.

cex
extension factor for the area.

border
the border color for the bubbles. The default means `par("fg")`. Use `border = NA` to omit borders.

xlim, ylim
axes limits.

na.rm
logical, should NAs be omitted? Defaults to FALSE.

formula
a formula of the form `lhs ~ rhs` where `lhs` gives the data values and `rhs` the corresponding groups.

data
an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.

subset
an optional vector specifying a subset of observations to be used.

ylab
the y-label for the plot used in the formula interface.

...
the dots are passed to the `plot` function.

Details

Argument `inches` controls the sizes of the symbols. If TRUE (the default), the symbols are scaled so that the largest dimension of any symbol is one inch. If a positive number is given the symbols are scaled to make largest dimension this size in inches (so TRUE and 1 are equivalent). If `inches` is FALSE, the units are taken to be those of the appropriate axes. This behaviour is the same as in `symbols`.

Note

A legend can be added with `BubbleLegend`.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

`BubbleLegend`, `symbols`, `sunflowerplot`
Examples

```r
PlotBubble(latitude ~ longitude, area=(smoky+1)*2e8,
  col=SetAlpha(1, 0.5), data=d.whisky)

cols <- c("olivedrab1","orange","green","mediumturquoise","mediumorchid2","firebrick1")
PlotBubble(x = state.x77[,"Income"], y = state.x77[,"Life Exp"], cex=.00004,
  area = state.x77[,"Population"], col = cols[state.region], border="grey50",
  panel.first=grid(), xlab="Income", ylab="Life Exp.", las=1)

BubbleLegend(x = "topright", area = c(20000, 10000, 1000), cex=.00004, frame=NA,
  cols=cols[1:3], labels = c(20000, 10000, 1000), cex.names=0.7)

legend(x="bottomright", fill=cols[1:4], legend=levels(state.region))
```

PlotCandlestick

Plot Candlestick Chart

Description

Plot a candlestick chart. This is used primarily to describe price movements of a security, derivative, or currency over time. Candlestick charts are a visual aid for decision making in stock, foreign exchange, commodity, and option trading.

Usage

```r
PlotCandlestick(x, y, xlim = NULL, ylim = NULL,
  col = c("springgreen4","firebrick"),
  border = NA, args.grid = NULL, ...)
```

Arguments

- **x**: a numeric vector for the x-values. Usually a date.
- **y**: the y-values in a matrix (or a data.frame that can be coerced to a matrix) with 4 columns, whereas the first column contains the open price, the second the high, the third the lowest and the 4th the close price of daily stock prices.
- **xlim**: the x limits (x1, x2) of the plot. The default value, NULL, indicates that the range of the finite values to be plotted should be used.
- **ylim**: the y limits of the plot.
- **col**: color for the body. To better highlight price movements, modern candlestick charts often replace the black or white of the candlestick body with colors such as red for a lower closing and blue or green for a higher closing.
- **border**: the border color of the rectangles. Default is NA, meaning no border will be plotted.
args.grid the arguments of a potential grid. Default is NULL, which will have a grid plotted. If arguments are provided, they have to be organized as list with the names of the arguments. (For example: ..., args.grid = list(col="red"))

... the dots are passed to plot() command

Details

Candlesticks are usually composed of the body (black or white), and an upper and a lower shadow (wick): the area between the open and the close is called the real body. price excursions above and below the real body are called shadows. The wick illustrates the highest and lowest traded prices of a security during the time interval represented. The body illustrates the opening and closing trades. If the security closed higher than it opened, the body is white or unfilled, with the opening price at the bottom of the body and the closing price at the top. If the security closed lower than it opened, the body is black, with the opening price at the top and the closing price at the bottom. A candlestick need not have either a body or a wick.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

PlotBubble, stars

Examples

cov <- rbind(
 "2013-05-28" = c(70.99,71.82,70.49,71.49),
 "2013-05-29" = c(71.13,71.90,70.81,71.57),
 "2013-05-30" = c(71.25,71.53,70.90,71.01),
 "2013-05-31" = c(70.86,70.92,70.30,70.30),
 "2013-06-03" = c(70.56,70.89,70.05,70.74),
 "2013-06-04" = c(70.37,71.11,69.67,69.90),
 "2013-06-05" = c(69.76,69.76,68.92,68.99),
 "2013-06-06" = c(69.13,70.02,68.56,70.02),
 "2013-06-07" = c(70.45,70.52,69.51,70.20),
 "2013-06-10" = c(70.53,70.75,70.05,70.20),
 "2013-06-11" = c(69.36,69.66,69.01,69.17),
 "2013-06-12" = c(69.65,70.03,68.85,69.21),
 "2013-06-13" = c(69.21,70.18,69.13,70.10),
 "2013-06-14" = c(70.17,70.48,69.30,69.58),
 "2013-06-17" = c(70.14,70.96,69.98,70.44),
 "2013-06-18" = c(70.55,71.97,70.55,71.49),
 "2013-06-19" = c(71.33,72.00,70.89,70.97),
 "2013-06-20" = c(70.04,70.06,68.40,68.55),
 "2013-06-21" = c(69.15,69.27,67.68,68.21)
)

colnames(cov) <- c("open","high","low","close")

PlotCandlestick(x=as.Date(rownames(cov)), y=cov, border=NA, las=1, ylab="")
PlotCashFlow

Cash Flow Plot

Description
A cash flow plot is a plot used in finance and allows you to graphically depict the timing of the cash flows as well as their nature as either inflows or outflows. An "up" arrow represents money received and a "down" arrow money paid out.

Usage
PlotCashFlow(x, y, xlim = NULL, labels = y)

Arguments
- **x**: time period of the cashflows (in and out)
- **y**: amount of the cashflows
- **xlim**: range of the x-axis, defaults to range(x).
- **labels**: the labels of the cashflows will be printed outside the arrows.

Author(s)
Andri Signorell <andri@signorell.net>

See Also
- NPV

Examples
PlotCashFlow(x=c(6:9, 13:15), y=-c(rep(40, 4), rep(50, 3)),
 xlim=c(6,17), labels=c(rep(40, 4), rep(50, 3)))
PlotCashFlow(x=c(6,8,9,12,17), y=c(10,30,40,50,70))

PlotCirc

Plot Circular Plot

Description
This visualising scheme represents the unidirectional relationship between the rows and the columns of a contingency table.
Usage

PlotCirc(tab, acol = rainbow(sum(dim(tab))), aborder = "darkgrey",
rcol = SetAlpha(acol[1:row(tab)], 0.5), rborder = "darkgrey",
gap = 5, main = "", labels = NULL, cex.lab = 1.0, las = 1,
adj = NULL, dist = 2)

Arguments

tab a table to be visualised.
acol the colors for the peripheral annuli.
aborder the border colors for the peripheral annuli.
rcol the colors for the ribbons.
rborder the border colors for the ribbons.
gap the gap between the entities in degrees.
main the main title, defaults to "".
labels the labels. Defaults to the column names and rownames of the table.
las alignment of the labels, 1 means horizontal, 2 radial and 3 vertical.
adj adjustments for the labels. (Left: 0, Right: 1, Mid: 0.5)
dist gives the distance of the labels from the outer circle. Default is 2.
cex.lab the character extension for the labels.

Details

The visual scheme of representing relationships can be applied to a table, given the observation that a table cell is a relationship (with a value) between a row and column. By representing the row and columns as segments along the circle, the information in the corresponding cell can be encoded as a link between the segments. In general, the cell represents a unidirectional relationship (e.g. row->column) - in this relationship the role of the segments is not interchangeable (e.g. (row,col) and (col,row) are different cells). To identify the role of the segment, as a row or column, the ribbon is made to terminate at the row segment but slightly away from the column segment. In this way, for a given ribbon, it is easy to identify which segment is the row and which is the column.

Value

the calculated points for the labels, which can be used to place userdefined labels.

Author(s)

Andri Signorell <andri@signorell.net>

References

Inspired by http://circos.ca/presentations/articles/vis_tables1/

See Also

PlotPolar
Examples

```r
tab <- matrix(c(2,5,8,3,10,12,5,7,15), nrow=3, byrow=FALSE)
dimnames(tab) <- list(c("A","B","C"), c("D","E","F"))
tab

PlotCirc( tab,
  acol = c("dodgerblue","seagreen","limegreen","olivedrab2","goldenrod2","tomato2"),
  rcol = setAlpha(c("red","orange","olivedrab1"), 0.5)
)
tab <- table(d.pizza$weekday, d.pizza$operator)
par(mfrow=c(1,2))
PlotCirc(tab, main="weekday ~ operator")
PlotCirc(t(tab), main="operator ~ weekday")
```

Description

This function produces a graphical display of a correlation matrix. The cells of the matrix can be shaded or colored to show the correlation value.

Usage

```r
PlotCorr(x, cols = colorRampPalette(c(Pal()[2], "white",
    Pal()[1]), space = "rgb")$20),
  breaks = seq(-1, 1, length = length(cols) + 1),
  border = "grey", lwd = 1,
  args.colorlegend = NULL, xaxt = par("xaxt"), yaxt = par("yaxt"),
  cex.axis = 0.8, las = 2, mar = c(3, 8, 8, 8), mncor = 0,
  main = "", clust = FALSE, ...)
```

Arguments

- `x` is a correlation matrix to be visualized.
- `cols` the colors for shading the matrix. Uses the package's option "col1" and "col2" as default.
- `breaks` a set of breakpoints for the colours: must give one more breakpoint than colour. These are passed to `image()` function. If breaks is specified then the algorithm used follows `cut`, so intervals are closed on the right and open on the left except for the lowest interval.
- `border` color for borders. The default is grey. Set this argument to NA if borders should be omitted.
- `lwd` line width for borders. Default is 1.
args.colorlegend

list of arguments for the **ColorLegend**. Use NA if no color legend should be painted.

xaxt

parameter to define, whether to draw an x-axis, defaults to "n".

yaxt

parameter to define, whether to draw an y-axis, defaults to "n".

cex.axis

character extension for the axis labels.

las

the style of axis labels.

mar

sets the margins, defaults to mar = c(3, 8, 8, 8) as we need a bit more room on the right.

mincor

numeric value between 0 and 1, defining the smallest correlation that is to be displayed. If this is >0 then all correlations with a lower value are suppressed.

main

character, the main title.

clust

logical. If set to TRUE, the correlations will be clustered in order to aggregate similar values.

... the dots are passed to the function **image**, which produces the plot.

Value

no values returned.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

image, ColorLegend, corrgram(), PlotWeb()

Examples

```r
m <- cor(d.pizza[, sapply(d.pizza, IsNumeric, na.rm=TRUE)], use="pairwise.complete.obs")

PlotCorr(m, cols=colorRampPalette(c("red", "black", "green"), space = "rgb"))(20)
PlotCorr(m, cols=colorRampPalette(c("red", "black", "green"), space = "rgb"))(20,
    args.colorlegend=NA)

m <- PairApply(d.diamonds[, sapply(d.diamonds, is.factor)], CramerV, symmetric=TRUE)
PlotCorr(m, cols = colorRampPalette(c("white", "steelblue"), space = "rgb"))(20),
    breaks=seq(0, 1, length=21), border="black",
    args.colorlegend = list(labels=sprintf("%.1f", seq(0, 1, length = 11)), frame=TRUE)
}
title(main="Cramer's V", line=2)
text(x=rep(1:ncol(m),ncol(m)), y=rep(1:ncol(m),each=ncol(m)),
    label=sprintf("\%.2f", m[,ncol(m):1]), cex=0.8, xpd=TRUE)
```

Spearman correlation on ordinal factors
csp <- cor(data.frame(lapply(d.diamonds[,c("carat", "clarity", "cut", "polish", "symmetry", "price")], as.numeric)), method="spearman")
Plot Dev

PlotCorr(csp)

m <- cor(mtcars)
PlotCorr(m, col=Pal("RedWhiteBlue1", 100), border="grey",
 args.colorlegend=list(labels=Format(seq(-1,1,.25), digits=2), frame="grey"))

display only correlation with a value > 0.7
PlotCorr(m, mincor = 0.7)
x <- matrix(rep(1:ncol(m), each=ncol(m)), ncol=ncol(m))
y <- matrix(rep(ncol(m):1, ncol(m)), ncol=ncol(m))
txt <- Format(m, d=3, leading = "drop")
idx <- upper.tri(matrix(x, ncol=ncol(m)), diag=FALSE)

place the text on the upper triagonal matrix
text(x=x[idx], y=y[idx], label=txt[idx], cex=0.8, xpd=TRUE)

or let's get rid of all non significant correlations
p <- pairApply(mtcars, function(x, y) cor.test(x, y)$p.value, symmetric=TRUE)

or somewhat more complex with outer
p0 <- outer(1:ncol(m), 1:ncol(m),
 function(a, b)
 mapply(
 function(x, y) cor.test(mtcars[, x], mtcars[, y])$p.value, a, b))

ok, got all the p-values, now replace > 0.05 with NAs
m[p > 0.05] <- NA
PlotCorr(m)

the text
n <- ncol(m)
text(x=rep(seq(n), times=n), y=rep(rev(seq(n)), rep.int(n, n)),
 labels=Format(m, digits=2, na.form=""),
 cex=0.8, xpd=TRUE)

the text could also be set with outer, but this function returns an error,
based on the fact that text() does not return some kind of result
outer(X = 1:nrow(m), Y = ncol(m):1,
FUN = "text", labels = Format(m, digits=2, na.form = ""),
cex=0.8, xpd=TRUE)

put similar correlations together
PlotCorr(m, clust=TRUE)

same as
idx <- order.dendrogram(as.dendrogram(
 hclust(dist(m), method = "mcquitty")
))
PlotCorr(m[idx, idx])
Description

Plot to a graphics device.

Usage

`PlotDev(fn, type = c("tif", "pdf", "eps", "bmp", "png", "jpg"),
 width = NULL, height = NULL, units="cm", res = 300, open = TRUE,
 compression = "lzw", expr, ...)`

Arguments

- `fn`: Filename
- `type`: one out of "tif", "pdf", "eps", "bmp", "png", "jpg"
- `width`: the width of the graphic in cm.
- `height`: the height of the graphic in cm.
- `units`: The units in which height and width are given. Can be px (pixels), in (inches), cm (the default) or mm.
- `res`: the resolution
- `open`: logical. Should the graphic be opened after having being created?
- `compression`: the type of compression to be used (tif only).
- `expr`: the plot expression
- `...`: the dots are sent to the specified device function.

Details

A simple convenience wrapper for producing TIF-Files for publication.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

tiff, pdf, postscript

Examples

```r
## Not run:
PlotDev(fn="bar", type="tiff", expr=
  barplot(1:5, col=Pal("Helsana"))
)
## End(Not run)
```
Description

Draw a Cleveland dot plot. This is an extended version of `dotchart` with an added option for error bars and an add argument.

Usage

```
PlotDot(x, labels = NULL, groups = NULL, gdata = NULL, 
       cex = par("cex"), pch = NULL, gpch = 21, bg = par("bg"), 
       color = par("fg"), gcolor = par("fg"), lcolor = "gray", lblcolor = par("fg"), 
       xlim = NULL, main = NULL, xlab = NULL, ylab = NULL, 
       xaxt="n", yaxt="n", add = FALSE, args.errbars = NULL, ...) 
```

Arguments

- `x` either a vector or matrix of numeric values (NAs are allowed). If `x` is a matrix the overall plot consists of juxtaposed dotplots for each row. Inputs which satisfy `is.numeric(x)` but not `is.vector(x) || is.matrix(x)` are coerced by `as.numeric`, with a warning.
- `labels` a vector of labels for each point. For vectors the default is to use names(x) and for matrices the row labels `dimnames(x)[[1]]`.
- `groups` an optional factor indicating how the elements of `x` are grouped. If `x` is a matrix, `groups` will default to the columns of `x`.
- `gdata` data values for the groups. This is typically a summary such as the median or mean of each group.
- `cex` the character size to be used. Setting `cex` to a value smaller than one can be a useful way of avoiding label overlap. Unlike many other graphics functions, this sets the actual size, not a multiple of `par("cex")`.
- `pch` the plotting character or symbol to be used. Default is 21.
- `gpch` the plotting character or symbol to be used for group values.
- `bg` the background color of plotting characters or symbols to be used; use `par(bg=*)` to set the background color of the whole plot.
- `color` the color(s) to be used for points and labels.
- `gcolor` the single color to be used for group labels and values.
- `lcolor` the color(s) to be used for the horizontal lines.
- `lblcolor` the color(s) to be used for labels.
- `xlim` horizontal range for the plot, see `plot.window`, e.g.
- `main` overall title for the plot, see `title`.
- `xlab`, `ylab` axis annotations as in `title`.
xaxt a character which specifies the x axis type. Specifying "n" suppresses plotting of the axis.

yaxt a character which specifies the y axis type. Specifying "n" suppresses plotting of the axis.

add logical specifying if bars should be added to an already existing plot; defaults to FALSE.

args.errbars optional arguments for adding error bars. All arguments for ErrBars can be supplied. If left to NULL (default), no error bars will be plotted.

... graphical parameters can also be specified as arguments.

Details

This function is invoked for its side effect, which is to produce two variants of dotplots as described in Cleveland (1985).

Dot plots are a reasonable substitute for bar plots.

Value

Return the y-values used for plotting.

Author(s)

R- Core with some extensions by Andri Signorell <andri@signorell.net>

References

Examples

```r
PlotDot(VADeaths, main = "Death Rates in Virginia - 1940")
op <- par(xaxs = "i")  # 0 -- 100%
PlotDot(t(VADeaths), xlab = c(0,100),
       main = "Death Rates in Virginia - 1940")
par(op)

# add some error bars
PlotDot(VADeaths, main="Death Rates in Virginia - 1940", col="red", pch=21,
        args.errbars = list(from=VADeaths-2, to=VADeaths+2, mid=VADeaths,
                               cex=1.4))

# add some other values
PlotDot(VADeaths+3, pch=15, col="blue", add=TRUE, labels=NA)

# same as PlotDotCI
xci <- do.call(rbind, tapply( d.pizza$delivery_min, d.pizza$driver, 
```
MeanCI, conf.level=0.99, na.rm=TRUE))

PlotDot(xci[,1], main="delivery_min ~ driver", pch=21, bg="grey80", col="black",
args.errbars = list(from=xci[,2], to=xci[,3], mid=xci[,1], lwd=2, col="grey40", cex=1.5),
xlim=c(15,35), panel.before=grid())

with group data
x <- with(d.pizza, tapply(temperature, list(area, driver), mean, na.rm=TRUE))
PlotDot(x, gdata = tapply(d.pizza$temperature, d.pizza$driver, mean, na.rm=TRUE),
gpch = 15)

special format
par(lend=1)

PlotDot(VADeaths, main="Death Rates in Virginia - 1940", pch="|", lcolor = hecru, col=hred,
args.errbars = list(from=VADeaths-2, to=VADeaths+2, mid=VADeaths, cex=1.3, lwd=8, code=0, col=hgreen))

Error bars for binomial confidence intervals
tab <- table(d.pizza$driver, d.pizza$wine_delivered)
xci <- SetNames(BinomCI(tab[,1], rowSums(tab)), rownames=rownames(tab))
PlotDot(xci[,1], main="wine delivered ~ driver ", xlim=c(0,1),
args.errbars=list(from=xci[,1], mid=xci[,1], pch=21))

Error bars for confidence intervals for means
xci <- do.call(rbind, tapply(d.pizza$delivery_min, d.pizza$driver,
MeanCI, conf.level=0.99, na.rm=TRUE))
PlotDot(xci[,1], main="delivery_min ~ driver", args.errbars=list(from=xci))

Setting the colours
define some error bars first
lci <- sweep(x = VADeaths, MARGIN = 2, FUN = "-", 1:4)
uci <- sweep(x = VADeaths, MARGIN = 1, FUN = "+", 1:5)

PlotDot(VADeaths, main="This should only show how to set the colours, not be pretty", pch=21, col=c("blue","grey"), bg=c("red", "yellow"),
gcolor = c("green", "blue", "orange", "magenta"), gdata=c(10,20,30,40),
gpch = c(15:18), lcolor = "orange",
args.errbars = list(from=lci, to=uci, mid=VADeaths, cex=1.4))

PlotECDF Empirical Cumulative Distribution Function

Description

Faster alternative for plotting the empirical cumulative distribution function (ecdf). The function offers the option to construct the ecdf on the base of a histogram, which makes sense, when x is large. So the plot process is much faster, without losing much precision in the details.

Usage

\[\text{PlotECDF}(x, \text{breaks} = \text{NULL}, \text{col} = \text{Pal}()[1], \text{ylab} = "", \text{lwd} = 2, \]
\[\text{xlab} = \text{NULL}, \text{cex.axis} = \text{NULL}, \ldots) \]

Arguments

- \text{x} numeric vector of the observations for ecdf.
- \text{breaks} will be passed directly to \text{hist}. If left to NULL, no histogram will be used.
- \text{col} color of the line.
- \text{ylab} label for the y-axis.
- \text{lwd} line width.
- \text{xlab} label for the x-axis.
- \text{cex.axis} cex for the axis
- \ldots arguments to be passed to subsequent functions.

Details

The stats function \text{plot.ecdf} is fine for vectors that are not too large. However for \(n \sim 1e7 \) we would observe a dramatic performance breakdown (possibly in combination with the use of \text{do.call}).

\text{PlotECDF} is designed as alternative for quicker plotting the ecdf for larger vectors. If \text{breaks} are provided as argument, a histogram with that number of breaks will be calculated and the ecdf will use those frequencies instead of respecting every single point.

Note that a plot will rarely need more than \(\sim 1'000 \) points on \text{x} to have a sufficient resolution on usual terms. \text{PlotFdist} will also use this number of breaks by default.

Value

no value returned, use \text{plot.ecdf} if any results are required.

Author(s)

Andri Signorell \(<\text{andri@signorell.net}>\)

See Also

\text{plot.ecdf, PlotFdist}
Examples

plotECDF(d.pizza$temperature)

make large vector
x <- rnorm(n=1e7)

plot only 1000 points instead of 1e7
plotECDF(x, breaks=1000)

Description

Plot Chernoff faces. The rows of a data matrix represent cases and the columns the variables.

Usage

PlotFaces(xy, which.row, fill = FALSE, nr, nc,
 scale = TRUE, byrow = FALSE, main, labels, col = "white")

Arguments

- `xy` : `xy` data matrix, rows represent individuals and columns attributes.
- `which.row` : defines a permutation of the rows of the input matrix.
- `fill` : logic. If set to TRUE, only the first `nc` attributes of the faces are transformed, `nc` is the number of columns of `x`.
- `nr` : number of columns of faces on graphics device
- `nc` : number of rows of faces
- `scale` : logic. If set to TRUE, attributes will be normalized.
- `byrow` : if(byrow=TRUE), `x` will be transposed.
- `main` : title.
- `labels` : character strings to use as names for the faces.
- `col` : a vector of colors used for the parts of the faces. Colors are recycled in the order: "nose", "eyes", "hair", "face", "lips", "ears". Default is NA, which will omit colors.

Details

The features parameters of this implementation are:

- 1 height of face
- 2 width of face
- 3 shape of face
• 4 height of mouth
• 5 width of mouth
• 6 curve of smile
• 7 height of eyes
• 8 width of eyes
• 9 height of hair
• 10 width of hair
• 11 styling of hair
• 12 height of nose
• 13 width of nose
• 14 width of ears
• 15 height of ears

For details look at the literate program of `faces`

Value

information about usage of variables for face elements is returned invisibly

Note

based on version 12/2009

Author(s)

H. P. Wolf, some changes Andri Signorell <andri@signorell.net>
References

http://www.wiwi.uni-bielefeld.de/~wolf/: S/R - functions: faces

Examples

```r
plotfaces(rbind(1:3,5:3,3:5,5:7))
data(longley)
plotfaces(longley[1:9])
set.seed(17)
plotfaces(matrix(sample(1:1000,128), 16, 8), main="random faces")

means <- lapply(iris[,1], mean)
weights <- t(do.call(rbind, means))
weights <- cbind(weights, matrix(rep(1, 11*3), nrow=3))

# define the colors, first for all faces the same
col <- replicate(3, c("orchid1", "olivedrab", "goldenrod4", 
                      "peachpuff", "darksalmon", "peachpuff3"))
rownames(col) <- c("nose","eyes","hair","face","lips","ears")
# change haircolor individually for each face
col[3, ] <- c("lightgoldenrod", "coral3", "sienna4")

z <- plotfaces(m, nr=1, nc=3, col=col)

# print the used coding
print(z$info, right=FALSE)
```

Description

This function is designed to give a univariate graphic representation of a numeric vectors frequency distribution. It combines a histogram, a density curve, a boxplot and the empirical cumulative distribution function (ecdf) in one single plot. A rug as well as a model distribution curve (e.g. a normal curve) can optionally be superposed. This results in a dense and informative picture of the facts. Still the function remains flexible as all possible arguments can be passed to the single components (hist, boxplot etc.) as a list (see examples).
Usage

```r
PlotFdist(x, main = deparse(substitute(x)), xlab = "", xlim = NULL,
  args.hist = NULL, args.rug = NA, args.dens = NULL,
  args.curve = NA, args.boxplot = NULL, args.ecdf = NULL,
  args.curve.ecdf = NA, heights = NULL, pdist = NULL,
  na.rm = FALSE, cex.axis = NULL, cex.main = NULL, mar = NULL, las = 1)
```

Arguments

- `x`: the numerical variable, whose distribution is to be plotted.
- `main`: main title of the plot.
- `xlab`: label of the x-axis, defaults to "". (The name of the variable is typically placed in the main title and would be redundant here.)
- `xlim`: range of the x-axis, defaults to a pretty `range(x, na.rm = TRUE)`.
- `args.hist`: list of additional arguments to be passed to the histogram `hist()`. The defaults chosen when setting `args.hist = NULL` are more or less the same as in `hist`. The argument type defines, whether a histogram ("hist") or a plot with type = "h" (for "histogram" like vertical lines for mass representation) should be used. The arguments for a "h-plot" will be `col`, `lwd`, `pch.col`, `pch`, `pch.bg` for the line and for an optional point character on top. The default type used will be chosen on the structure of `x`. If `x` is an integer with up to 12 unique values there will be a "h-plot" and else a histogram!
- `args.rug`: list of additional arguments to be passed to the function `rug()`. Use `args.rug = NA` if no rug should be added. This is the default. Use `args.rug = NULL` to add rug with reasonable default values.
- `args.dens`: list of additional arguments to be passed to `density`. Use `args.dens = NA` if no density curve should be drawn. The defaults are taken from `density`.
- `args.curve`: list of additional arguments to be passed to `curve`. This argument allows to add a fitted distribution curve to the histogram. By default no curve will be added (`args.curve = NA`). If the argument is set to `NULL`, a normal curve with mean(x) and sd(x) will be drawn. See examples for more details.
- `args.boxplot`: list of additional arguments to be passed to the boxplot `boxplot()`. The defaults are pretty much the same as in `boxplot`. The two additional arguments `pch.mean` (default 23) and `col.meanci` (default "grey80") control, if the mean is displayed within the boxplot. Setting those arguments to `NA` will prevent them from being displayed.
- `args.ecdf`: list of additional arguments to be passed to `ecdf()`. Use `args.ecdf = NA` if no empirical cumulation function should be included in the plot. The defaults are taken from `plot.ecdf`.
- `args.curve.ecdf`: list of additional arguments to be passed to `curve`. This argument allows to add a fitted distribution curve to the cumulative distribution function. By default no curve will be added (`args.curve.ecdf = NA`). If the argument is set to `NULL`, a normal curve with mean(x) and sd(x) will be drawn. See examples for more details.
heights heights of the plotparts, defaults to c(2, 0.5, 1.4) for the histogram, the box-
plot and the empirical cumulative distribution function, resp. to c(2, 1.5) for a
histogram and a boxplot only.
pdist distances of the plotparts, defaults to c(0, 0), say there will be no distance
between the histogram, the boxplot and the ecdf-plot. This can be useful for
instance in case that the x-axis has to be added to the histogram.
na.rm logical, should NAs be omitted? Histogram and boxplot could do without this
option, but the density-function refuses to plot with missings. Defaults to FALSE.
cex.axis character extension factor for the axes.
cex.main character extension factor for the main title. Must be set in dependence of the
plot parts in order to get a harmonic view.
mar A numerical vector of the form c(bottom, left, top, right) which gives
the number of lines of outer margin to be specified on the four sides of the plot.
The default is c(0, 0, 3, 0).
las numeric in 0,1,2,3; the style of axis labels. See par.

Details
Performance has been significantly improved, but if x is growing large (n > 1e7) the function will
take its time to complete. Especially the density curve and the ecdf, but as well as the boxplot (due
to the chosen alpha channel) will take their time to calculate and plot.
In such cases consider taking a sample, i.e. PlotFdist(x[sample(length(x), size=5000)]),
the big picture of the distribution won’t usually change much.

Author(s)
Andri Signorell <andri@signorell.net>

See Also
hist, boxplot, ecdf, density, rug, layout

Examples
PlotFdist(x=d.pizza$delivery_min, na.rm=TRUE)

define additional arguments for hist, dens and boxplot
do not display the mean and its CI on the boxplot
PlotFdist(d.pizza$delivery_min, args.hist=list(breaks=50),
 args.dens=list(col="olivedrab4"), na.rm=TRUE,
 args.boxplot=list(col="olivedrab2", pch.mean=NA, col.meanci=NA))

do a "h"-plot instead of a histogram for integers
x <- sample(runif(10), 100, replace = TRUE)
PlotFdist(x, args.hist=list(type="mass"))

pp <- rpois(n = 100, lambda = 3)
PlotFdist(pp, args.hist = list(type="mass", pch=21, col=horange,

PlotFun

Plot a Function

Description

Plots mathematical expressions in one variable using the formula syntax.

Usage

```
PlotFun(FUN, args = NULL, from = NULL, to = NULL, by = NULL,  
xlim = NULL, ylim = NULL, polar = FALSE, type = "l",
```

```r

# special arguments for hist, density and ecdf
PlotDf(x=faithful$eruptions,
       args.hist=list(breaks=20), args.dens=list(bw=.1),
       args.ecdf=list(cex=1.2, pch=16, lwd=1), args.rug=TRUE)

# no density curve, no ecdf but add rug instead, make boxplot a bit higher
PlotDf(x=d.pizza$delivery_min, na.rm=TRUE, args.dens=NA, args.ecdf=NA,
       args.hist=list(xaxt="s"), # display x-axis on the histogram
       args.rug=TRUE, heights=c(3, 2.5), pdist=2.5, main="Delivery time")

# alpha channel on rug is cool, but takes its time for being drawn...
PlotDf(x=d.pizza$temperature, args.rug=list(col=SetAlpha("black", 0.1)), na.rm=TRUE)

# plot a normal density curve, but no boxplot nor ecdf
x <- rnorm(1000)
PlotDf(x, args.curve = NULL, args.boxplot=NA, args.ecdf=NA)

# compare with a t-distribution
PlotDf(x, args.curve = list(expr="dt(x, df=2)", col="darkgreen"),
       args.boxplot=NA, args.ecdf=NA)
legend(x="topright", legend=c("kernel density", "t-distribution (df=2)",
                             fill=c(getOption("col1", hred), "darkgreen"))

# add a gamma distribution curve to both, histogram and ecdf
ozone <- airquality$Ozone; m <- mean(ozone, na.rm = TRUE); v <- var(ozone, na.rm = TRUE)
PlotDf(ozone, args.hist = list(breaks=15),
       args.curve = list(expr="dgamma(x, shape = m^2/v, scale = v/m)", col=hecru),
       args.curve.ecdf = list(expr="pgamma(x, shape = m^2/v, scale = v/m)", col=hecru),
       na.rm = TRUE, main = "Airquality - Ozone")

legend(x="topright",
       legend=c(expression(plain("gamma: ") * Gamma * " " * bgroup("(" , k * " = " *
                     over(bar(x)^2, s^2) * " , " * theta * plain(" = ") * over(s^2, bar(x)), ")" ) ),
        "kernel density"),
      fill=c(hecru, getOption("col1", hred)), text.width = 0.25)
```

Arguments

FUN a mathematical expression defined using the formula syntax: \(f(x) \sim x \). \(x \) and \(y \) can as well be functions of a parameter \(t \): \(y(t) \sim x(t) \) (see examples).

args a list of additional parameters defined in the expression besides the independent variable.

from, to the range over which the function will be plotted.

by number: increment of the sequence.

xlim, ylim NULL or a numeric vector of length 2; if non-NULL it provides the defaults for \(c(\text{from}, \text{to}) \) and, unless \(\text{add=TRUE} \), selects the x-limits of the plot - see \texttt{plot.window}.

polar logical. Should polar coordinates be used? Defaults to \texttt{FALSE}.

type plot type: see \texttt{plot.default}

col colors of the lines.

lwd line widths for the lines.

lty line type of the lines.

pch plotting 'character', i.e., symbol to use.

mar A numerical vector of the form \(c(\text{bottom, left, top, right}) \) which gives the number of lines of margin to be specified on the four sides of the plot. The default is \(c(3, 3, 3, 3) \).

add logical; if \texttt{TRUE} add to an already existing plot; if \texttt{NA} start a new plot taking the defaults for the limits and log-scaling of the x-axis from the previous plot. Taken as \texttt{FALSE} (with a warning if a different value is supplied) if no graphics device is open.

... the dots are passed to the plot, resp. lines function.

Details

A function can be plotted with \texttt{curve}. This function here adds some more features, one enabling to use a formula for defining the function to plot. This enables as well a parametric equation to be entered straight forward. Parameters of a function can be set separately. The aspect ratio \(y/x \) will be set to 1 by default. (See \texttt{plot.window} for details.)

If the argument \texttt{axes} (given in the dots) is not set to \texttt{FALSE} centered axis at a horizontal and vertical position of 0 will be drawn, containing major and minor ticks.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

\texttt{curve}
Examples

simple quadratic function y = x^2
PlotFun(x^2 - x)

par(mfrow=c(3,4))

Cartesian leaf
PlotFun(3*a*x^2 / (z^3+1) - 3*a*z / (z^3+1+b), args=list(a=2, b=.1), from=-10, to=10, by=0.1,
 xlim=c(-5,5), ylim=c(-5,5), col="magenta", asp=1, lwd=2)

family of functions
PlotFun(a*exp(-x/5)*sin(n*x) ~ x, args=list(n=4, a=3), from=0, to=10, by=0.01,
 col="green")
PlotFun(a*exp(-x/5)*sin(n*x) ~ x, args=list(n=6, a=3), from=0, to=10, by=0.01,
 col="darkgreen", add=TRUE)

cardioid
PlotFun(a*(1+cos(t)) ~ t, args=list(a=2), polar=TRUE, from=0, to=2*pi+0.1, by=0.01, asp=1)
PlotFun(13*cos(t) - 5*cos(2*t) - 2*cos(3*t) - cos(4*t) - 16*sin(t)^3,
 from=0, to=2*pi, by=0.01, asp=1, xlim=c(-20,20), col="red", lwd=2)

PlotFun(a*sin(2*t)*cos(2*t) ~ t, args=list(a=6), polar=TRUE, from=0, to=2*pi+0.1, by=0.01,
 col="orange")

astroid
PlotFun(a*sin(t)^3 - a*cos(t)^3, args=list(a=2), from=0, to=2*pi+0.1, lwd=3, by=0.01,
 col="red")

lemniscate of Bernoulli
PlotFun((2*a)^2*cos(2*t))^2 ~ t, args=list(a=1), polar=TRUE, from=0, to=2*pi+0.1, by=0.01,
 col="darkblue")

Cycloid
PlotFun(a*(1-cos(t)) ~ a*(t-sin(t)), args=list(a=0.5), from=0, to=30, by=0.01,
 col="orange")

Kreisevolvente
PlotFun(a*(sin(t) - t*cos(t)) ~ a*(cos(t) + t*sin(t)), args=list(a=0.2), from=0, to=50, by=0.01,
 col="brown")

PlotFun(sin(2*t) ~ sin(t), from=0, to=2*pi, by=0.01, col="blue", lwd=2)

multiple values for one parameter
sapply(1:3, function(a) PlotFun(sin(a*x) ~ x,
 args=list(a=a), from=0, to=2*pi, by=0.01,
 add=(a!=1), col=a))

PlotFun(sin(3*x) ~ x, polar=TRUE, from=0, to=pi, by=0.001, col="red", lwd=2)
PlotFun(1 + 1/10 * sin(10*x) - x, polar=TRUE, from=0, to=2*pi, by=0.001, col=“red”)
PlotFun(sin(x) - cos(x), polar=FALSE, from=0, to=2*pi, by=0.01, add=TRUE, col=“blue”)

PlotLines

Description
Plot the columns of one matrix against the columns of another. Adds a legend on the right at the endpoints of lines.

Usage
PlotLines(x, y, col = 1:5, lty = 1, lwd = 1, lend = par(“lend”),
 xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL, xaxt = NULL, yaxt = NULL,
 cex = 1, args.legend = NULL, main = NULL, grid = TRUE, mar = NULL,
 pch = NA, pch.col = par(“fg”), pch.bg = par(“bg”), pch.cex = 1, …)

Arguments
x, y vectors or matrices of data for plotting. The number of rows should match. If one of them are missing, the other is taken as y and an x vector of 1:n is used. Missing values (NA s) are allowed.
col vector of colors. Colors are used cyclically.
lty, lwd, lend vector of line types, widths, and end styles. The first element is for the first column, the second element for the second column, etc., even if lines are not plotted for all columns. Line types will be used cyclically until all plots are drawn.
 xlab, ylab titles for x and y axes, as in plot.
 xlim, ylim ranges of x and y axes, as in plot.
 xaxt, yaxt a character which specifies the x axis type. Specifying "n" suppresses plotting of the axis. The standard value is "s", any value other than "n" implies plotting.
cex character expansion factor relative to current par("cex").
args.legend list of additional arguments for the legend; names of the list are used as argument names. If set to NA, the legend will be suppressed.
main an overall title for the plot.
grid logical adds an nx by ny rectangular grid to an existing plot.
mar the margins of the plot.
pch character string or vector of 1-characters or integers for plotting characters, see points. The first character is the plotting-character for the first plot, the second for the second, etc. The default is the digits (1 through 9, 0) then the lowercase and uppercase letters. If no points should be drawn set this argument to NA (this is the default).
pch.col: vector of colors for the points. Colors are used cyclically. Ignored if pch = NA.

pch.bg: vector of background (fill) colors for the open plot symbols given by pch = 21:25 as in points. The default is set to par("bg"). Ignored if pch = NA.

pch.cex: vector of character expansion sizes, used cyclically. This works as a multiple of par("cex"). Default is 1.0. Ignored if pch = NA.

... the dots are sent to matplot.

Details

This function is rather a template, than a function. It wraps matplot to generate a lines plot and adds a rather sophisticated legend on the right side, while calculating appropriate margins. A grid option is included (as panel.first does not work in matplot).

As in matplot, the first column of x is plotted against the first column of y, the second column of x against the second column of y, etc. If one matrix has fewer columns, plotting will cycle back through the columns again. (In particular, either x or y may be a vector, against which all columns of the other argument will be plotted.)

Author(s)

Andri Signorell <andri@signorell.net>

See Also

matplot, par

Examples

m <- matrix(c(3,4,5,1,5,4,2,6,2), nrow = 3,
 dimnames = list(dose = c("A","B","C"),
 age = c("2010","2011","2012")))

plotLinesA(m, col=c(Pal("Helsana")), main="Dose ~ age_grp", lwd=3, ylim=c(1, 10))

example from MASS
shoes <- list(
 A = c(13.2, 8.2, 10.9, 14.3, 10.7, 6.6, 9.5, 10.8, 8.8, 13.3),
 B = c(14, 8.8, 11.2, 14.2, 11.8, 6.4, 9.8, 11.3, 9.3, 13.6))

plotLinesA(do.call(rbind, shoes), xlim=c(0.75,2.25), col=1, main="shoes",
 pch=21, pch.bg="white", pch.col=1, pch.cex=1.5)

let's define some arbitrary x-coordinates
plotLinesA(x=c(1,2,6,8,15), y=VAdeaths)
Description

The base function `grid()` does not support logarithmic scales very well. Especially when more lines are required, grids have to be created manually. `PlotLog` creates a plot with at least one logarithmic axis and places a logarithmic grid in the background of the data.

Usage

```r
PlotLog(x, ..., args.grid = NULL, log = "xy")
```

Arguments

- `x` the coordinates of points in the plot. Alternatively, a single plotting structure, function or any R object with a plot method can be provided.
- `...` the dots are passed on to the function `plot()`.
- `args.grid` a list of arguments for the grid. This contains line type, line width and line color, separately for major gridlines and for minor gridlines. `args.grid=list(lwd=1, lty=3, col="grey85", col.min="grey60")` are used as default. If the argument is set to `NA`, no grid will be plotted.
- `log` a character string which contains "x" if the x axis is to be logarithmic, "y" if the y axis is to be logarithmic and "xy" or "yx" if both axes are to be logarithmic.

Value

nothing

Author(s)

Andri Signorell <andri@signorell.net>

See Also

`axis`

Examples

```r
PlotLog(brain ~ body, data=MASS::Animals, log="xy",
        xlim=c(.01, 1e5), ylim=c(.1, 1e4), main="Animal brain/body size",
        pch=21, bg="grey", cex=1.5)
```
Description

Draw a scatter plot with marginal densities on the x- and y-axis. Groups can be defined by grp.

Usage

\[
\text{PlotMarDens}(x, y, \text{grp} = 1, \text{xlim} = \text{NULL}, \text{ylim} = \text{NULL}, \\
\quad \text{col} = \text{rainbow}(\text{nlevels}(\text{factor}(\text{grp}))), \\
\quad \text{mardens} = \text{c}("all","x","y"), \text{pch} = 1, \text{pch.cex} = 1, \\
\quad \text{main} = \"", \text{na.rm} = \text{FALSE}, \text{args.legend} = \text{NULL}, \\
\quad \text{args.dens} = \text{NULL}, \ldots)
\]

Arguments

\begin{itemize}
\item \textbf{x} \hspace{1cm} \text{numeric vector of x values.}
\item \textbf{y} \hspace{1cm} \text{numeric vector of y values (of same length as x).}
\item \textbf{grp} \hspace{1cm} \text{grouping variable(s), typically factor(s), all of the same length as x.}
\item \textbf{xlim} \hspace{1cm} \text{the x limits of the plot.}
\item \textbf{ylim} \hspace{1cm} \text{the y limits of the plot.}
\item \textbf{col} \hspace{1cm} \text{the colors for lines and points. Uses rainbow() colors by default.}
\item \textbf{mardens} \hspace{1cm} \text{which marginal densities to plot. Can be set to either just x or y, or both ("all", latter being the default).}
\item \textbf{pch} \hspace{1cm} \text{a vector of plotting characters or symbols.}
\item \textbf{pch.cex} \hspace{1cm} \text{magnification to be used for plotting characters relative to the current setting of cex.}
\item \textbf{main} \hspace{1cm} \text{a main title for the plot, see also title.}
\item \textbf{na.rm} \hspace{1cm} \text{logical, should NAs be omitted? Defaults to FALSE.}
\item \textbf{args.legend} \hspace{1cm} \text{list of additional arguments for the legend. args.legend set to NA prevents a legend from being drawn.}
\item \textbf{args.dens} \hspace{1cm} \text{list of additional arguments to be passed to density. Use args.dens = NA if no density curve should be drawn. The defaults are taken from density.}
\end{itemize}

\ldots

Author(s)

Andri Signorell <andri@signorell.net>

See Also

plot, points, density, layout
Examples

best seen with: x11(7.5, 4.7)

just one variable with marginal densities
PlotMarDens(y=d.pizza$temperature, x=d.pizza$delivery_min, grp=1
 , xlab="delivery_min", ylab="temperature", col=SetAlpha("brown", 0.4)
 , pch=15, lwd=3
 , panel.first= grid(), args.legend=NA
 , main="Temp ~ delivery"
)

use a group variable
PlotMarDens(y=d.pizza$temperature, x=d.pizza$delivery_min, grp=d.pizza$area
 , xlab="delivery_min", ylab="temperature", col=c("brown","orange","lightsteelblue")
 , panel.first=list(grid())
 , main = "temperature ~ delivery_min | area"
)
reset layout
par(mfrow=c(1,1))

PlotMiss Plot Missing Data

Description

Takes a data frame and displays the location of missing data. The missings can be clustered and be displayed together.

Usage

PlotMiss(x, col = hred, bg = SetAlpha(hecru, 0.3), clust = FALSE,
 main = NULL, ...)

Arguments

x a data.frame to be analysed.

col the colour of the missings.

bg the background colour of the plot.

clust logical, defining if the missings should be clustered. Default is FALSE.

main the main title.

... the dots are passed to plot.

Details

A graphical display of the position of the missings can be help to detect dependencies or patterns within the missings.
Plot monthly or seasonal effects of a univariate time series

Usage

```
PlotMonth(x, type = "1", labels, xlab = "", ylab = deparse(substitute(x)), ...)```

**Arguments**

- **x**: univariate time series
- **type**: todo
- **labels**: todo
- **xlab**: a title for the x axis: see `title`.
- **ylab**: a title for the y axis: see `title`.
- **...**: the dots are passed to the plot command.

**Details**

todo

**Author(s)**

Markus Huerzeler, ETH Zurich

**See Also**

ts
Description

Plots a mosaic on the current graphics device.

Usage

```
PlotMosaic(x, main = deparse(substitute(x)), horiz = TRUE, cols = NULL,
 off = 0.02, mar = NULL, xlab = NULL, ylab = NULL,
 cex = par("cex"), las = 2, ...)
```

Arguments

- **x**: a contingency table in array form, with optional category labels specified in the `dimnames(x)` attribute. The table is best created by the `table()` command. So far only 2-way tables are allowed.
- **main**: character string for the mosaic title.
- **horiz**: logical, defining the orientation of the mosaicplot. TRUE (default) makes a horizontal plot.
- **cols**: the colors of the plot.
- **off**: the offset between the rectangles. Default is 0.02.
- **mar**: the margin for the plot.
- **xlab, ylab**: x- and y-axis labels used for the plot; by default, the first and second element of `names(dimnames(X))` (i.e., the name of the first and second variable in X).
- **cex**: numeric character expansion factor; multiplied by `par("cex")` yields the final character size. NULL and NA are equivalent to 1.0.
- **las**: the style of axis labels. 0 - parallel to the axis, 1 - horizontal, 2 - perpendicular, 3 - vertical.
- **...**: additional arguments are passed to the text function.

Details

The reason for this function to exist are the unsatisfying labels in base mosaicplot.

Value

- list with the midpoints of the rectangles
Author(s)
Andri Signorell <andri@signorell.net>

References

See Also
mosaicplot

Examples

PlotMosaic(HairEyeColor[,1])

PlotMultiDens  Plot Multiple Density Curves

Description
Multiple density curves are plotted on the same plot. The function plots the density curves in the defined colors and linetypes, after having calculated the globally appropriate xlim- and ylim-values. A legend can directly be included.

Usage

PlotMultiDens(x, ...)

## Default S3 method:
PlotMultiDens(x, xlim = NULL, ylim = NULL, col = Pal(), lty = "solid", lwd = 2, fill = NA, xlab = "x", ylab = "density", args.dens = NULL, args.legend = NULL, na.rm = FALSE, flipxy = FALSE, ...)  

## S3 method for class 'formula'
PlotMultiDens(formula, data, subset, na.action, ...)

Arguments

x a list of vectors whose densities are to be plotted. Use split to separate a vector by groups. (See examples)

xlim, ylim xlim, ylim of the plot.

col colors of the lines, defaults to Pal(), returning the default palette.

lty line type of the lines.

lwd line widths for the lines.
fill colors for fill the area under the density curve. If set to NA (default) there will be no color.
xlab, ylab a title for the x, resp. y axis. Defaults to "x" and "density".
args.dens list of additional arguments to be passed to the density function. If set to NULL the defaults will be used. Those are \( n = 4096 \times 2^{12} \) and kernel = "epanechnikov".
args.legend list of additional arguments to be passed to the legend function. Use args.legend = NA if no legend should be added.
na.rm should NAs be omitted? Defaults to FALSE.
flipxy logical, should x- and y-axis be flipped? Defaults to FALSE.
formula a formula of the form \( \text{lhs} \sim \text{rhs} \) where \( \text{lhs} \) gives the data values and \( \text{rhs} \) the corresponding groups.
data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

... the dots are passed to plot(...).

Details

All style arguments, density arguments and data list elements will be recycled if necessary. The argument flipxy leads to exchanged x- and y-values. This option can be used to plot density curves with a vertical orientation for displaying marginal densities.

Value

data.frame with 3 columns, containing the bw, n and kernel parameters used for the list elements. The number of rows correspond to the length of the list x.

Note

Consider using:

```r
library(lattice)
densityplot(~ delivery_min | driver, data=d.pizza)
```

as alternative when not all curves should be plotted in the same plot.

Author(s)

Andri Signorell <andri@signorell.net>
PlotPch

Information Plots

Description

The function `plotpar()` plots the typically used parameters and their values.
Usage

PlotPar()
PlotPch(col = NULL, bg = NULL, newwin = FALSE)
PlotMar()

Arguments

col the default plotting color for PlotPch. Defaults to hred.
bg The color to be used for the background of the plot symbols. Default is hecr.
newwin logical, defining if a new graphic device should be used. Default is FALSE.

Details

PlotPch() will display the plot characters as defined by pch in all plots in a dialog.
PlotMar() plots the margins.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

par, colors

Examples

PlotPar()
PlotPch()

PlotPolar

Plot Values on a Circular Grid

Description

PlotPolar creates a polar coordinate plot of the radius r in function of the angle theta. 0 degrees is drawn at the 3 o’clock position and angular values increase in a counterclockwise direction.

Usage

PlotPolar(r, theta = NULL, type = "p", rlim = NULL, main = "", lwd = par("lwd"), lty = par("lty"), col = par("col"), pch = par("pch"), fill = NA, cex = par("cex"), mar = c(2, 2, 5, 2), add = FALSE, ...)
Arguments

- **r**: a vector of radial data.
- **theta**: a vector of angular data specified in radians.
- **type**: one out of c("p", "1", "h"), the plot type, defined following the definition in plot type. "p" means points, "1" will connect the points with lines and "h" is used to plot radial lines from the center to the points. Default is "p".
- **rlim**: the r limits (r1, r2) of the plot.
- **main**: a main title for the plot, see also title.
- **lwd**: a vector of line widths, see par.
- **lty**: a vector of line types, see par.
- **col**: The colors for lines and points. Multiple colors can be specified so that each point can be given its own color. If there are fewer colors than points they are recycled in the standard fashion. Lines will all be plotted in the first colour specified.
- **pch**: a vector of plotting characters or symbols: see points.
- **fill**: fill color, defaults to NA (none).
- **cex**: a numerical vector giving the amount by which plotting characters and symbols should be scaled relative to the default. This works as a multiple of par("cex"). NULL and NA are equivalent to 1.0.
- **mar**: A numerical vector of the form c(bottom, left, top, right) which gives the number of lines of margin to be specified on the four sides of the plot.
- **add**: defines whether points should be added to an existing plot.
- **...**: further arguments are passed to the plot command.

Details

The function is rather flexible and can produce quite a lot of different plots. So is it also possible to create spider webs or radar plots.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

PolarGrid

Examples

testlen <- c(sin(seq(0, 1.98*pi, length=100))+2+rnorm(100)/10)
testpos <- seq(0, 1.98*pi, length=100)

plotpolar(testlen, testpos, type="1", main="Test Polygon", col="blue")
PolarGrid(ntheta=9, col="grey", lty="solid", lblradians=TRUE)
# start at 12 o'clock and plot clockwise
PlotPolar(testlen, -(testpos - pi/2), type="p", main="Test Polygon",
   col="green", pch=16)

PolarGrid(ntheta = rev(seq(0, 2*pi, by=2*pi/9) + pi/2),
          alabels=Format(seq(0, 2*pi, by=2*pi/9), digits=2)[-10], col="grey",
          lty="solid", lblradians=TRUE)

# just because of it's beauty
t <- seq(0,2*pi,0.01)
PlotPolar( r=sin(2*pi)*cos(2*pi), theta=t, type="l", lty="dashed", col="red" )
PolarGrid()

# use some filled polygons
ions <- c(3.2,5,1,3.1,2.1,5)
ion.names <- c("Na","Ca","Mg","Cl","HCO3","SO4")
PlotPolar(r = ions, type="l", fill="yellow")

# the same, but let's have a grid first
PlotPolar(r = ions, type="l", lwd=2, col="blue", main="Ions",
          panel.first=PolarGrid(nr=seq(0, 6, 1)) )

# leave the radial grid out
PlotPolar(r = ions, type="l", fill="yellow")
PolarGrid(nr = NA, ntheta = length(ions), alabels = ion.names,
          col = "grey", lty = "solid")

# display radial lines
PlotPolar(r = ions, type="h", col="blue", lwd=3)

# add some points
PlotPolar(r = ions, type="p", pch=16, add=TRUE, col="red", cex=1.5)

# spiderweb (not really recommended...)
posmat <- matrix(sample(2:9,30,TRUE, nrow=3)
PlotPolar(posmat, type="1", main="Spiderweb plot", col=2:4, lwd=1:3)
PolarGrid(nr=NA, ntheta=ncol(posmat), alabels=paste("X", 1:ncol(posmat), sep=""),
          col="grey", lty = "solid")

# example from: The grammar of graphics (L. Wilkinson)
data("UKgas")
m <- matrix(UKgas, ncol=4, byrow=TRUE)
cols <- c(SetAlpha(rep("green", 10), seq(0,1,0.1)),
           SetAlpha(rep("blue", 10), seq(0,1,0.1)),
           SetAlpha(rep("orange", 10), seq(0,1,0.1)))
PlotPolar(r=m, type="l", col=cols, lwd=2 )
PolarGrid(ntheta=4, alabels=c("Winter","Spring","Summer","Autumn"), lty="solid")
legend(x="topright", legend=c(1960,1970,1980), fill=c("green","blue","orange"))
# radarplot (same here, consider alternatives...) 
data(mtcars)
d.car <- scale(mtcars[1:6,1:7], center=FALSE)

# let's have a palette with transparent colors (alpha = 32)
cols <- SetAlpha(colorRampPalette(c("red", "yellow", "blue"), space = "rgb")(6), 0.25)
PlotPolar(d.car, type="1", fill=cols, main="Cars in radar")
PolarGrid(nr=NA, ntheta=ncol(d.car), alabels=colnames(d.car), lty="solid", col="black")

# a polar barplot
x <- c(4,8,2,8,2,6,5,7,3,3,5,3)
theta <- (0:12) * pi / 6
PlotPolar(x, type = "n", main="Some data")
PolarGrid(nr = 8:9, ntheta = 24, col="grey", lty=1, rlabels = NA, alabels = NA)
DrawCircle(x=0, y=0, r.in=0, r.out=x,
  theta.1 = theta[-length(theta)], theta.2 = theta[-1],
  col=SetAlpha(rainbow(12), 0.7), border=NA)

segments(x0 = -10:10, y0 = -.2, y1=0.2)
segments(x0=-10, x1=10, y0 = 0)

segments(y0 = -10:10, x0 = -2, x1=0.2)
segments(y0=-10, y1=10, x0 = 0)

BoxedText(x=0, y=c(0,3,6,9), labels = c(0,3,6,9), xpad = .3, ypad=.3, border="grey35")

# USJudgeRatings
PlotPolar(USJudgeRatings[,1], type="1", col=hblue, lwd=2, cex=0.8, #fill=SetAlpha("blue", 0.4),
  panel.first=PolarGrid(ntheta=ncol(USJudgeRatings), col="grey", lty="solid",
  las=1, alabels=rownames(USJudgeRatings), lbradians=TRUE))
PlotPolar(USJudgeRatings[,2], type="1", col=hred, lwd=2, add=TRUE)
PlotPolar(USJudgeRatings[,5], type="1", col=horange, lwd=2, add=TRUE)

legend(x="topright", inset=.1, col = c(hblue,hred,horange), lwd=2,
  legend=rownames(USJudgeRatings)[c(1, 2, 5)])

---

PlotPyramid

Draw a Back To Back Pyramid Plot

Description

Pyramid plots are a common way to display the distribution of age groups.

Usage

PlotPyramid(lx, rx = NA, ylab = "", ylab.x = 0,
  col = c("red", "blue"), border = par("fg"),
  main = ", lxlab = ", rxlab = ",
Arguments

lx  either a vector or matrix of values describing the bars which make up the plot. If lx is a vector, it will be used to construct the left barplot. If lx is a matrix the first column will be plotted to the left side and the second to the right side. Other columns are ignored.

rx  a vector with the values used to build the right barplot. lx and rx should be of equal length.

ylab  a vector of names to be plotted either in the middle or at the left side of the plot. If this argument is omitted, then the names are taken from the names attribute of lx if this is a vector.

ylab.x  the x-position of the y-labels.

col  the color(s) of the bars. If there are more than one the colors will be recycled.

border  the border color of the bars. Set this to NA if no border is to be plotted.

main  overall title for the plot.

lxlab  a label for the left x axis.

rxlab  a label for the right x axis.

xlim  limits for the x axis. The first value will determine the limit on the left, the second the one on the right.

gapwidth  the width of a gap in the middle of the plot. If set to 0, no gap will be plotted. Default is NULL which will make the gap as wide as it is necessary to plot the longest ylab.

xaxt  a character which specifies the x axis type. Specifying "n" suppresses plotting of the axis.

args.grid  list of additional arguments for the grid. Set this argument to NA if no grid should be drawn.

cex.axis  expansion factor for numeric axis labels.

cex.lab  expansion factor for numeric variable labels.

cex.names  expansion factor for y labels (names).

adj  one or two values in [0, 1] which specify the x (and optionally y) adjustment of the labels.

rev  logical, if set to TRUE the order of data series and names will be reversed.

...  the dots are passed to the barplot function.
Details

Pyramid plots are a common way to display the distribution of age groups in a human population. The percentages of people within a given age category are arranged in a barplot, typically back to back. Such displays can be used to distinguish males vs. females, differences between two different countries or the distribution of age at different timepoints. The plot type can also be used to display other types of opposed bar charts with suitable modification of the arguments.

Value

A numeric vector giving the coordinates of all the bar midpoints drawn, useful for adding to the graph.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

barplot

Examples

d.sda <- data.frame(
  kt_x = c("ZH", "BL", "LG", "SG", "LU", "AR", "SO", "GL", "SZ",
           "NW", "TG", "UR", "AI", "OW", "GR", "BE", "SH", "AG",
           "BS", "FR", "GE", "JU", "NE", "TI", "VD", "VS"),
  apo_n = c(18, 16, 13, 11, 9, 12, 11, 8, 9, 8, 11, 9, 7, 9, 24, 19,
            19, 20, 43, 27, 41, 31, 37, 62, 38, 39),
  sda_n = c(235, 209, 200, 169, 166, 164, 162, 146, 128, 127,
            125, 121, 121, 110, 48, 34, 33, 0, 0, 0, 0, 0, 0, 0, 0)
)

PlotPyramid(lx=d.sda[,c("apo_n","sda_n")], ylab=d.sda$kt_x,
  col=c("lightslategray" , "orange2"), border = NA, ylab.x=0,
  xlim=c(-110,250),
  gapwidth = NULL, cex.lab = 0.8, cex.axis=0.8, xaxt = TRUE,
  lxl="Drugstores", rxl="General practitioners",
  main="Density of general practitioners and drugstores in CH (2010)",
  space=0.5, args.grid=list(lty=1))

par(mfrow=c(1,3))

m.pop<-c(3.2, 3.5, 3.6, 3.6, 3.5, 3.5, 3.9, 3.7, 3.9, 3.5,
         3.2, 2.8, 2.2, 1.8, 1.5, 1.3, 0.7, 0.4)
f.pop<-c(3.2, 3.4, 3.5, 3.5, 3.5, 3.7, 4, 3.8, 3.9, 3.6, 3.2,
         2.5, 2, 1.7, 1.5, 1.3, 1.0, 0.8)

        "30-34", "35-39", "40-44", "45-49", "50-54",
        "55-59", "60-64", "65-69", "70-74", "75-79", "80-44", "85+")
PlotQQ

QQ-Plot for Any Distribution

Description

Create a QQ-plot for a variable of any distribution. The assumed underlying distribution can be defined as a function of \( f(p) \), including all required parameters. Confidence bands are provided by default.

Usage

```r
PlotQQ(x, qdist=qnorm, main = NULL, xlab = NULL, ylab = NULL, datax = FALSE, add = FALSE, args.qqline = NULL, conf.level = 0.95, args.cband = NULL, ...)```

Arguments

- \(x \) the data sample
- \(qdist \) the quantile function of the assumed distribution. Can either be given as simple function name or defined as own function using the required arguments. Default is `qnorm()`. See examples.
- \(main \) the main title for the plot. This will be "Q-Q-Plot" by default
- \(xlab \) the xlab for the plot
- \(ylab \) the ylab for the plot
- \(datax \) logical. Should data values be on the x-axis? Default is FALSE.
- \(add \) logical specifying if the points should be added to an already existing plot; defaults to FALSE.
arguments for the qqline. This will be estimated as a line through the 25% and 75% quantiles by default, which is the same procedure as `qqline()` does for normal distribution (instead of set it to `abline(a = 0, b = 1)`). The quantiles can however be overwritten by setting the argument `probs` to some user defined values. Also the method for calculating the quantiles can be defined (default is 7, see `quantile`). The line defaults are set to `col = par("fg"), lwd = par("lwd")` and `lty = par("lty")`. No line will be plotted if `args.qqline` is set to NA.

confidence level for the confidence interval. Set this to NA, if no confidence band should be plotted. Default is 0.95. The confidence intervals are calculated pointwise method based on a Kolmogorov-Smirnov distribution.

list of arguments for the confidence band, such as color or border (see `DrawBand`). the dots are passed to the plot function.

The function generates a sequence of points between 0 and 1 and transforms those into quantiles by means of the defined assumed distribution.

The code is inspired by the tip 10.22 “Creating other Quantile-Quantile plots” from R Cookbook and based on R-Core code from the function `qqline`. The calculation of confidence bands are rewritten based on an algorithm published in the package `BoutrosLab.plotting.general`.

Andri Signorell <andri@signorell.net>, Ying Wu <Ying.Wu@stevens.edu>

`qqnorm`, `qqline`, `qqplot`

Examples

```r
y <- rexp(100, 1/10)
PlotQQ(y, function(p) qexp(p, rate=1/10))

w <- rweibull(100, shape=2)
PlotQQ(w, qdist = function(p) qweibull(p, shape=4))

z <- rchisq(100, df=5)
PlotQQ(z, function(p) qchisq(p, df=5),
      args.qqline=list(col=2, probs=c(0.1, 0.6)),
      main=expression("Q-Q plot for Gamma \(\chi^2\) [nu = 3]))
abline(0,1)
```
add 5 random sets
for(i in 1:5){
 z <- rchisq(100, df=5)
 PlotQQ(z, function(p) qchisq(p, df=5), add=TRUE, args.qqline = NA,
 col="grey", lty="dotted")
}

PlotTernary
Ternary or Triangular Plots

Description

PlotTernary plots in a triangle the values of three variables. Useful for mixtures (chemistry etc.).

Usage

```r
PlotTernary(x, y = NULL, z = NULL, args.grid = NULL, lbl = NULL, main = "",...)
```

Arguments

- `x` vector of first variable. Will be placed on top of the triangle.
- `y` vector of second variable (the right corner).
- `z` vector of third variable (on the left corner).
- `args.grid` list of additional arguments for the grid. Set this argument to `NA` if no grid should be drawn. The usual color and linetype will be used.
- `main` overall title for the plot.
- `lbl` the labels for the corner points. Default to the names of `x`, `y`, `z`.
- `...` the dots are sent to `points`

Author(s)

Andri Signorell <andri@signorell.net> based on example code by W. N. Venables and B. D. Ripley mentioned

References

See Also

example in *Skye*
Examples

```r
# some random data in three variables
c1 <- runif(25)
c2 <- runif(25)
c3 <- runif(25)

# basic plot
par(mfrow=c(1, 2))
plotternary(c1, c2, c3, args.grid=NA)

## Not run:
# plot with different symbols and a grid using a dataset from MASS
data(Skye, package="MASS")

plotternary(Skye[c(1,3,2)], pch=15, col=red, main="Skye",
            lbl=c("A Sodium", "F Iron", "M Magnesium"))

## End(Not run)
```

PlotTreemap

Create a Treemap

Description

Creates a treemap where rectangular regions of different size, color, and groupings visualize the elements.

Usage

```r
PlotTreemap(x, grp = NULL, labels = NULL, cex = 1, text.col = "black",
            col = rainbow(length(x)), labels.grp = NULL, cex.grp = 3,
            text.col.grp = "black", border.grp = "grey50",
            lwd.grp = 5, main = "")
```

Arguments

- **x** a vector storing the values to be used to calculate the areas of rectangles.
- **grp** a vector specifying the group (i.e. country, sector, etc.) to which each element belongs.
- **labels** a vector specifying the labels.
- **cex** the character extension for the area labels. Default is 1.
- **text.col** the text color of the area labels. Default is "black".
- **col** a vector storing the values to be used to calculate the color of rectangles.
- **labels.grp** a character vector specifying the labels for the groups.
- **cex.grp** the character extension for the group labels. Default is 3.
text.col.grp the text color of the group labels. Default is "black".
border.grp the border color for the group rectangles. Default is "grey50". Set this to NA if no special border is desired.
lwd.grp the lineweight of the group borders. Default is 5.
main a title for the plot.

Details

A treemap is a two-dimensional visualization for quickly analyzing large, hierarchical data sets.
Treemaps are unique among visualizations because they provide users with the ability to see both a high level overview of data as well as fine-grained details. Users can find outliers, notice trends, and perform comparisons using treemaps. Each data element contained in a treemap is represented with a rectangle, or a cell. Treemap cell arrangement, size, and color are each mapped to an attribute of that element. Treemap cells can be grouped by common attributes. Within a group, larger cells are placed towards the bottom left, and smaller cells are placed at the top right.

Value

returns a list with groupwise organized midpoints in x and y for the rectangles within a group and for the groups themselves.

Author(s)

Andri Signorell <andri@signorell.net>, strongly based on code from Jeff Enos <jeff@kanecap.com>

See Also

PlotCirc, mosaicplot, barplot

Examples

set.seed(1789)
N <- 20
area <- rlnorm(N)

PlotTreemap(x=sort(area, decreasing=TRUE), labels=letters[1:20], col=Pal("RedToBlack", 20))

grp <- sample(x=1:3, size=20, replace=TRUE, prob=c(0.2,0.3,0.5))

z <- Sort(data.frame(area=area, grp=grp), c("grp","area"), decreasing=c(FALSE,TRUE))
z$col <- SetAlpha(c("steelblue","green","yellow")[z$grp],
 unlist(lapply(split(z$area, z$grp),
 function(...) LinScale(..., newlow=0.1, newhigh=0.6))))

PlotTreemap(x=z$area, grp=z$grp, labels=letters[1:20], col=z$col)

b <- PlotTreemap(x=z$area, grp=z$grp, labels=letters[1:20], labels.grp=NA, col=z$col, main="Treemap")
the function returns the midpoints of the areas
extract the group midpoints from b
mid <- do.call(rbind, lapply(lapply(b, "[, 1), data.frame))

and draw some visible text
BoxedText(x=mid$grp.x, y=mid$grp.y, labels=LETTERS[1:3], cex=3, border=NA,
col=SetAlpha("white", 0.7))

PlotVenn

Plot a Venn Diagram

Description

This function produces Venn diagrams for up to 5 datasets.

Usage

```r
PlotVenn(x, col = "transparent", plotit = TRUE, labels = NULL)
```

Arguments

- **x**: the list with the sets to be analysed. Those can be factors or something coercable to a factor.
- **col**: the colors for the sets on the plot.
- **plotit**: logical. Should a plot be produced or just the results be calculated.
- **labels**: special labels for the plot. By default the names of the list x will be used. If those are missing, the LETTERS A..E will be chosen. Set this argument to NA, if no labels at all should be plotted.

Details

The function calculates the necessary frequencies and plots the venn diagram.

Value

- a list with 2 elements, the first contains a table with the observed frequencies in the given sets. The second returns a data.frame with the xy coordinates for the labels in the venn diagram, the specific combination of factors and the frequency in that intersection area. The latter can be 0 as well.

Author(s)

Andri Signorell <andri@signorell.net>
References

Examples

```r
element <- function() paste(sample(LETTERS, 5, replace=TRUE), collapse="")
group <- replicate(1000, element())

GroupA <- sample(group, 400, replace=FALSE)
GroupB <- sample(group, 750, replace=FALSE)
GroupC <- sample(group, 250, replace=FALSE)
GroupD <- sample(group, 300, replace=FALSE)

x <- list(GroupA, GroupB, GroupC, GroupD)
x

PlotVenn(x=list(GroupA, GroupB))
PlotVenn(x=list(set_1=GroupA, set_2=GroupB))
PlotVenn(x=list(GroupA, GroupB), labels=c("English","Spanish"))

PlotVenn(x=x[1:3])
PlotVenn(x=x[1:4], col=SetAlpha(c("blue","red","yellow","green","lightblue"), 0.2))

r.venn <- PlotVenn(x=x[1:5], col=SetAlpha(c("blue","red","yellow","green","lightblue"), 0.2))
r.venn
```

PlotViolin

Plot Violins Instead of Boxplots

Description

This function serves the same utility as side-by-side boxplots, only it provides more detail about the different distribution. It plots violins instead of boxplots. That is, instead of a box, it uses the density function to plot the density. For skewed distributions, the results look like "violins". Hence the name.

Usage

```r
PlotViolin(x, ...)
```

Default S3 method:
```r
PlotViolin(x, ..., horizontal = FALSE, bw = "SJ", na.rm = FALSE,
          names = NULL, args.boxplot = NULL)
```

S3 method for class 'formula'
```r
PlotViolin(formula, data, subset, na.action, ...)
```
Arguments

- **x**: Either a sequence of variable names, or a data frame, or a model formula
- **horizontal**: logical indicating if the density plots should be horizontal; default FALSE means vertical arrangement.
- **bw**: the smoothing bandwidth (method) being used by density. bw can also be a character string giving a rule to choose the bandwidth. See bw.nrd. The default, has been switched from "nrd0" to "SJ", following the general recommendation in Venables & Ripley (2002). In case of a method, the average computed bandwidth is used.
- **na.rm**: logical, should NAs be omitted? The density function can’t do with missings. Defaults to FALSE.
- **names**: a vector of names for the groups.
- **formula**: a formula, such as y ~ grp, where y is a numeric vector of data values to be split into groups according to the grouping variable grp (usually a factor).
- **data**: a data.frame (or list) from which the variables in formula should be taken.
- **subset**: an optional vector specifying a subset of observations to be used for plotting.
- **na.action**: a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").
- **...**: The dots are passed to polygon. Notably, you can set the color to red with col="red", and a border color with border="blue".
- **args.boxplot**: list of arguments for a boxplot to be superposed to the densityplot. By default (NULL) a black boxplot will be drawn. Set this to NA to suppress the boxplot.

Value

If a boxplot was drawn then the function returns a list with the following components:

- **stats**: a matrix, each column contains the extreme of the lower whisker, the lower hinge, the median, the upper hinge and the extreme of the upper whisker for one group/plot. If all the inputs have the same class attribute, so will this component.
- **n**: a vector with the number of observations in each group.
- **conf**: a matrix where each column contains the lower and upper extremes of the notch.
- **out**: the values of any data points which lie beyond the extremes of the whiskers.
- **group**: a vector of the same length as out whose elements indicate to which group the outlier belongs.
- **names**: a vector of names for the groups.

Note

This function is based on violinplot (package UsingR). Some adaptions were made in the interface, such as to accept the same arguments as boxplot does. Moreover the function was extended by the option to have a boxplot superposed.
Author(s)

John Verzani, Andri Signorell <andri@signorell.net>

References

The code is based on the boxplot function from R/base.

See Also

boxplot, PlotMultiDens, density

Examples

make a "violin"
x <- c(rnorm(100), rnorm(50,5))

PlotViolin(x, col = "brown")

par(mfrow=c(1,2))
f <- factor(rep(1:5, 30))
make a quintet. Note also choice of bandwidth
PlotViolin(x~f, col = SetAlpha("steelblue",0.3), bw = "SJ", main="Vertical")

and the same, but in horizontal arrangement
PlotViolin(x~f, col = SetAlpha("steelblue",0.3), bw = "SJ", horizontal = TRUE, las=1, main="Horizontal")

example taken from boxplot
boxplot(count ~ spray, data = InsectSprays, col = "lightgray", main="Boxplot")
PlotViolin(count ~ spray, data = InsectSprays, col = "lightgray", main="Violinplot")

groupwise densityplots defined the same way as in boxplot
boxplot(len ~ supp*dose, data = ToothGrowth,
 main = "Guinea Pigs' Tooth Growth",
 xlab = "Vitamin C dose mg", ylab = "tooth length",
 col=c("yellow", "orange"), lty=c(1,2))

b <- PlotViolin(len ~ supp*dose, data = ToothGrowth,
 main = "Guinea Pigs' Tooth Growth",
 xlab = "Vitamin C dose mg", ylab = "tooth length",
 col=c("yellow", "orange"), lty=c(1,2))

use points, if the medians deserve special attention
points(x=1:6, y=b$stats[3,], pch=21, bg="white", col="black", cex=1.2)
PlotWeb

Plot a Web of Connected Points

Description

This plot can be used to graphically display a correlation matrix by using the linewidth between the nodes in proportion to the correlation of two variables. It will place the elements homogenously around a circle and draw connecting lines between the points.

Usage

\[
\text{PlotWeb}(m, \text{col} = \text{c(red, hblue)}, \text{lty} = \text{NULL}, \text{lwd} = \text{NULL}, \text{args.legend} = \text{NULL}, \\
\text{pch} = 21, \text{pt.cex} = 2, \text{pt.col} = "\text{black}, \text{pt.bg} = "\text{darkgrey"}, \\
\text{cex.lab} = 1, \text{las} = 1, \text{adj} = \text{NULL}, \text{dist} = 0.5, \ldots)
\]

Arguments

- **m**: a symmetric matrix of numeric values
- **col**: the color for the connecting lines
- **lty**: the line type for the connecting lines, the default will be `par("lty")`.
- **lwd**: the line widths for the connecting lines. If left to `NULL` it will be linearly scaled between the minimum and maximum value of `m`.
- **args.legend**: list of additional arguments to be passed to the `legend` function. Use `args.legend = NA` if no legend should be added.
- **pch**: the plotting symbols appearing in the plot, as a non-negative numeric vector (see `points`, but unlike there negative values are omitted) or a vector of 1-character strings, or one multi-character string.
- **pt.cex**: expansion factor(s) for the points.
- **pt.col**: the foreground color for the points, corresponding to its argument `col`.
- **pt.bg**: the background color for the points, corresponding to its argument `bg`.
- **las**: alignment of the labels, 1 means horizontal, 2 radial and 3 vertical.
- **adj**: adjustments for the labels. (Left: 0, Right: 1, Mid: 0.5)
- **dist**: gives the distance of the labels from the outer circle. Default is 2.
- **cex.lab**: the character extension for the labels.
- **...**: dots are passed to `plot`.

Details

The function uses the lower triangular matrix of `m`, so this is the order colors, linewidth etc. must be given, when the defaults are to be overrun.
Value

A list of x and y coordinates, giving the coordinates of all the points drawn, useful for adding other elements to the plot.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

PlotCorr

Examples

```r
m <- cor(d.pizza[, which(sapply(d.pizza, IsNumeric, na.rm=TRUE))[-c(1:2)]], use="pairwise.complete.obs")
PlotWeb(m=m, col=c(hred, hblue), main="Pizza Correlation")

# let's describe only the significant correlations and start with a dataset
d.m <- d.pizza[, which(sapply(d.pizza, IsNumeric, na.rm=TRUE))[-c(1:2)]]

# get the correlation matrix
m <- cor(d.m, use="pairwise.complete.obs")

# let's get rid of all non significant correlations
c.test <- function(x, y) cor.test(x, y)$p.value, symmetric=TRUE

c.test <- pairapply(d.m, function(x, y) cor.test(x, y)$p.value, symmetric=TRUE)

# ok, got all the p-values, now replace > 0.05 with NAs
m[ctest > 0.05] <- NA

# how does that look like now?
PlotWeb(m, las=2, cex=1.2)

# define line widths
PlotWeb(m, lwd=abs(m[lower.tri(m)] * 10))
```

PMT

Periodic Payment of an Annuity.

Description

PMT computes the periodic payment of an annuity. IPMT calculates what portion of a period payment is going towards interest in a particular period and PPMT what portion of a period payment is going towards principal in a particular period. RBAL yields the remaining balance in a particular period.
Usage

PMT(rate, nper, pv, fv = 0, type = 0)
IPMT(rate, per, nper, pv, fv = 0, type = 0)
PPMT(rate, per, nper, pv, fv = 0, type = 0)
RBAL(rate, per, nper, pv, fv = 0, type = 0)

Arguments

rate
specifies the interest rate.

per
specifies the period of the payment to be applied to interest or to principal.

nper
specifies the number of payment periods.

pv
specifies the present value or the lump-sum amount that a series of future payments is worth currently. pv can be 0 if a positive fv argument is included.

fv
specifies the future value or a cash balance that you want to attain after the last payment is made. Default is 0.

type
specifies the number 0 or 1 and indicates when payments are due. Default is 0.

Value

a numeric value

Author(s)

Andri Signorell <andri@signorell.net>

See Also

NPV, SLN

Examples

original principal: 20'000
loan term (years): 5
annual interest rate: 8%
annual payment: ~4'156.847

simple amortization schedule
cbind(
 year = 1:5,
 payment = PMT(rate=0.08, nper=5, pv=20000, fv=-5000, type=0),
 interest = IPMT(rate=0.08, per=1:5, nper=5, pv=20000, fv=-5000, type=0),
 principal = PPMT(rate=0.08, per=1:5, nper=5, pv=20000, fv=-5000, type=0),
 balance = RBAL(rate=0.08, per=1:5, nper=5, pv=20000, fv=-5000, type=0)
)

year payment interest principal balance
[1,] 1 -4156.847 -1600.0000 -2556.847 17443.153
[2,] 2 -4156.847 -1395.4523 -2761.395 14681.759
[3,] 3 -4156.847 -1174.5407 -2982.306 11699.452
Description

Computes the confidence intervals of a poisson distributed variable’s lambda. Several methods are implemented, see details.

Usage

PoissonCI(x, n = 1, conf.level = 0.95, sides = c("two.sided","left","right"),
method = c("exact", "score", "wald", "byar"))

Arguments

x
number of events.
n
time base for event count.
conf.level
confidence level, defaults to 0.95.
sides
a character string specifying the side of the confidence interval, must be one of "two.sided" (default), "left" or "right". You can specify just the initial letter. "left" would be analogue to a hypothesis of "greater" in a t.test.
method
character string specifying which method to use; can be one out of "wald", "score", "exact" or "byar". Method can be abbreviated. See details. Defaults to "score".

Details

The Wald interval uses the asymptotic normality of the test statistic.
Byar’s method is quite a good approximation. Rothman and Boice (1979) mention that these limits were first proposed by Byar (unpublished).

Value

A vector with 3 elements for estimate, lower confidence intervall and upper for the upper one.

Author(s)

Andri Signorell <andri@signorell.net>
References

See Also

poisson.test, BinomCI, MultinomCI

Examples

```r
# the horse kick example
count <- 0:4
deaths <- c(144, 91, 32, 11, 2)

n <- sum(deaths)
x <- sum(count * deaths)

lambda <- x/n

PoissonCI(x=x, n=n, method = c("exact", "score", "wald", "byar"))

exp <- dpois(0:4, lambda) * n

barplot(rbind(deaths, exp * n/sum(exp)), names=0:4, beside=TRUE, col=c(hred, hblue), main = "Deaths from Horse Kicks", xlab = "count")

legend("topright", legend=c("observed", "expected"), fill=c(hred, hblue), bg="white")

## SMR, Welsh Nickel workers

PoissonCI(x=137, n=24.19893)
```

PolarGrid

Plot a Grid in Polar Coordinates

Description

PolarGrid adds a polar grid to an existing plot. The number of radial gridlines are set by ntheta and the tangential lines by nr. Labels for the angular grid and the radial axis can be provided.

Usage

```r
PolarGrid(nr = NULL, ntheta = NULL, col = "lightgray", lty = "dotted", lwd = par("lwd"), rlabels = NULL, alabels = NULL, lblradians = FALSE, cex.lab = 1, las = 1, adj = NULL, dist = NULL)
```
Arguments

nr number of circles. When NULL, as per default, the grid aligns with the tick marks on the corresponding default axis (i.e., tickmarks as computed by axTicks). When NA, no circular grid lines are drawn.

ntheta number of radial grid lines. Defaults to 12 uniformly distributed between 0 and 2*pi (each pi/3).

col character or (integer) numeric; color of the grid lines.

lty character or (integer) numeric; line type of the grid lines.

lwd non-negative numeric giving line width of the grid lines.

rlabels the radius labels. Use NA if no labels should be to be added.

alabels the labels for the angles, they are printed on a circle outside the plot. Use NA for no angle labels.

lblradians logic, defines if angle labels will be in degrees (default) or in radians.

cex.lab the character extension for the labels.

las alignment of the labels, 1 means horizontal, 2 radial and 3 vertical.

adj adjustments for the labels. (Left: 0, Right: 1, Mid: 0.5) The default is 1 for the levels on the right side of the circle, 0 for labels on the left and 0.5 for labels exactly on north on south.

dist gives the radius for the labels, in user coordinates. Default is par("usr")[2] * 1.07.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

PlotPolar

Examples

Canvas(xlim=c(-5,5), xpd=TRUE)
PolarGrid()

Canvas(xlim=c(-5,5), xpd=TRUE)
PolarGrid(nr=5, ntheta=6)

Canvas(xlim=c(-5,5), xpd=TRUE)
PolarGrid(ntheta=36, rlabels=NA, lblradians=TRUE)
PostHocTest

Description

A convenience wrapper for computing post-hoc test after having calculated an ANOVA.

Usage

PostHocTest(x, ...)

S3 method for class 'aov'
PostHocTest(x, which = NULL,
 method = c("hsd", "bonferroni", "1sd", "scheffe", "newmankeuls", "duncan"),
 conf.level = 0.95, ordered = FALSE, ...)

S3 method for class 'table'
PostHocTest(x, method = c("none", "fdr", "BH", "BY", "bonferroni",
 "holm", "hochberg", "hommel"),
 conf.level = 0.95, ...)

S3 method for class 'PostHocTest'
print(x, digits = getOption("digits", 3), ...)
S3 method for class 'PostHocTest'
plot(x, ...)

Arguments

x
 an aov object.

method
 one of "hsd", "bonf", "1sd", "scheffe", "newmankeuls", defining the method
 for the pairwise comparisons.
 For the post hoc test of tables the methods of \texttt{p.adjust} can be supplied. See the
 detail there.

which
 a character vector listing terms in the fitted model for which the intervals should
 be calculated. Defaults to all the terms.

conf.level
 a numeric value between zero and one giving the family-wise confidence level
 to use. If this is set to NA, just a matrix with the p-values will be returned.

ordered
 a logical value indicating if the levels of the factor should be ordered according
 to increasing average in the sample before taking differences. If ordered is \texttt{TRUE}
 then the calculated differences in the means will all be positive. The significant
 differences will be those for which the lower end point is positive.
 This argument will be ignored if method is not either \texttt{hsd} or \texttt{newmankeuls}.

digits
 controls the number of fixed digits to print.

... Further arguments, not used so far.
Details

The function is designed to consolidate a couple of post-hoc tests with the same interface for input and output.

Choosing Tests
Different Post Hoc tests use different methods to control FW and PE. Some tests are very conservative. Conservative tests go to great lengths to prevent the user from committing a Type I error. They use more stringent criterion for determining significance. Many of these tests become more and more stringent as the number of groups increases (directly limiting the FW and PE error rate). Although these tests buy you protection against Type I error, it comes at a cost. As the tests become more stringent, you loose Power (1-B). More Liberal tests, buy you Power but the cost is an increased chance of Type I error. There is no set rule for determining which test to use, but different researchers have offered some guidelines for choosing. Mostly it is an issue of pragmatics and whether the number of comparisons exceeds K-1.

Fisher’s LSD
The Fisher LSD (Least Significant Different) sets Alpha Level per comparison. Alpha = .05 for every comparison. df = df error (i.e. df within). This test is the most liberal of all Post Hoc tests. The critical t for significance is unaffected by the number of groups. This test is appropriate when you have 3 means to compare. In general the alpha is held at .05 because of the criterion that you can’t look at LSD’s unless the Anova is significant. This test is generally not considered appropriate if you have more than 3 means unless there is reason to believe that there is no more than one true Null Hypothesis hidden in the means.

Dunn’s (Bonferroni)
Dunn’s t-test is sometimes referred to as the Bonferroni t because it used the Bonferroni PE correction procedure in determining the critical value for significance. In general, this test should be used when the number of comparisons you are making exceeds the number of degrees of freedom you have between groups (e.g. K-1). This test sets alpha per experiment; Alpha = (.05)/c for every comparison. df = df error (c = number of comparisons (K(K-1))/2) This test is extremely conservative and rapidly reduces power as the number of comparisons being made increase.

Newman-Keuls
Newman-Keuls is a step down procedure that is not as conservative as Dunn’s t test. First, the means of the groups are ordered (ascending or descending) and then the largest and smallest means are tested for significant differences. If those means are different, then test smallest with next largest, until you reach a test that is not significant. Once you reach that point then you can only test differences between means that exceed the difference between the means that were found to be non-significant. Newman-Keuls is perhaps one of the most common Post Hoc test, but it is a rather controversial test. The major problem with this test is that when there is more than one true Null Hypothesis in a set of means it will overestimate they FW error rate. In general we would use this when the number of comparisons we are making is larger than K-1 and we don’t want to be as conservative as the Dunn’s test is.

Tukey’s HSD
Tukey HSD (Honestly Significant Difference) is essentially like the Newman-Keul, but the tests between each mean are compared to the critical value that is set for the test of the means that are furthest apart (rmax e.g. if there are 5 means we use the critical value determined for the test of X1 and X5). This Method corrects for the problem found in the Newman-Keuls where the FW is inflated when there is more than one True Null Hypothesis in a set of means. It buys protection against Type I error, but again at the cost of Power. It tends to be the most common test and preferred.
test because it is very conservative with respect to Type I error when the Null hypothesis is true. In general, HSD is preferred when you will make all the possible comparisons between a large set of means (Six or more means).

Scheffe
The Scheffe Test is designed to protect against a Type I error when all possible complex and simple comparisons are made. That is we are not just looking the possible combinations of comparisons between pairs of means. We are also looking at the possible combinations of comparisons between groups of means. Thus Scheffe is the most conservative of all tests. Because this test does give us the capacity to look at complex comparisons, it essentially uses the same statistic as the Linear Contrasts tests. However, Scheffe uses a different critical value (or at least it makes an adjustment to the critical value of F). This test has less power than the HSD when you are making Pairwise (simple) comparisons, but it has more power than HSD when you are making Complex comparisons. In general, only use this when you want to make many Post Hoc complex comparisons (e.g. more than K-1).

Tables
For tables pairwise chi-square test can be performed, either without correction or with correction for multiple testing following the logic in \texttt{p.adjust}.

Value
an object of type "PostHocTest", which will either be
A) a list of data.frames containing the mean difference, lower ci, upper ci and the p-value, if a conf.level was defined (something else than NA) or
B) a list of matrices with the p-values, if conf.level has been set to NA.

Author(s)
Andri Signorell <andri@signorell.net>

See Also
\texttt{TukeyHSD}, \texttt{aov}, \texttt{pairwise.t.test}, \texttt{ScheffeTest}

Examples
PostHocTest(aov(breaks ~ tension, data = warpbreaks), method = "lsd")
PostHocTest(aov(breaks ~ tension, data = warpbreaks), method = "hsd")
PostHocTest(aov(breaks ~ tension, data = warpbreaks), method = "scheffe")

r.aov <- aov(breaks ~ tension, data = warpbreaks)

compare p-values:
round(cbind(
 lsd= PostHocTest(r.aov, method="lsd")$tension[,"pval"]
 , bonf=PostHocTest(r.aov, method="bonf")$tension[,"pval"]
), 4)

only p-values by setting conf.level to NA
PostHocTest(aov(breaks ~ tension, data = warpbreaks), method = "hsd",
 conf.level=NA)
Description

Compute power of test or determine parameters to obtain target power (same as power.anova.test).

Usage

power.chisq.test(n = NULL, w = NULL, df = NULL, sig.level = 0.05, power = NULL)

Arguments

n total number of observations.
w effect size.
df degree of freedom (depends on the chosen test).
sig.level Significance level (Type I error probability).
power Power of test (1 minus Type II error probability).

Details

Exactly one of the parameters w, n, power or sig.level must be passed as NULL, and this parameter is determined from the others. Note that the last one has non-NULL default, so NULL must be explicitly passed, if you want to compute it.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented with 'method' and 'note' elements.

Note

uniroot is used to solve power equation for unknowns, so you may see errors from it, notably about inability to bracket the root when invalid arguments are given.

Author(s)

Stephane Champely <champely@univ-lyon1.fr>
but this is a mere copy of Peter Dalgaard’s work on power.t.test

References

PowerPoint Interface

Add Slides, Insert Texts and Plots to PowerPoint

Description

A couple of functions to get R-stuff into MS-Powerpoint.

GetNewPP() starts a new instance of PowerPoint and returns its handle. A new presentation with one empty slide will be created thereby. The handle is needed for addressing the presentation afterwards.

GetCurrPP() will look for a running PowerPoint instance and return its handle. NULL is returned if nothing’s found. PpAddSlide() inserts a new slide into the active presentation.

PpPlot() inserts the active plot into PowerPoint. The image is transferred by saving the picture to a file in R and inserting the file in PowerPoint. The format of the plot can be selected, as well as crop options and the size factor for inserting.

PpText() inserts a new textbox with given text and box properties.

Usage

GetNewPP(visible = TRUE, template = "Normal")
GetCurrPP()

PpAddSlide(pos = NULL, pp = DescToolsOptions("lastPP"))

PpPlot(type = "png", crop = c(0, 0, 0, 0), picscale = 100, x = 1, y = 1, height = NA, width = NA, res=200, dfact=1.6, pp = DescToolsOptions("lastPP"))

PpText(txt, x = 1, y = 1, height = 50, width = 100, fontname = "Calibri", fontsize = 18, bold = FALSE, italic = FALSE, col = "black", bg = "white", hasFrame = TRUE, pp = DescToolsOptions("lastPP"))

See Also

power.t.test

Examples

Exercise 7.1 p. 249 from Cohen (1988)
power.chisq.test(w=0.289, df=(4-1), n=100, sig.level=0.05)

Exercise 7.3 p. 251
power.chisq.test(w=0.346, df=(2-1)*(3-1), n=140, sig.level=0.01)

Exercise 7.8 p. 270
power.chisq.test(w=0.1, df=(5-1)*(6-1), power=0.80, sig.level=0.05)
Arguments

visible logical, should PowerPoint made visible by `getnewpp()`? Defaults to TRUE.

template the name of the template to be used for the new presentation.
pos position of the new inserted slide within the presentation.
type the format for the picture file, default is "png".
crop crop options for the picture, defined by a 4-elements-vector. The first element is the bottom side, the second the left and so on.
picscale scale factor of the picture in percent, default ist 100.
x, y left/upper xy-coordinate for the plot or for the textbox.
height height in cm, this overrides the picscale if both are given.
width width in cm, this overrides the picscale if both are given.
res resolution for the png file, defaults to 200.
dfact the size factor for the graphic.
txt text to be placed in the textbox
fontname used font for textbox
fontsize used fontsize for textbox
bold logic. Text is set bold if this is set to TRUE (default is FALSE).
italic logic. Text is set italic if this is to TRUE (default is FALSE).
col font color, defaults to "black".
bg background color for textbox defaults to "white".
hasFrame logical. Defines if a textbox is to be framed. Default is TRUE.

pp the pointer to a PowerPoint instance, can be a new one, created by `getnewpp()` or the last created by `DescToolsOptions("lastPP")` (default).

Details

See PowerPoint-objectmodel for further informations.

Value

The functions return the pointer to the created object.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

`WrdPlot`
Examples

```r
# Not run: # Windows-specific example

# let's have some graphic
plot(1, type="n", axes=FALSE, xlab="", ylab="", xlim=c(0,1), ylim=c(0,1))
rect(0,0,1,1,col="black")
segments(x0=0.5, y0=seq(0.632,0.67, length.out=100),
         y1=seq(0.5,0.6, length.out=100), x1=1, col=rev(rainbow(100)))
polygon(x=c(0.35,0.65,0.5), y=c(0.5,0.5,0.75), border="white",
        col="black", lwd=2)
segments(x0=0,y0=0.52, x1=0.43, y1=0.64, col="white", lwd=2)
x1 <- seq(0.549,0.578, length.out=50)
segments(x0=0.43, y0=0.64, x1=x1, y1=-tan(pi/3)* x1 + tan(pi/3) * 0.93,
         col=rgb(1,1,0.35))

# get a handle to a new PowerPoint instance
pp <- GetNewPP()
# insert plot with a specified height
PpPlot(pp=pp, x=150, y=150, height=10, width=10)
PpText("Remember\n", fontname="Arial", x=200, y=70, height=30, fontsize=14,
        bold=TRUE, pp=pp, bg="lemonchiffon", hasFrame=TRUE)
PpAddSlide(pp=pp)
# crop the picture
pic <- PpPlot(pp=pp, x=1, y=200, height=10, width=10, crop=c(9,9,0,0))

# some more automatic procedure
pp <- GetNewPP()
PpText("Hello to my presentation", x=100, y=100, fontsize=32, bold=TRUE,
        width=300, hasFrame=FALSE, col="blue", pp=pp)
for(i in 1:4){
  barplot(1:4, col=i)
  PpAddSlide(pp=pp)
  PpPlot(height=15, width=21, x=50, y=50, pp=pp)
  PpText(gettextf("This is my barplot nr %s", i), x=100, y=10, width=300, pp=pp)
}
```

End(Not run)

Description

Density, distribution function, quantile function and random generation for the “Reverse” Gumbel distribution with parameters location and scale.
Usage

dRevGumbel (x, location = 0, scale = 1)
pRevGumbel (q, location = 0, scale = 1)
qRevGumbel (p, location = 0, scale = 1)
rRevGumbel (n, location = 0, scale = 1)

qRevGumbelExp(p)

Arguments

x, q numeric vector of abscissa (or quantile) values at which to evaluate the density or distribution function.
p numeric vector of probabilities at which to evaluate the quantile function.
location location of the distribution
scale scale (> 0) of the distribution.
n number of random variates, i.e., length of resulting vector of rRevGumbel(..).

Value

a numeric vector, of the same length as x, q, or p for the first three functions, and of length n for rRevGumbel().

Author(s)

Werner Stahel; partly inspired by package VGAM. Martin Maechler for numeric cosmetic.

See Also

the Weibull distribution functions in R’s stats package.

Examples

curve(pRevGumbel(x, scale= 1/2), -3,2, n=1001, col=1, lwd=2,
main = "RevGumbel(x, scale = 1/2)")
abline(h=0:1, v = 0, lty=3, col = "gray30")
curve(dRevGumbel(x, scale= 1/2), n=1001, add=TRUE,
col = (col.d <- adjustcolor(2, 0.5)), lwd=3)
legend("left", c("cdf","pdf"), col=c("black", col.d), lwd=2:3, bty="n")

med <- qRevGumbel(0.5, scale=1/2)
cat("The median is:", format(med),"\n")
Primes

Find All Primes Less Than n

Description

Find all prime numbers aka ‘primes’ less than \(n \).

Uses an obvious sieve method and some care, working with logical and integers to be quite fast.

Usage

```r
Primes(n)
```

Arguments

- \(n \)
 a (typically positive integer) number.

Details

As the function only uses \(\text{max}(n) \), \(n \) can also be a vector of numbers.

Value

numeric vector of all prime numbers \(\leq n \).

Note

This function was previously published in the package `sfsmisc` as `primes` and has been integrated here without logical changes.

Author(s)

Bill Venables (\(\leq n \)); Martin Maechler gained another 40\% speed, working with logicals and integers.

See Also

`factorize`, `gcd`, `lcm`, `isprime`

Examples

```r
(p1 <- Primes(100))
system.time(p1k <- Primes(1000)) # still lightning ..

stopifnot(length(p1k) == 168)
```
Description

The goodness of fit of the logistic regression model can be expressed by some variants of pseudo R^2 squared statistics, most of which being based on the deviance of the model.

Usage

PseudoR2(x, which = NULL)

Arguments

- x: the glm, polr or multinom model object to be evaluated.

Details

Cox and Snell’s R^2 is based on the log likelihood for the model compared to the log likelihood for a baseline model. However, with categorical outcomes, it has a theoretical maximum value of less than 1, even for a "perfect" model.

Nagelkerke’s R^2 is an adjusted version of the Cox and Snell’s R^2 that adjusts the scale of the statistic to cover the full range from 0 to 1.

McFadden’s R^2 is another version, based on the log-likelihood kernels for the intercept-only model and the full estimated model.

Value

the value of the specific statistic. AIC, LogLik, LogLikNull and G2 will only be reported with option "all".

- AldrichNelson: AldrichNelson pseudo-R^2
- McFadden: McFadden pseudo-R^2
- McFaddenAdj: McFadden adjusted pseudo-R^2
- CoxSnell: Cox and Snell pseudo-R^2 (also known as ML pseudo-R^2)
- Nagelkerke: Nagelkerke pseudo-R^2 (also known as CraggUhler R^2)
- McKelveyZavoina: McKelvey and Zavoina pseudo-R^2
- Effron: Effron pseudo-R^2
- Tjur: Tjur’s pseudo-R^2
- AIC: Akaike’s information criterion
PseudoR2

LogLik
log-Likelihood for the fitted model (by maximum likelihood)

LogLikNull
log-Likelihood for the null model. The null model will include the offset, and an intercept if there is one in the model.

G2
differenz of the null deviance - model deviance

Author(s)
Andri Signorell <andri@signorell.net>

References

See Also
logLik, AIC, BIC

Examples
r.glm <- glm(Survived ~ ., data=Untable(Titanic), family=binomial)
PseudoR2(r.glm)

PseudoR2(r.glm, c("McFadden", "Nagel"))
Description

PtInPoly works out, whether XY-points lie within the boundaries of a given polygon.

Note: Points that lie on the boundaries of the polygon or vertices are assumed to lie within the polygon.

Usage

PtInPoly(pnts, poly.pnts)

Arguments

pnts a 2-column matrix or dataframe defining locations of the points of interest
poly.pnts a 2-column matrix or dataframe defining the locations of vertices of the polygon of interest

Details

The algorithm implements a sum of the angles made between the test point and each pair of points making up the polygon. The point is interior if the sum is 2pi, otherwise, the point is exterior if the sum is 0. This works for simple and complex polygons (with holes) given that the hole is defined with a path made up of edges into and out of the hole.

This sum of angles is not able to consistently assign points that fall on vertices or on the boundary of the polygon. The algorithm defined here assumes that points falling on a boundary or polygon vertex are part of the polygon.

Value

A 3-column dataframe where the first 2 columns are the original locations of the points. The third column (names pip) is a vector of binary values where 0 represents points not with the polygon and 1 within the polygon.

Author(s)

Jeremy VanDerWal <jjvanderwal@gmail.com>

Examples

#define the points and polygon
pnts <- expand.grid(x=seq(1,6,0.1), y=seq(1,6,0.1))
poly.pnts <- cbind(x=c(2,3,3.5,3.5,3,3.5,3,3.5,3,4,4,5,5,4,3,3,3,2,2,1,1,1,2),
 y=c(1,2,2.5,2,2,1,2,3,4,5,4,5,4,3,3,4,5,4,3,2,2))
#plot the polygon and all points to be checked
plot(rbind(polypts, pts))
polygon(polypts, col='#99999999')

c CREATE CHECK WHICH POINTS FALL WITHIN THE POLYGON
out <- PtInPoly(pts, polypts)
head(out)

IDENTIFY POINTS NOT IN THE POLYGON WITH AN X
points(out[which(out$pip==0), 1:2], pch='X')

Quantile Weighted Quantiles

Description

Compute weighted quantiles (Eurostat definition).

Usage

Quantile(x, weights = NULL, probs = seq(0, 1, 0.25), na.rm = FALSE,
 names = TRUE, type = 7)

Arguments

x a numeric vector.
weights an optional numeric vector giving the sample weights.
probs numeric vector of probabilities with values in [0, 1].
na.rm a logical indicating whether missing values in x should be omitted.
names logical; if true, the result has a names attribute. Set to FALSE for speedup with many probs.
type an integer between 1 and 9 selecting one of the nine quantile algorithms detailed below to be used.

Details

The implementation strictly follows the Eurostat definition.

Value

A numeric vector containing the weighted quantiles of values in x at probabilities probs is returned. Unlike quantile, this returns an unnamed vector.

Author(s)

Andreas Alfons and Matthias Templ
Range

References

See Also
Median

Examples
Quantile(d.pizza$temperature, rep(c(1:3), length.out=nrow(d.pizza)))

<table>
<thead>
<tr>
<th>Range</th>
<th>(Robust) Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description
Determines the range of the data, which can possibly be trimmed before calculating the extreme values. The robust range version is calculated on the basis of the trimmed mean and variance (see Details).

Usage
Range(x, trim = NULL, robust = FALSE, na.rm = FALSE, ...)

Arguments
x an numeric vector.
trim the fraction (0 to 0.5) of observations to be trimmed from each end of x before the mean is computed. Values of trim outside that range are taken as the nearest endpoint. Default is 0 for robust=FALSE and 0.2 for robust=TRUE.
robust logical, determining whether the robust or the conventional range should be returned.
na.rm a logical value indicating whether NA values should be stripped before the computation proceeds.
... the dots are sent to RobRange and can be used to set fac (See details).

Details
The R base function range returns the minimum and maximum value of a numeric object. Here we return the span of a (possibly trimmed) numeric vector, say the difference of maximum and minimum value.

If robust is set to TRUE the function determines the trimmed mean m and then the "upper trimmed mean" s of absolute deviations from m, multiplied by fac (fac is 3 by default). The robust minimum is then defined as m-fac*s or min(x), whichever is larger, and similarly for the maximum.
Value

If \(\text{trim} \) is zero (the default), the arithmetic mean of the values in \(x \) is computed, as a numeric or complex vector of length one. If \(x \) is not logical (coerced to numeric), numeric (including integer) or complex, NA_real_ is returned, with a warning.

If \(\text{trim} \) is non-zero, a symmetrically trimmed mean is computed with a fraction of \(\text{trim} \) observations deleted from each end before the mean is computed.

Author(s)

Werner Stahel, ETH Zurich (robust range)
Andri Signorell <andri@signorell.net>

See Also

range, min, max

Examples

\[
\begin{align*}
 \text{x} & \leftarrow \text{c}(0:10, 50) \\
 \text{xm} & \leftarrow \text{Range(x)} \\
 \text{c(xm, Range(x, trim = 0.10))}
\end{align*}
\]

\[
\begin{align*}
 \text{x} & \leftarrow \text{c(rnorm(20), rnorm(3, 5, 20))} \\
 \text{Range(x, robust=TRUE)}
\end{align*}
\]

compared to
Range(x)

Recode

Recode Factor

Description

Combining or rearranging a factor can be tedious if it has many levels. Recode supports this step by accepting a direct definition of new levels by enumerating old levelnames as argument and adding an "elselevel" option. If new levels are given as integer values they will be translated in the according levels.

Usage

\[
\text{Recode(x, ..., elselevel = NA, use.empty = FALSE, num = FALSE)}
\]
Recode

Arguments

\[x \]
the factor whose levels are to be altered.

\[\ldots \]
the old levels (combined by c() if there are several) named with the new level:
newlevel_a=c("old_a", "old_b"), newlevel_b=c("old_c", "old_d").
See examples.

elselevel
the value for levels, which are not matched by newlevel’s list. If this is set to
NULL, the elselevels will be left unchanged. If set to NA (default) non matched
levels will be set to NA.

use.empty
logical. Defines how a new level, which can’t be found in x, should be handled.
Should it be left in the level’s list or be dropped? The default is FALSE, which
drops empty levels.

num
logical. If set to TRUE the result will be numeric.

Value

the factor having the new levels applied.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

factor, levels

There’s another possible solution in the package car.

Examples

set.seed(1984)
x <- factor(sample(1:15, 20, replace=TRUE))
levels(x) <- paste("old", levels(x), sep="_")
y <- Recode(x,
 "new_1" = c("old_1","old_4","old_5"),
 "new_2" = c("old_6","old_10","old_17"),
 "new_3" = c("old_12","old_13"),
 elselevel="other")
data.frame(x=x, y=y)

x <- factor(letters[1:6])
z1 <- Recode(x, AB=c("a","b"), CD=c("c","d"), elselevel="none of these")
z2 <- Recode(x, AB=c("a","b"), CD=c("c","d"), elselevel=NA)
z3 <- Recode(x, AB=c("a","b"), CD=c("c","d"), elselevel=NULL)
z4 <- Recode(x, AB=c("a","b"), GH=c("g","h"), elselevel=NA, use.empty=TRUE)
z5 <- Recode(x, AB=c("a","b"), GH=c("g","h"), elselevel=NA, use.empty=FALSE)
data.frame(z1, z2, z3, z4, z5)
Recycle

Recycle a List of Elements

Description
This function recycles all supplied elements to the maximal dimension.

Usage
Recycle(...)

Arguments
... a number of vectors of elements.

Value
a list of the supplied elements
attr(,"maxdim") contains the maximal dimension of the recycled list

Author(s)
Andri Signorell <andri@signorell.net>

See Also
rep.replicate

Examples
Recycle(x=1:5, y=1, s=letters[1:2])

z <- Recycle(x=letters[1:5], n=2:3, sep=c("-"," "))
sapply(1:attr(z, "maxdim"), function(i) paste(rep(z$x[i], times=z$n[i]), collapse=z$sep[i]))
Description

Computes the relative risk and its confidence intervals. Confidence intervals are calculated using normal approximation ("wald"), ("score") or by using oddsratio ("use.or")

Usage

relrisk(x, y = NULL, conf.level = NA,
 method = c("score", "wald", "use.or"), delta = 0.5, ...)

Arguments

 x a numeric vector or a 2x2 numeric matrix, resp. table.
 y NULL (default) or a vector with compatible dimensions to x. If y is provided, table(x, y, ...) will be calculated.
 conf.level confidence level. Default is NA, meaning no confidence intervals will be reported.
 method method for calculating odds ratio and confidence interval. Can be one out of "score", "wald", "use.or". Default is "score".
 delta small constant to be added to the numerator for calculating the log risk ratio (Wald method). Usual choice is 0.5 although there does not seem to be any theory behind this. (Dewey, M. 2006)

... further arguments are passed to the function table, allowing i.e. to set useNA.

Details

This function expects the following table structure:

<table>
<thead>
<tr>
<th></th>
<th>disease=0</th>
<th>disease=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>exposed=0 (ref)</td>
<td>n00</td>
<td>n01</td>
</tr>
<tr>
<td>exposed=1</td>
<td>n10</td>
<td>n11</td>
</tr>
</tbody>
</table>

If the table to be provided is not in the preferred form, use the function Rev() to "reverse" the table rows, -columns, or both.

Value

If conf.level is not NA then the result will be a vector with 3 elements for estimate, lower confidence intervall and upper for the upper one. Else the relative risk will be reported as a single value.

Author(s)

Andri Signorell <andri@signorell.net>, based on code of Yongyi Min and Michael Dewey
References

See Also

OddsRatio

Examples

```r
mm <- cbind(c(9,20), c(41,29))
mm

RelRisk(t(mm), conf.level=0.95)
RelRisk(t(mm), conf.level=0.95, method="wald")
RelRisk(t(mm), conf.level=0.95, method="use.or")
```

Rename

Change Names of a Named Object

Description

Rename changes the names of a named object.

Usage

```r
Rename(x, ..., gsub = FALSE, fixed = TRUE, warn = TRUE)
```

Arguments

- `x` Any named object
- `...` A sequence of named arguments, all of type character
- `gsub` a logical value; if TRUE, `gsub` is used to change the row and column labels of the resulting table. That is, instead of substituting whole names, substrings of the names of the object can changed.
- `fixed` a logical value, passed to `gsub`. If TRUE, substitutions are by fixed strings and not by regular expressions.
- `warn` a logical value; should a warning be issued if those names to change are not found?
Details

This function changes the names of x according to the remaining arguments. If gsub is FALSE, argument tags are the old names, the values are the new names. If gsub is TRUE, arguments are substrings of the names that are substituted by the argument values.

Value

The object x with new names defined by the ... arguments.

Note

This function was previously published in the package memisc as rename and has been integrated here without logical changes.

Author(s)

Martin Elff <melff@essex.ac.uk>

See Also

SetNames, Recode for recoding of a factor (renaming or combining levels)

Examples

x <- c(a=1, b=2)
Rename(x, a="A", b="B")

str(Rename(iris,
 Sepal.Length="Sepal_Length",
 Sepal.Width ="Sepal_Width",
 Petal.Length="Petal_Length",
 Petal.Width ="Petal_Width"
))

str(Rename(iris, .="_", gsub=TRUE))
Arguments

- \(x \)
 factor

- \(X \)
 auxiliary data vector

- FUN
 function to be applied to subsets of \(X \) determined by \(x \), to determine factor order

- ...
 optional parameters to FUN

- order
 logical value indicating whether the returned object should be an ordered factor

- new.order
 a vector of indexes or a vector of label names giving the order of the new factor levels

- sort
 function to use to sort the factor level names, used only when new.order is missing

Details

This function changes the order of the levels of a factor. It can do so via three different mechanisms, depending on whether, \(x \) and \(FUN \), new.order or sort are provided.

If \(x \) and \(FUN \) are provided: The data in \(X \) is grouped by the levels of \(x \) and \(FUN \) is applied. The groups are then sorted by this value, and the resulting order is used for the new factor level names.

If new.order is provided: For a numeric vector, the new factor level names are constructed by reordering the factor levels according to the numeric values. For vectors, new.order gives the list of new factor level names. In either case levels omitted from new.order will become missing (NA) values.

If sort is provided (as it is by default): The new factor level names are generated by applying the supplied function to the existing factor level names. With sort=mixedsort the factor levels are sorted so that combined numeric and character strings are sorted in according to character rules on the character sections (including ignoring case), and the numeric rules for the numeric sections. See mixedsort for details.

Value

A new factor with reordered levels

Author(s)

Gregory R. Warnes <greg@warnes.net>

See Also

factor and reorder

Examples

```r
# Create a 4 level example factor
trt <- factor( sample( c("PLACEBO", "300 MG", "600 MG", "1200 MG"),
                      100, replace=TRUE ) )
summary(trt)
# Note that the levels are not in a meaningful order.
```
Change the order to something useful
default "mixedsort" ordering
trt2 <- reorder(trt)
summary(trt2)

using indexes:
trt3 <- reorder(trt, new.order=c(4, 2, 3, 1))
summary(trt3)

using label names:
trt4 <- reorder(trt, new.order=c("PLACEBO", "300 MG", "600 MG", "1200 MG"))
summary(trt4)

using frequency
trt5 <- reorder(trt, X=as.numeric(trt), FUN=length)
summary(trt5)

drop out the '300 MG' level
trt6 <- reorder(trt, new.order=c("PLACEBO", "600 MG", "1200 MG"))
summary(trt6)

Rev

Reverse Elements of a Vector or the Rows/Columns of Matrices, Tables or Data.frames

Description

Rev provides a reversed version of its argument. It wraps the base function *rev* and provides an additional method for matrices and higher dimensional tables, such as to reverse the order of rows and columns.

Usage

```
Rev(x, ...) # S3 method for class 'matrix'
Rev(x, margin, ...) # S3 method for class 'table'
Rev(x, margin, ...) # S3 method for class 'data.frame'
```

Arguments

- **x**: a vector, a matrix or a higher dimensional table to be reversed.
- **margin**: vector of dimensions which to be reversed (1 for rows, 2 for columns, etc.).
- **...**: the dots are passed to the matrix, resp. table interface.
Description

Density function, distribution function, quantile function and random generation for the reverse (or negative) Weibull distribution with location, scale and shape parameters.

Usage

dRevWeibull(x, loc=0, scale=1, shape=1, log = FALSE)
pRevWeibull(q, loc=0, scale=1, shape=1, lower.tail = TRUE)
qRevWeibull(p, loc=0, scale=1, shape=1, lower.tail = TRUE)
rRevWeibull(n, loc=0, scale=1, shape=1)

dNegWeibull(x, loc=0, scale=1, shape=1, log = FALSE)
pNegWeibull(q, loc=0, scale=1, shape=1, lower.tail = TRUE)
qNegWeibull(p, loc=0, scale=1, shape=1, lower.tail = TRUE)
rNegWeibull(n, loc=0, scale=1, shape=1)

Arguments

x, q Vector of quantiles.
p Vector of probabilities.
n Number of observations.
loc, scale, shape
 Location, scale and shape parameters (can be given as vectors).
log Logical; if TRUE, the log density is returned.
lower.tail Logical; if TRUE (default), probabilities are \(P[X \leq x] \), otherwise, \(P[X > x] \)
Details

The reverse (or negative) Weibull distribution function with parameters $loc = a$, $scale = b$ and $shape = s$ is

$$G(z) = \exp \left\{ - \left[- \left(\frac{z - a}{b} \right) \right]^s \right\}$$

for $z < a$ and one otherwise, where $b > 0$ and $s > 0$.

Value

dRevWeibull and dNegWeibull give the density function, pRevWeibull and pNegWeibull give the distribution function, qRevWeibull and qNegWeibull give the quantile function, rRevWeibull and rNegWeibull generate random deviates.

Note

Within extreme value theory the reverse Weibull distribution (also known as the negative Weibull distribution) is often referred to as the Weibull distribution. We make a distinction to avoid confusion with the three-parameter distribution used in survival analysis, which is related by a change of sign to the distribution given above.

Author(s)

Alec Stephenson <alec_stephenson@hotmail.com>

See Also

rFrechet, rGenExtrVal, rGumbel

Examples

dRevWeibull(-5:-3, -1, 0.5, 0.8)
pRevWeibull(-5:-3, -1, 0.5, 0.8)
qRevWeibull(seq(0.9, 0.6, -0.1), 2, 0.5, 0.8)
rRevWeibull(6, -1, 0.5, 0.8)
p <- (1:9)/10
pRevWeibull(qRevWeibull(p, -1, 2, 0.8), -1, 2, 0.8)
#> [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Description

Converting a RGB-color to a named R-Color means looking for a color in the R-palette, which is nearest to the given RGB-color. This function uses the minimum of squared distance ("euclidean") or the minimum absolute distance ("manhattan") as proximity measure. RgbToLong() converts a RGB-color to a long integer in numeric format. LongToRGB() does it the other way round.
Usage

RgbToCol(col, method = "rgb", metric = "euclidean")

RgbToLong(col)
LongToRgb(col)

Arguments

col the color in rgb code, say a matrix with the red, green and blue code in the rows.
method character string specifying the color space to be used. Can be "rgb" (default) or "hsv".
metric character string specifying the metric to be used for calculating distances between the colors. Available options are "euclidean" (default) and "manhattan". Euclidean distances are root sum-of-squares of differences, and manhattan distances are the sum of absolute differences.

Details

It may not be clear from the start which method, rgb or hsv, yield the more natural results. Trying and comparing is a recommended strategy. Moreover the shortest numerical distance will not always be the best choice, when comparing the colours visually.

Value

the name of the nearest found R color.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

ColToRgb and the other conversion functions

Examples

RgbToCol(matrix(c(162,42,42), nrow=3))
RgbToLong(matrix(c(162,42,42), nrow=3))
RndPairs

Create Pairs of Correlated Random Numbers

Description

Create pairs of correlated random numbers.

Usage

RndPairs(n, r, rdist1 = rnorm(n = n, mean = 0, sd = 1),
 rdist2 = rnorm(n = n, mean = 0, sd = 1))

RndWord(size, length, x = LETTERS, replace = TRUE, prob = NULL)

Arguments

n number of pairs. If length(n) > 1, the length is taken to be the number required.
r the correlation between the two sets.
rdist1, rdist2 the distribution of the random vector X1 and X2. Default is standard normal distribution.
size a non-negative integer giving the number of artificial words to build.
length a non-negative integer giving the length of the words.
x elements to choose from.
replace Should sampling be with replacement?
prob a vector of probability weights for obtaining the elements of the vector being sampled.

Value

a data.frame with 2 columns, X1 and X2 containing the random numbers

Author(s)

Andri Signorell <andri@signorell.net>

See Also

runif, rnorm, Random and friends
Examples

produce 100 pairs of a normal distributed random number with a correlation of 0.7
d.frm <- RndPairs(n=100, r=0.7)

plot(d.frm)
lines(lm(X2 ~ X1,d.frm))

change the distribution
d.frm <- RndPairs(n=100, r=0.7, rdist2 = rlnorm(n = 100, meanlog = 1, sdlog = .8))
d.frm <- RndPairs(n=100, r=0.7, rdist2 = runif(n = 100, -1, 4))

x <- StrCap(sapply(sample(3:15, 10), function(i) RndWord(1, i, x=letters)))

produce some artificial words with defined probabilities for the letters
p <- c(6.51,1.89,3.06,5.08,17.4,1.66,3.01,4.76,7.55,0.27,1.21,3.44,2.53,
 9.78,2.51,0.79,0.02,7,7.27,6.15,4.35,0.07,1.89,0.03,0.04,1.13)
sapply(sample(3:15, 10), function(i) RndWord(1, i, x=letters, prob=p))

RobScale

Robust Scaling With Median and Mad

Description

RobScale is a wrapper function for robust standardization, using median and mad instead of mean and sd.

Usage

RobScale(x, center = TRUE, scale = TRUE)

Arguments

x a numeric matrix(like object).
center a logical value defining whether x should be centered by the median. Centering is done by subtracting the column medians (omitting NAs) of x from their corresponding columns. If center is FALSE, no centering is done.
scale a logical value defining whether x should be scaled by the mad. Scaling is done by dividing the (centered) columns of x by their mad. If scale is FALSE, no scaling is done.

Value

the centered, scaled matrix. The numeric centering and scalings used (if any) are returned as attributes "scaled:center" and "scaled:scale"
Author(s)
Andri Signorell <andri@signorell.net>

See Also
scale, sweep

Examples
\[
x \leftarrow d\.pizza$temperature
plot(x=seq\.along(x), y=RobScale(x), xlim=c(0,100))
points(x=seq\.along(x), y=scale(x), col="red")
\]

Description
Convert roman numerals to integers

Usage
RomanToInt(x)

Arguments
\n
x \hspace{1cm} \text{character vector containing roman numerals}

Details
This function will convert roman numerals to integers without the upper bound imposed by R (3899), ignoring case.

Value
A integer vector with the same length as \texttt{roman}. Character strings which are not valid roman numerals will be converted to \texttt{NA}.

Author(s)
Gregory R. Warnes <greg@warones.net>

See Also
\texttt{as\.roman}
Examples

```r
romanToInt( c('I', 'V', 'X', 'C', 'L', 'D', 'M') )
```

works regardless of case
romanToInt('MMXVI')
romanToInt('MMXVI')

works beyond R's limit of 3899
val.3899 <- 'MMMDCCCXCIX'
val.3900 <- 'MMMCM'
val.4000 <- 'MMM'
as.numeric(as.roman(val.3899))
as.numeric(as.roman(val.3900))
as.numeric(as.roman(val.4000))

romanToInt(val.3899)
romanToInt(val.3900)
romanToInt(val.4000)

Rotate a Geometric Structure

Description

Rotate a geometric structure by an angle theta around a centerpoint xy.

Usage

```r
Rotate(x, y = NULL, mx = NULL, my = NULL, theta = pi/3, asp = 1)
```

Arguments

- **x, y**: vectors containing the coordinates of the vertices of the polygon, which has to be rotated. The coordinates can be passed in a plotting structure (a list with x and y components), a two-column matrix, See `xy.coords`.
- **mx, my**: xy-coordinates of the center of the rotation. If left to NULL, the centroid of the structure will be used.
- **theta**: angle of the rotation
- **asp**: the aspect ratio for the rotation. Helpful for rotate structures along an ellipse.

Value

The function invisibly returns a list of the coordinates for the rotated shape(s).

Author(s)

Andri Signorell <andri@signorell.net>
RoundTo

See Also
	polygon, DrawRegPolygon, DrawEllipse, DrawArc

Examples

let's have a triangle
Canvas(main="Rotation")
x <- DrawRegPolygon(nv=3)[[1]]

and rotate
sapply((0:3) * pi/6, function(theta) {
 xy <- Rotate(x=x, theta=theta)
 polygon(xy, col=SetAlpha("blue", 0.2))
})

abline(v=0, h=0)

RoundTo

Round to Multiple

Description

Returns a number rounded to the nearest specified multiple.

Usage

RoundTo(x, multiple = 1, FUN = round)

Arguments

xnumeric. The value to round.
multiple numeric. The multiple to which the number is to be rounded. Default is 1.
FUN the rounding function as character or as expression. Can be one out of trunc, ceiling, round (default) or floor.

Details

There are several functions to convert to integers. round rounds to the nearest integer or to any number of digits. Using a negative number rounds to a power of ten, so that round(x, -3) rounds to thousands. Each of trunc, floor and ceiling round in a fixed direction, towards zero, down and up respectively. round is documented to round to even, so round(2.5) is 2.
RoundTo uses round(x/multiple)*multiple to get the result. So if x is equally close to two multiples, the multiple with the smaller absolute value will be returned when round(x/multiple) is even (and the greater when it's odd).
If FUN is set to ceiling it will always round up, and if set to floor it will always round down. See examples for comparison).
Value

the rounded value

Author(s)

Andri Signorell <andri@signorell.net>

See Also

round, trunc, ceiling, floor

Examples

RoundTo(10, 3) # Rounds 10 to a nearest multiple of 3 (9)
RoundTo(-10, -3) # Rounds -10 to a nearest multiple of -3 (-9)

RoundTo(1.3, 0.2) # Rounds 1.3 to a nearest multiple of 0.2 (1.2)
RoundTo(-1.3, 0.2) # Rounds -1.3 to a nearest multiple of 0.2 (-1.2)
RoundTo(5, -2) # Returns an error, because -2 and 5 have different signs

Round down
RoundTo(c(1,-1) * 1.2335, 0.05, floor)
RoundTo(c(1,-1) * 1233.5, 100, floor)

Round up
RoundTo(c(1,-1) * 1.2335, 0.05, ceiling)
RoundTo(c(1,-1) * 1233.5, 100, ceiling)

Round towards zero
RoundTo(c(1,-1) * 1.2335, 0.05, trunc)
RoundTo(c(1,-1) * 1233.5, 100, trunc)

x <- c(-1.5,-1.3, 1.3, 1.5)
cbind(x = x,
 round = RoundTo(x, 0.2, FUN=round),
 trunc = RoundTo(x, 0.2, FUN=trunc),
 ceiling = RoundTo(x, 0.2, FUN=ceiling),
 floor = RoundTo(x, 0.2, FUN=floor)
)

x <- -10:10
cbind(x = x,
 round = RoundTo(x, 2, FUN=round),
 trunc = RoundTo(x, 2, FUN=trunc),
 ceiling = RoundTo(x, 2, FUN=ceiling),
 floor = RoundTo(x, 2, FUN=floor)
)
RunsTest

Runs Test for Randomness

Description

Performs a test whether the elements of \(x \) are serially independent - say, whether they occur in a random order - by counting how many runs there are above and below a threshold. If \(y \) is supplied a two sample Wald-Wolfowitz-Test testing the equality of two distributions against general alternatives will be computed.

Usage

```r
RunsTest(x, ...)  
## Default S3 method:  
RunsTest(x, y = NULL, alternative = c("two.sided", "less", "greater"),  
          exact = NULL, correct = TRUE, na.rm = FALSE, ...)  
## S3 method for class 'formula'  
RunsTest(formula, data, subset, na.action, ...)  
```

Arguments

- \(x \): a dichotomous vector of data values or a (non-empty) numeric vector of data values.
- \(y \): an optional (non-empty) numeric vector of data values.
- `formula`: a formula of the form \(lhs \sim rhs \) where \(lhs \) gives the data values and \(rhs \) the corresponding groups.
- `data`: an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
- `subset`: an optional vector specifying a subset of observations to be used.
- `na.action`: a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.
- `alternative`: a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "less" or "greater".
- `exact`: a logical indicating whether an exact p-value should be computed. By default exact values will be calculated for small vectors with a total length <= 30 and the normal approximation for longer ones.
- `correct`: a logical indicating whether to apply continuity correction when computing the test statistic. Default is `TRUE`. Ignored if `exact` is set to `TRUE`. See details.
- `na.rm`: defines if NAs should be omitted. Default is `FALSE`.
- `...`: further arguments to be passed to or from methods.
Details

The runs test for randomness is used to test the hypothesis that a series of numbers is random. The 2-sample test is known as the Wald-Wolfowitz test.

For a categorical variable, the number of runs correspond to the number of times the category changes, that is, where x_i belongs to one category and x_{i+1} belongs to the other. The number of runs is the number of sign changes plus one.

For a numeric variable x containing more than two values, a run is a set of sequential values that are either all above or below a specified cutpoint, typically the median. This is not necessarily the best choice. If another threshold should be used use a code like: `RunsTest(x > mean(x))`.

The exact distribution of runs and the p-value based on it are described in the manual of SPSS "Exact tests" http://www.sussex.ac.uk/its/pdfs/SPSS_Exact_Tests_21.pdf.

The normal approximation of the runs test is calculated with the expected number of runs under the null

$$
\mu_r = \frac{2n_0 n_1}{n_0 + n_1} + 1
$$

and its variance

$$
\sigma_r^2 = \frac{2n_0 n_1 (2n_0 n_1 - n_0 - n_1)}{(n_0 + n_1)^2 \cdot (n_0 + n_1 - 1)}
$$

as

$$
\hat{z} = \frac{r - \mu_r + c}{\sigma_r}
$$

where n_0, n_1 the number of values below/above the threshold and r the number of runs.

Setting the continuity correction `correct = TRUE` will yield the normal approximation as SAS (and SPSS if n < 50) does it, see http://support.sas.com/kb/33/092.html. The c is set to $c = 0.5$ if $r < \frac{2n_0 n_1}{n_0 + n_1} + 1$ and to $c = -0.5$ if $r > \frac{2n_0 n_1}{n_0 + n_1} + 1$.

Wald-Wolfowitz with Ties. Ideally there should be no ties in the data used for the Wald-Wolfowitz test. In practice there is no problem with ties within a group, but if ties occur between members of the different groups then there is no unique sequence of observations. For example the data sets A: 10,14,17,19,34 and B: 12,13,17,19,22 can give four possible sequences, with two possible values for r (7 or 9). The "solution" to this is to list every possible combination, and calculate the test statistic for each one. If all test statistics are significant at the chosen level, then one can reject the null hypothesis. If only some are significant, then Siegel (1956) suggests that the average of the P-values is taken. Help for finding all permutations of ties can be found at: https://stackoverflow.com/questions/47565066/all-possible-permutations-in-factor-variable-when-ties-exist-in-r

However this solutions seems quite coarse and in general, the test should not be used if there are more than one or two ties. We have better tests to distinguish between two samples!

Value

A list with the following components.

- **statistic** z, the value of the standardized runs statistic, if not exact p-values are computed.
- **parameter** the number of runs, the total number of zeros (m) and ones (n)
- **p.value** the p-value for the test.
data.name a character string giving the names of the data.
alternative a character string describing the alternative hypothesis.

Author(s)
Andri Signorell <andri@signorell.net>, exact p-values by Detlew Labes <detlewlabes@gmx.de>

References
Wald, A. and Wolfowitz, J. (1940): On a test whether two samples are from the same population, Ann. Math Statist. 11, 147-162.

See Also
Run Length Encoding rle

Examples
x will be coerced to a dichotomous variable
RunsTest(x)

x <- c(13, 3, 14, 1, 14, 3, 8, 14, 17, 9, 14, 13, 2, 16, 1, 3, 12, 13, 14)
RunsTest(x)
this will be treated as
RunsTest(x > median(x))
plot((x < median(x)) ~ 0.5, type="s", ylim=c(-1,1))
abline(h=0)

set.seed(123)
x <- sample(0:1, size=100, replace=TRUE)
RunsTest(x)
As you would expect of values from a random number generator, the test fails to reject
the null hypothesis that the data are random.

SPSS example
x <- c(31, 23, 36, 43, 51, 44, 12, 26, 43, 75, 2, 3, 15, 18, 78, 24, 13, 27, 86, 61, 13, 7, 6, 8)
RunsTest(x, exact=TRUE) # exact probability
RunsTest(x, exact=FALSE) # normal approximation

SPSS example small dataset
x <- c(1, 1, 1, 1, 0, 0, 0, 0, 1, 1)
RunsTest(x)
RunsTest(x, exact=FALSE)
if y is not NULL, the Wald-Wolfowitz-Test will be performed
A <- c(35, 44, 39, 50, 48, 29, 60, 75, 49, 66)
B <- c(17, 23, 13, 24, 33, 21, 18, 16, 32)

RunsTest(A, B, exact=TRUE)
RunsTest(A, B, exact=FALSE)

Sample

Random Samples and Permutations

Description

Sample takes a sample of the specified size from the elements of x using either with or without replacement. The function does the same as the base::sample() and offers additionally an interface for data frames.

Usage

```r
Sample(x, size, replace = FALSE, prob = NULL)
```

Arguments

- **x**: either a vector of one or more elements from which to choose, or a positive integer.
- **size**: a positive number, the number of items to choose from.
- **replace**: a non-negative integer giving the number of items to choose.
- **prob**: should sampling be with replacement?

Value

sampled elements in the same structure as x

Author(s)

Andri Signorell <andri@signorell.net>

See Also

- `sample`

Examples

```r
sample(d.pizza, size=5)
```
Description

Draw a twin sample out of a population for a given recordset, by matching some strata criteria.

Usage

SampleTwins(x, stratanames = NULL, twins, method = c("srswor", "srswr", "poisson", "systematic"), pik, description = FALSE)

Arguments

x the data to draw the sample from
stratanames the stratanames to use
twins the twin sample
method method to select units; the following methods are implemented: simple random sampling without replacement (srswor), simple random sampling with replacement (srswr), Poisson sampling (poisson), systematic sampling (systematic); if "method" is missing, the default method is "srswor". See Strata.
pik vector of inclusion probabilities or auxiliary information used to compute them; this argument is only used for unequal probability sampling (Poisson and systematic). If an auxiliary information is provided, the function uses the inclusion-probabilities function for computing these probabilities. If the method is "srswr" and the sample size is larger than the population size, this vector is normalized to one.
description a message is printed if its value is TRUE; the message gives the number of selected units and the number of the units in the population. By default, the value is FALSE.

Value

The function produces an object, which contains the following information:

id the identifier of the selected units.
stratum the unit stratum.
prob the final unit inclusion probability.

Author(s)

Andri Signorell <andri@signorell.net>
SaveAsDlg

Save R Objects By Choosing a File Interactively

Description

SaveAsDlg displays the `file.choose` dialog to get a path/filename and uses `save` to write an external representation of R objects to the specified file.

Usage

`SaveAsDlg(x, filename)`

Arguments

- `x` the name of the objects to be saved (as symbols or character strings).
- `filename` a (writable binary-mode) connection or the name of the file where the data will be saved (when tilde expansion is done). Must be a file name for `save.image` or version = 1. This is passed directly to the function `save`.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

`save`, `file.choose`
Description

Scheffe’s method applies to the set of estimates of all possible contrasts among the factor level means, not just the pairwise differences considered by Tukey’s method.

Usage

ScheffeTest(x, ...)

S3 method for class 'aov'
ScheffeTest(x, which = NULL, contrasts = NULL, conf.level = 0.95, ...)

Default S3 method:
ScheffeTest(x, g = NULL, which = NULL, contrasts = NULL, conf.level = 0.95, ...)

Arguments

x either a fitted model object, usually an aov fit, when g is left to NULL or a response variable to be evalutated by g (which mustn’t be NULL then).

g the grouping variable.

which character vector listing terms in the fitted model for which the intervals should be calculated. Defaults to all the terms.

contrasts a \(r \times c \) matrix containing the contrasts to be computed, while \(r \) is the number of factor levels and \(c \) the number of contrasts. Each column must contain a full contrast ("sum") adding up to 0. Note that the argument which must be defined, when non default contrasts are used. Default value of contrasts is NULL. In this case all pairwise contrasts will be reported.

conf.level numeric value between zero and one giving the confidence level to use. If this is set to NA, just a matrix with the p-values will be returned.

... further arguments, currently not used.

Value

A list of classes c("PostHocTest"), with one component for each term requested in which. Each component is a matrix with columns diff giving the difference in the observed means, lwr.ci giving the lower end point of the interval, upr.ci giving the upper end point and pval giving the p-value after adjustment for the multiple comparisons.

There are print and plot methods for class "PostHocTest". The plot method does not accept xlab, ylab or main arguments and creates its own values for each plot.
Author(s)
Andri Signorell <andri@signorell.net>

References

See Also
pairwise.t.test, TukeyHSD

Examples
fm1 <- aov(breaks ~ wool + tension, data = warpbreaks)

ScheffeTest(x=fm1)
ScheffeTest(x=fm1, which="tension")

TukeyHSD(fm1)

some special contrasts
y <- c(7,33,26,27,21,6,14,19,6,11,11,18,14,18,19,14,9,12,6,
24,7,10,1,10,42,25,8,28,30,22,17,32,28,6,1,15,9,15,
2,37,13,18,23,1,3,4,6,2)
group <- factor(c(1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,
3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6))

r.aov <- aov(y ~ group)

ScheffeTest(r.aov, contrasts=matrix(c(1,-0.5,-0.5,0,0,0,0,0,0,0,1,-0.5,-0.5), ncol=2)

just p-values:
ScheffeTest(r.aov, conf.level=NA)

SD (Weighted) Standard Deviation

Description
This function computes the standard deviation of the values in x. If na.rm is TRUE then missing values are removed before computation proceeds.

Usage
SD(x, weights = NULL, na.rm = FALSE, ...)

Author(s)
Andri Signorell <andri@signorell.net>

References

See Also
pairwise.t.test, TukeyHSD

Examples
fm1 <- aov(breaks ~ wool + tension, data = warpbreaks)

ScheffeTest(x=fm1)
ScheffeTest(x=fm1, which="tension")

TukeyHSD(fm1)

some special contrasts
y <- c(7,33,26,27,21,6,14,19,6,11,11,18,14,18,19,14,9,12,6,
24,7,10,1,10,42,25,8,28,30,22,17,32,28,6,1,15,9,15,
2,37,13,18,23,1,3,4,6,2)
group <- factor(c(1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,
3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6))

r.aov <- aov(y ~ group)

ScheffeTest(r.aov, contrasts=matrix(c(1,-0.5,-0.5,0,0,0,0,0,0,0,1,-0.5,-0.5), ncol=2)

just p-values:
ScheffeTest(r.aov, conf.level=NA)

SD (Weighted) Standard Deviation

Description
This function computes the standard deviation of the values in x. If na.rm is TRUE then missing values are removed before computation proceeds.

Usage
SD(x, weights = NULL, na.rm = FALSE, ...)

Author(s)
Andri Signorell <andri@signorell.net>

References

See Also
pairwise.t.test, TukeyHSD

Examples
fm1 <- aov(breaks ~ wool + tension, data = warpbreaks)

ScheffeTest(x=fm1)
ScheffeTest(x=fm1, which="tension")

TukeyHSD(fm1)

some special contrasts
y <- c(7,33,26,27,21,6,14,19,6,11,11,18,14,18,19,14,9,12,6,
24,7,10,1,10,42,25,8,28,30,22,17,32,28,6,1,15,9,15,
2,37,13,18,23,1,3,4,6,2)
group <- factor(c(1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,
3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6))

r.aov <- aov(y ~ group)

ScheffeTest(r.aov, contrasts=matrix(c(1,-0.5,-0.5,0,0,0,0,0,0,0,1,-0.5,-0.5), ncol=2)

just p-values:
ScheffeTest(r.aov, conf.level=NA)
Arguments

- **x**: a numeric vector or an R object which is coercible to one by `as.double(x)`.
- **weights**: a numerical vector of weights the same length as `x` giving the weights to use for elements of `x`.
- **na.rm**: logical. Should missing values be removed?
- **...**: further arguments passed to or from other methods.

Details

Like `var` this uses denominator \(n - 1 \).

The standard deviation of a zero-length vector (after removal of NAs if `na.rm = TRUE`) is not defined and gives an error. The standard deviation of a length-one vector is NA.

See Also

- `var` for its square, and `mad`, the most robust alternative.

Examples

```r
SD(1:2)^2
```

SelectVarDlg

Select Elements of a Set by Click

Description

`SelectVarDlg()` is a GUI utility, which brings up a dialog and lets the user select elements (either variables of a data.frame or levels of a factor) by point and click in a listbox. The list of selected items is written to the clipboard so that the code can afterwards easily be pasted in the source file. `ModelDlg()` helps to compose model formulas based on the variablenames of a data.frame. Both functions are best used together with the package DescToolsAddIns, with which the functions can be assigned to a keystroke in RStudio.

Usage

```r
SelectVarDlg(x, ...)
```

Default S3 method:
`SelectVarDlg(x, useIndex = FALSE, ...)`

S3 method for class 'factor'
`SelectVarDlg(x, ...)`

S3 method for class 'data.frame'
`SelectVarDlg(x, ...)`

ModelDlg(x,
Arguments
 x the object containing the elements to be selected. x can be a data.frame, a factor or any other vector.
 useIndex defines, if the quoted variablenames (default) or the index values should be returned.
 ... further arguments to be passed to the default function.

Details
When working with big data.frames with many variables it is often tedious to build subsets by typing the columnnames. Here is where the function comes in offering a "point and click" approach for selecting the interesting columns. When x is a data.frame the columnnames are listed, when x is a factor the according levels are listed and in all other cases the list is filled with the unique elements of x.

In the model dialog, the variablenames of the selected data.frame are listed on the right, from where they can be inserted in the model box by clicking on a button between the two boxes. Clicking on the + button will use + to concatenate the variablenames.

After clicking on ok, the formula temperature ~ area + driver + delivery_min, data=d.pizza will be inserted on the cursor position.

Value
A comma separated list with the selected values quoted is returned invisibly as well as written to clipboard for easy inserting the text in an editor afterwards.

Author(s)
Andri Signorell <andri@signorell.net>
SetAlpha

See Also

select.list

Examples

```r
## Not run:
SelectVarDlg(x = d.pizza$driver)
SelectVarDlg(x = d.pizza, useIndex=TRUE)

SelectVarDlg(d.pizza$driver)

x <- replicate(10, paste(sample(LETTERS, 5, replace = TRUE), collapse=""))
SelectVarDlg(x)

ModelDlg(d.pizza)

## End(Not run)
```

SetAlpha

Add an Alpha Channel To a Color

Description

Add transparency to a color defined by its name or number. The function first converts the color to RGB and then appends the alpha channel.

Usage

SetAlpha(col, alpha = 0.5)

Arguments

- `col` vector of two kind of R colors, i.e., either a color name (an element of `colors()`) or an integer i meaning `palette()[i]`.
- `alpha` the alpha value to be added. This can be any value from 0 (fully transparent) to 1 (opaque). NA is interpreted so as to delete a potential alpha channel. Default is 0.5.

Details

All arguments are recyled as necessary.

Value

Vector with the same length as `col`, giving the rgb-values extended by the alpha channel as hex-number (#rrggbbaa).
Author(s)
Andri Signorell <andri@signorell.net>

See Also
ColToHex, col2rgb

Examples

SetAlpha("yellow", 0.2)
SetAlpha(2, 0.5) # red

Canvas(3)
DrawCircle(x=c(-1,0,1), y=c(1,-1,1), r.out=2, col=SetAlpha(2:4, 0.4))

x <- rnorm(15000)
par(mfrow=c(1,2))
plot(x, type="p", col="blue")
plot(x, type="p", col=SetAlpha("blue", .2), main="Better insight with alpha channel")

SetNames

Set the Names in an Object

Description
This is a convenience function that sets the names on an object and returns the object. It is most useful at the end of a function definition where one is creating the object to be returned and would prefer not to store it under a name just so the names can be assigned. In addition to the function setNames the user can decide, whether rownames, colnames or simply the names are to be set.

Usage

SetNames(x, ...)

Arguments

x an object for which a names attribute will be meaningful
...
the names to be assigned to the object. This should be a character vector of names named rownames, colnames or names. Setting rownames=NULL would remove existing rownames. All kind of names can be changed at the same time.

Value

An object of the same sort as object with the new names assigned.

Author(s)
Andri Signorell <andri@signorell.net>
Shade

See Also

setNames, Rename

Examples

```r
tab <- table(d.pizza$driver, d.pizza$wine_delivered)
SetNames(BinomCI(tab[,1], rowSums(tab), rownames=rownames(tab))
```

Description

Sometimes the area under a density curve has to be color shaded, for instance to illustrate a p-value or a specific region under the normal curve. This function draws a curve corresponding to a function over the interval \([\text{from}, \text{to}]\). It can plot also an expression in the variable xname, default x.

Usage

```r
Shade(expr, col = par("fg"), breaks, density = 10, n = 101, xname = "x", ...)
```

Arguments

- `expr`: the name of a function, or a call or an expression written as a function of x which will evaluate to an object of the same length as x.
- `col`: color to fill or shade the shape with. The default is taken from `par("fg")`.
- `breaks`: numeric, a vector giving the breakpoints between the distinct areas to be shaded differently. Should be finite as there are no plots with infinite limits.
- `density`: the density of the lines as needed in polygon.
- `n`: integer; the number of x values at which to evaluate. Default is 101.
- `xname`: character string giving the name to be used for the x axis.
- `...`: the dots are passed on to `polygon`.

Details

Useful for shading the area under a curve as often needed for explaining significance tests.

Value

A list with components x and y of the points that were drawn is returned invisibly.

Author(s)

Andri Signorell <andri@signorell.net>
Shapiro-Francia Test

See Also

polygon, curve

Examples

curve(dt(x, df=5), xlim=c(-6,6),
 main=paste("Student t-Distribution Probability Density Function, df = ", 5, ")", sep=""),
 type="n", las=1, ylab="probability", xlab="t")

Shade(dt(x, df=5), breaks=c(-6, qt(0.025, df=5), qt(0.975, df=5), 6),
 col=c(hred, hblue), density=c(20, 7))

ShapiroFranciaTest Shapiro-Francia Test for Normality

Description

Performs the Shapiro-Francia test for the composite hypothesis of normality.

Usage

ShapiroFranciaTest(x)

Arguments

x a numeric vector of data values, the number of which must be between 5 and 5000. Missing values are allowed.

Details

The test statistic of the Shapiro-Francia test is simply the squared correlation between the ordered sample values and the (approximated) expected ordered quantiles from the standard normal distribution. The p-value is computed from the formula given by Royston (1993).

Value

A list of class htest, containing the following components:

statistic the value of the Shapiro-Francia statistic.
p.value the p-value for the test.
method the character string “Shapiro-Francia normality test”.
data.name a character string giving the name(s) of the data.

Note

The Shapiro-Francia test is known to perform well, see also the comments by Royston (1993). The expected ordered quantiles from the standard normal distribution are approximated by qnorm(ppoints(x, a = 3/8)), being slightly different from the approximation qnorm(ppoints(x, a = 1/2)) used for the normal quantile-quantile plot by qqnorm for sample sizes greater than 10.
Author(s)

Juergen Gross <gross@statistik.uni-dortmund.de>

References

See Also

`shapiro.test` for performing the Shapiro-Wilk test for normality. `AndersonDarlingTest, CramerVonMisesTest, LillieTest, PearsonTest` for performing further tests for normality. `qqnorm` for producing a normal quantile-quantile plot.

Examples

```r
ShapiroFranciaTest(rnorm(100, mean = 5, sd = 3))
ShapiroFranciaTest(runif(100, min = 2, max = 4))
```

SiegelTukeyTest

Siegel-Tukey Test For Equality In Variability

Description

Non-parametric Siegel-Tukey test for equality in variability. The null hypothesis is that the variability of x is equal between two groups. A rejection of the null hypothesis indicates that variability differs between the two groups. `SiegelTukeyRank` returns the ranks, calculated after Siegel Tukey logic.

Usage

```r
SiegelTukeyTest(x, ...)
```

Default S3 method:
```r
SiegelTukeyTest(x, y, adjust.median = FALSE, alternative = c("two.sided", "less", "greater"), mu = 0, exact = NULL, correct = TRUE, conf.int = FALSE, conf.level = 0.95, ...)
```

S3 method for class 'formula'
```r
SiegelTukeyTest(formula, data, subset, na.action, ...)
```

```r
SiegelTukeyRank(x, g, drop.median = TRUE)
```
Arguments

- **x, y**
 numeric vector of data values. Non-finite (e.g. infinite or missing) values will be omitted.

- **g**
 a vector or factor object giving the group for the corresponding elements of x.

- **adjust.median**
 Should between-group differences in medians be leveled before performing the test? In certain cases, the Siegel-Tukey test is susceptible to median differences and may indicate significant differences in variability that, in reality, stem from differences in medians. Default is `FALSE`.

- **alternative**
 a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". You can specify just the initial letter.

- **mu**
 a number specifying an optional parameter used to form the null hypothesis. See Details.

- **exact**
 a logical indicating whether an exact p-value should be computed. This is passed directly to `wilcox.test`.

- **correct**
 a logical indicating whether to apply continuity correction in the normal approximation for the p-value.

- **conf.int**
 a logical indicating whether a confidence interval should be computed.

- **conf.level**
 confidence level of the interval.

- **formula**
 a formula of the form `lhs ~ rhs` where `lhs` gives the data values and `rhs` the corresponding groups.

- **data**
 an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.

- **subset**
 an optional vector specifying a subset of observations to be used.

- **na.action**
 a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

- **drop.median**
 logical, defining whether the median of the combined samples should be left out, ensuring that there’s an even number of elements (which is a requirement of the Siegel-Tukey test). Defaults to `TRUE`.

- **...**
 further arguments to be passed to or from methods.

Details

The Siegel-Tukey test has relatively low power and may, under certain conditions, indicate significance due to differences in medians rather than differences in variabilities (consider using the argument `adjust.median`). Consider also using `mood.test` or `ansari.test`.

Value

A list of class `htest`, containing the following components:

- **statistic**
 Siegel-Tukey test (Wilcoxon test on tie-adjusted Siegel-Tukey ranks, after the median adjustment if specified).

- **p.value**
 the p-value for the test
null.value is the value of the median specified by the null hypothesis. This equals the input argument mu.

alternative a character string describing the alternative hypothesis.

method the type of test applied

data.name a character string giving the names of the data.

Author(s)
Daniel Malter, Tal Galili <tal.galili@gmail.com>, Andri Signorell <andri@signorell.net>
published on: http://www.r-statistics.com/2010/02/siegel-tukey-a-non-parametric-test-for-equality-in-

References

See Also
mood.test, ansari.test, wilcox.test, LeveneTest

Examples

```r
# Duller, S. 183
x <- c(12, 13, 29, 30)
y <- c(15, 17, 18, 24, 25, 26)
SiegelTukeyTest(x, y)

# Duller, S. 323
old <- c(870, 930, 935, 1045, 1050, 1052, 1055)
new <- c(932, 970, 980, 1001, 1009, 1030, 1040, 1046)
SiegelTukeyTest(old, new, alternative = "greater")

# compare to the recommended alternatives
mood.test(old, new, alternative = "greater")
ansari.test(old, new, alternative = "greater")

# Bortz, S. 250
x <- c(26.3, 26.5, 26.8, 27.0, 27.0, 27.2, 27.3, 27.4, 27.5, 27.6, 27.8, 27.9)
id <- c(2, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1)
SiegelTukeyTest(x ~ id)

A <- c(10.1, 7.3, 12.6, 2.4, 6.1, 8.5, 8.8, 9.4, 10.1, 9.8)
B <- c(15.3, 3.6, 16.5, 2.9, 3.3, 4.2, 4.9, 7.3, 11.7, 13.1)
SiegelTukeyTest(A, B)
```
1
x <- c(4,4,5,5,6,6)
y <- c(0,0,1,9,10,10)
SiegelTukeyTest(x, y)

2
example for a non equal number of cases:
x <- c(4,4,5,5,6,6)
y <- c(0,0,1,9,10)
SiegelTukeyTest(x, y)

3
x <- c(33, 62, 84, 85, 88, 93, 97, 4, 16, 48, 51, 66, 98)
id <- c(0,0,0,0,0,0,0,1,1,1,1,1)
SiegelTukeyTest(x ~ id)

4
x <- c(177, 200, 227, 230, 232, 268, 272, 297, 47, 105, 126, 142, 158, 172, 197, 220, 225, 230, 262, 270)
id <- c(rep(0,8), rep(1,12))
SiegelTukeyTest(x ~ id, adjust.median=TRUE)

5
x <- c(33, 62, 84, 85, 88, 93, 97)
y <- c(4, 16, 48, 51, 66, 98)
SiegelTukeyTest(x, y)

6
x <- c(0,0,1,4,4,5,6,6,9,10,10)
id <- c(0,0,0,1,1,1,1,1,0,0,0)
SiegelTukeyTest(x ~ id)

7
x <- c(85, 106, 96, 105, 104, 108, 86)
id <- c(0,0,1,1,1,1,1)
SiegelTukeyTest(x ~ id)

Description

Performs one- and two-sample sign tests on vectors of data.

Usage

\[
\text{SignTest}(x, \ldots)
\]

Default S3 method:
\[
\text{SignTest}(x, y = \text{NULL}, \text{alternative} = \text{c(\"two.sided\", \"less\", \"greater\")},
\]
SignTest

mu = 0, conf.level = 0.95, ...)

S3 method for class 'formula'
SignTest(formula, data, subset, na.action, ...)

Arguments

x numeric vector of data values. Non-finite (e.g. infinite or missing) values will be omitted.
y an optional numeric vector of data values: as with x non-finite values will be omitted.
mu a number specifying an optional parameter used to form the null hypothesis. See Details.
alternative is a character string, one of "greater", "less", or "two.sided", or the initial letter of each, indicating the specification of the alternative hypothesis. For one-sample tests, alternative refers to the true median of the parent population in relation to the hypothesized value of the median.
conf.level confidence level for the returned confidence interval, restricted to lie between zero and one.
formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs the corresponding groups.
data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").
... further arguments to be passed to or from methods.

Details

The formula interface is only applicable for the 2-sample test.

SignTest computes a “Dependent-samples Sign-Test” if both x and y are provided. If only x is provided, the “One-sample Sign-Test” will be computed.

For the one-sample sign-test, the null hypothesis is that the median of the population from which x is drawn is mu. For the two-sample dependent case, the null hypothesis is that the median for the differences of the populations from which x and y are drawn is mu. The alternative hypothesis indicates the direction of divergence of the population median for x from mu (i.e., "greater", "less", "two.sided").

The confidence levels are exact.
Value

A list of class htest, containing the following components:

- statistic: the S-statistic (the number of positive differences between the data and the hypothesized median), with names attribute “S”.
- parameter: the total number of valid differences.
- p.value: the p-value for the test.
- null.value: is the value of the median specified by the null hypothesis. This equals the input argument mu.
- alternative: a character string describing the alternative hypothesis.
- method: the type of test applied.
- data.name: a character string giving the names of the data.
- conf.int: a confidence interval for the median.
- estimate: the sample median.

Author(s)

Andri Signorell <andri@signorell.net>

References

See Also

t.test, wilcoxon.test, ZTest, binom.test, SIGN.test in the package BSDA (reporting approximate confidence intervals).

Examples

```r
x <- c(1.83, 0.50, 1.62, 2.48, 1.68, 1.88, 1.55, 3.06, 1.39)
y <- c(0.878, 0.647, 0.598, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29)

SignTest(x, y)
wilcox.test(x, y, paired = TRUE)
```

d.light <- data.frame(
 black = c(25.85, 28.84, 32.05, 25.74, 20.89, 41.05, 25.01, 24.96, 27.47),
 white <- c(18.23, 20.84, 22.96, 19.68, 19.5, 24.98, 16.61, 16.07, 24.59),
 d <- c(7.62, 8.90, 6.06, 1.39, 16.07, 8.4, 8.89, 2.88)
)

d <- d.light$d
SignTest(x=d, mu = 4)
wilcox.test(x=d, mu = 4, conf.int = TRUE)

SignTest(x=d, mu = 4, alternative="less")
wilcox.test(x=d, mu = 4, conf.int = TRUE, alternative="less")

SignTest(x=d, mu = 4, alternative="greater")
wilcox.test(x=d, mu = 4, conf.int = TRUE, alternative="greater")

test die interfaces
x <- runif(10)
y <- runif(10)
g <- rep(1:2, each=10)
xx <- c(x, y)

SignTest(x ~ group, data=data.frame(x=xx, group=g))
SignTest(xx ~ g)
SignTest(x, y)

SignTest(x ~ y)

SmoothSpline

Formula Interface For smooth.spline

Description

smooth.spline has no formula interface, which is sometimes inconvenient, if one simply wants to copy a formula of a linear model or a plot to spline.

Usage

SmoothSpline(x, ...)

Default S3 method:
SmoothSpline(x, y = NULL, w = NULL, df, spar = NULL, cv = FALSE,
 all.knots = FALSE, nknots = .nknots.smmspl, keep.data = TRUE,
 df.offset = 0, penalty = 1, control.spar = list(),
 tol = 0.000001 * IQR(x), ...)

S3 method for class 'formula'
SmoothSpline(formula, data, subset, na.action, ...)
Arguments

x a vector giving the values of the predictor variable, or a list or a two-column matrix specifying x and y.

y responses. If y is missing or NULL, the responses are assumed to be specified by x, with x the index vector.

w optional vector of weights of the same length as x; defaults to all 1.

df the desired equivalent number of degrees of freedom (trace of the smoother matrix).

spar smoothing parameter, typically (but not necessarily) in (0, 1]. The coefficient λ of the integral of the squared second derivative in the fit (penalized log likelihood) criterion is a monotone function of spar, see the details below.

cv ordinary (TRUE) or ‘generalized’ cross-validation (GCV) when FALSE; setting it to NA skips the evaluation of leverages and any score.

all.knots if TRUE, all distinct points in x are used as knots. If FALSE (default), a subset of x[] is used, specifically x_[j] where the nknots indices are evenly spaced in 1:n, see also the next argument nknots.

nknots integer or function giving the number of knots to use when all.knots = FALSE. If a function (as by default), the number of knots is nknots(nx). By default for nx > 49 this is less than nx, the number of unique x values, see the Note.

keep.data logical specifying if the input data should be kept in the result. If TRUE (as per default), fitted values and residuals are available from the result.

df.offset allows the degrees of freedom to be increased by df.offset in the GCV criterion.

penalty the coefficient of the penalty for degrees of freedom in the GCV criterion.

control.spar optional list with named components controlling the root finding when the smoothing parameter spar is computed, i.e., missing or NULL, see below.

Note that this is partly experimental and may change with general spar computation improvements!

low: lower bound for spar; defaults to -1.5 (used to implicitly default to 0 in R versions earlier than 1.4).

high: upper bound for spar; defaults to +1.5.

tol: the absolute precision (tolerance) used; defaults to 1e-4 (formerly 1e-3).

eps: the relative precision used; defaults to 2e-8 (formerly 0.000244).

trace: logical indicating if iterations should be traced.

maxit: integer giving the maximal number of iterations; defaults to 500.

Note that spar is only searched for in the interval [low; high].

tol a tolerance for same-ness or uniqueness of the x values. The values are binned into bins of size tol and values which fall into the same bin are regarded as the same. Must be strictly positive (and finite).

formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs the corresponding groups.

data The data frame from which the formula should be evaluated.
Some

subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.
... Other arguments to be passed to `smooth.spline`.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

`smooth.spline`, `lines.smooth.spline`

Examples

```r
plot(temperature ~ delivery_min, data=d.pizza)
lines(SmoothSpline(temperature ~ delivery_min, data=d.pizza))
```

Some

Return Some Randomly Chosen Elements of an Object

Description

For displaying the first and last elements of an object there are the functions `head` and `tail`. Sometimes one might want to see more randomly scattered elements. This function returns some random parts of a vector, matrix or a data frame. The order of the elements within the object will be preserved.

Usage

```r
Some(x, n = 6L, ...)
## Default S3 method:
Some(x, n = 6L, ...)
## S3 method for class 'data.frame'
Some(x, n = 6L, ...)
## S3 method for class 'matrix'
Some(x, n = 6L, addrownums = TRUE, ...)
```

Arguments

- `x` an object
- `n` a single integer. If positive, size for the resulting object: number of elements for a vector (including lists), rows for a matrix or data frame or lines for a function. If negative, all but the `n` last/first number of elements of `x`.
- `addrownums` if there are no row names, create them from the row numbers.
- `...` arguments to be passed to or from other methods.
Some numeric checks

Details

For matrices, 2-dim tables and data frames, Some() returns some n rows when n > 0 or all but the some n rows when n < 0. Some.matrix() is not exported (unlike head.matrix).

If a matrix has no row names, then Some() will add row names of the form "[n,]" to the result, so that it looks similar to the last lines of x when printed. Setting addrownums = TRUE suppresses this behaviour.

I desisted from implementing interfaces for tables, ftables and functions, as this would not make much sense.

Value

An object (usually) like x but generally smaller.

Author(s)

Andri Signorell, basically copying and just slightly modifying Patrick Burns and R-Core code.

See Also

head

Examples

Some(letters)
Some(letters, n = -6L)

Some(freeny.x, n = 10L)
Some(freeny.y)
Some numeric checks

Arguments

- **x**: a (non-empty) numeric vector of data values.
- **all**: logical, specifying if the whole vector should be checked. If set to TRUE the function will return the result of all(IsWhole(x)).
- **tol**: tolerance to be used
- **length.arg**: integer, the length of the vector to be checked for.
- **integer.valued**: logical, should x be checked as integer?
- **positive**: logical, is x supposed to be positive?
- **na.rm**: logical, indicating whether NA values should be stripped before the computation proceeds. Defaults to FALSE.

Details

`IsWhole` is the suggested solution for checking for an integer value, as `is.integer` tests for class(x) == "integer" and does NOT test whether x (which might be of class "numeric") contains only integer numbers. (Why not simply implement it in `base`?)

`IsZero` tests float numeric values for being zero.

`IsNumeric` combines a test for numeric and integers.

Value

logical vector of the same dimension as x.

Author(s)

R-Core, Andri Signorell <andri@signorell.net>, Thomas W. Yee

See Also

- `is.integer`

Examples

```r
(x <- seq(1,5, by=0.5))
IsWhole(x) #-->  \code{TRUE} \code{FALSE} \code{TRUE} ...  
# ... These are people who live in ignorance of the Floating Point Gods.
# These pagans expect ... (Burns, 2011)” the following to be TRUE:
(.1 -.3 / 3) == 0
# they might be helped by
IsZero(.1 -.3 / 3)
```
Description

Calculate Somers’ Delta statistic, a measure of association for ordinal factors in a two-way table. The function has interfaces for a table (matrix) and for single vectors.

Usage

SomersDelta(x, y = NULL, direction = c("row", "column"), conf.level = NA, ...)

Arguments

x

a numeric vector or a table. A matrix will be treated as table.

y

NULL (default) or a vector with compatible dimensions to x. If y is provided, table(x, y, ...) is calculated.

direction

direction of the calculation. Can be "row" (default) or "column", where "row" calculates Somers’ D (R | C) ("column dependent").

conf.level

confidence level of the interval. If set to NA (which is the default) no confidence interval will be calculated.

...

further arguments are passed to the function table, allowing i.e. to set useNA. This refers only to the vector interface.

Details

Somers’ D(C | R) and Somers’ D(R | C) are asymmetric modifications of \(\tau_b \). C | R indicates that the row variable x is regarded as the independent variable and the column variable y is regarded as dependent. Similarly, R | C indicates that the column variable y is regarded as the independent variable and the row variable x is regarded as dependent.

Somers’ D differs from tau-b in that it uses a correction only for pairs that are tied on the independent variable. Somers’ D is appropriate only when both variables lie on an ordinal scale.

Somers’ D is computed as

\[
D(C|R) = \frac{P - Q}{n^2 - \sum(n_{ij}^2)}
\]

where P equals twice the number of concordances and Q twice the number of discordances and \(n_{ij} \). rowSums(tab). Its range lies [-1, 1].

Value

a single numeric value if no confidence intervals are requested
and otherwise a numeric vector with 3 elements for the estimate, the lower and the upper confidence interval
Author(s)

Andri Signorell <andri@signorell.net>

References

See Also

There’s an implementation of Somers’s D in Frank Harrell’s Hmisc **somers2**, which is quite fast for large sample sizes. However it is restricted to computing Somers’ Dxy rank correlation between a variable x and a binary (0-1) variable y. **ConDisPairs** yields concordant and discordant pairs.

Other association measures:

- **KendallTauA** (tau-a), **KendallTauB** (tau-b), **cor** (method="kendall") for tau-b, **StuartTauC** (tau-c), **GoodmanKruskalGamma**
- **Lambda**, **GoodmanKruskalTau**, **UncertCoef**, **MutInf**

Examples

```r
# example in:
# pp. 5. 1821

tab <- as.table(rbind(c(26,26,23,18,9),c(6,7,9,14,23))))

# Somers' D C|R
SomersDelta(tab, direction="column", conf.level=0.95)
# Somers' D R|C
SomersDelta(tab, direction="row", conf.level=0.95)
```

Sort

Sort a Vector, a Matrix, a Table or a Data.frame
Description
Sort a vector, a matrix, a table or a data.frame. The base sort function does not have an interface for classes other than vectors and coerces the whole world to a vector. This means you get a sorted vector as result while passing a matrix to sort. Sort wraps the base sort function and adds an interface for sorting the rows of the named 2-dimensional data structures by the order of one or more of its columns.

Usage
Sort(x, ...)

Default S3 method:
Sort(x, ...)

S3 method for class 'matrix'
Sort(x, ord = NULL, decreasing = FALSE, na.last = TRUE, ...)

S3 method for class 'table'
Sort(x, ord = NULL, decreasing = FALSE, na.last = TRUE, ...)

S3 method for class 'data.frame'
Sort(x, ord = NULL, decreasing = FALSE,
 factorsAsCharacter = TRUE, na.last = TRUE, ...)

Arguments

x a numeric, complex, character or logical vector, a factor, a table or a data.frame to be sorted.
decreasing logical. Should the sort be increasing or decreasing?
factorsAsCharacter logical. Should factors be sorted by the alphabetic order of their labels or by the order or their levels. Default is TRUE (by labels).
ord vector of integers or columnames. Defines the columns in a table, in a matrix or in a data.frame to be sorted for.
 0 means row.names, 1:n the columns and n+1 the marginal sum. See examples.
a.n.last for controlling the treatment of NAs. If TRUE, missing values in the data are put
 last; if FALSE, they are put first; if NA, they are removed (see order.)
...
 further arguments to be passed to or from methods.

Details
The sort order for factors is the order of their levels (which is particularly appropriate for ordered factors), and usually confusing for unordered factors, whose levels may be defined in the sequence in which they appear in the data (which normally is unordered).

Value
the sorted object.
SortMixed

Sort Strings with Embedded Numbers Based on Their Numeric Order

Description

These functions sort or order character strings containing embedded numbers so that the numbers are numerically sorted rather than sorted by character value. I.e. "Asprin 50mg" will come before "Asprin 100mg". In addition, case of character strings is ignored so that "a", will come before "B" and "C".

Usage

SortMixed(x, decreasing=FALSE, na.last=TRUE, blank.last=FALSE,
numeric.type=c("decimal", "roman"),
roman.case=c("upper", "lower", "both"))
SortMixed(x, decreasing=FALSE, na.last=TRUE, blank.last=FALSE,
 numeric.type=c("decimal", "roman"),
 roman.case=c("upper", "lower", "both")
)

Arguments

- **x** vector to be sorted.
- **decreasing** logical. Should the sort be increasing or decreasing? Note that decreasing=TRUE reverses the meanings of na.last and blanks.last.
- **na.last** logical, controlling the treatment of NA values. If TRUE, missing values in the data are put last; if FALSE, they are put first; if NA, they are removed.
- **blank.last** logical, controlling the treatment of blank values. If TRUE, blank values in the data are put last; if FALSE, they are put first; if NA, they are removed.
- **numeric.type** either "decimal" (default) or "roman". Are numeric values represented as decimal numbers (numeric.type="decimal") or as Roman numerals (numeric.type="roman")?
- **roman.case** one of "upper", "lower", or "both". Are roman numerals represented using only capital letters ('IX') or lower-case letters ('ix') or both?

Details

I often have character vectors (e.g. factor labels), such as compound and dose, that contain both text and numeric data. This function is useful for sorting these character vectors into a logical order.

It does so by splitting each character vector into a sequence of character and numeric sections, and then sorting along these sections, with numbers being sorted by numeric value (e.g. "50" comes before "100"), followed by characters strings sorted by character value (e.g. "A" comes before "B") ignoring case (e.g. 'A' has the same sort order as 'a').

By default, sort order is ascending, empty strings are sorted to the front, and NA values to the end. Setting decreasing=TRUE changes the sort order to descending and reverses the meanings of na.last and blank.last.

Parsing looks for decimal numbers unless numeric.type="roman", in which parsing looks for roman numerals, with character case specified by roman.case.

Value

SortMixed returns a vector giving the sort order of the input elements. SortMixed returns the sorted vector.

Author(s)

Gregory R. Warnes <greg@warnes.net>

See Also

sort, order
Examples

```r
## compound & dose labels
Treatment <- c("Control", "Asprin 10mg/day", "Asprin 50mg/day",
               "Asprin 100mg/day", "Acetomycin 100mg/day",
               "Acetomycin 1000mg/day")

## ordinary sort puts the dosages in the wrong order
sort(Treatment)

## but SortMixed does the 'right' thing
SortMixed(Treatment)

## Here is a more complex example
x <- rev(c("AA 0.50 ml", "AA 1.5 ml", "AA 500 ml", "AA 1500 ml",
           "EXP 1", "AA 1e3 ml", "A A A", "1 2 3 A", "NA", NA, "1e2",
           ",", ",", "1A", "1 A", "100", "100A", "Inf"))

OrderMixed(x)

SortMixed(x)  # Notice that plain numbers, including 'Inf' show up
             # before strings, NAs at the end, and blanks at the
             # beginning.

SortMixed(x, na.last=TRUE)  # default
SortMixed(x, na.last=FALSE) # push NAs to the front

SortMixed(x, blank.last=FALSE) # default
SortMixed(x, blank.last=TRUE) # push blanks to the end

SortMixed(x, decreasing=FALSE) # default
SortMixed(x, decreasing=TRUE) # reverse sort order

## Roman numerals
chapters <- c("V. Non Sequitur", "II. More Nonsense",
              "I. Nonsense", "IV. Nonesensical Citations",
              "III. Utter Nonsense")
SortMixed(chapters, numeric.type="roman")

## Lower-case Roman numerals
vals <- c("xix", "xii", "mcv", "iii", "iv", "dclxii",
          "cdxcii", "dxcvii", "dci", "cci")
(ordered <- SortMixed(vals, numeric.type="roman", roman.case="lower"))
RomanToInt(ordered)
```
Description

Calculate Spearman correlation coefficient and its confidence interval.

Usage

SpearmanRho(x, y = NULL, use = c("everything", "all.obs", "complete.obs", "na.or.complete","pairwise.complete.obs"), conf.level = NA)

Arguments

x a numeric vector, an ordered factor, matrix or data frame. An ordered factor will be coerced to numeric.

y NULL (default) or a vector, an ordered factor, matrix or data frame with compatible dimensions to x. An ordered factor will be coerced to numeric.

use an optional character string giving a method for computing covariances in the presence of missing values. This must be (an abbreviation of) one of the strings "everything", "all.obs", "complete.obs","na.or.complete", or "pairwise.complete.obs".

conf.level confidence level of the interval. If set to NA (which is the default) no confidence interval will be calculated.

Details

The function calculates Spearman's rho statistic by means of cor(..., method="spearman"). The confidence intervals are calculated via z-Transformation.

Value

Either a single numeric value, if no confidence interval is required, or a vector with 3 elements for estimate, lower and upper confidence intervall.

Author(s)

Andri Signorell <andri@signorell.net>

References

See Also

cor

Examples

SpearmanRho(d.diamonds$clarity, d.diamonds$cut)

SpearmanRho(d.diamonds$clarity, d.diamonds$cut, conf.level = 0.95)
split.formula

Formula Interface for Split

Description

Implementation of a simple formula interface for the `split` function.

Usage

```r
## S3 method for class 'formula'
split(x, f, drop = FALSE, data = NULL, ...)
```

Arguments

- `x` a formula of the form `y ~ x`.
- `f` a 'factor' in the sense that `as.factor(f)` defines the grouping, or a list of such factors in which case their interaction is used for the grouping.
- `drop` logical indicating if levels that do not occur should be dropped (if `f` is a factor or a list). Defaults to FALSE.
- `data` the data frame from which the formula should be evaluated.
- `...` other arguments to be passed to `split`.

Author(s)

Andri Signorell <andri@signorell>

See Also

- `split`

Examples

```r
split(extra ~ group, data = sleep)
```
SplitAt

Split a Vector Into Several Pieces at Given Positions

Description

Split a vector into several pieces at given positions.

Usage

SplitAt(x, pos)

Arguments

<table>
<thead>
<tr>
<th>x</th>
<th>the vector to be splitted.</th>
</tr>
</thead>
<tbody>
<tr>
<td>pos</td>
<td>integer vector, giving the positions at which the vector should be splitted.</td>
</tr>
</tbody>
</table>

Value

a list with the splitted parts of x.

Author(s)

flodel (on StackOverflow)

References

https://stackoverflow.com/questions/16357962/r-split-numeric-vector-at-position

See Also

split, strsplit

Examples

```r
x <- 1:10
SplitAt(x, pos=c(3, 8))
```
SplitPath

Split Path In Drive, Path, Filename

Description

Split a full path in its components. This is specifically an issue in Windows and not really interesting for other OSs.

Usage

`SplitPath(path, last.is.file = NULL)`

Arguments

- `path`
 a path

- `last.is.file`
 logical, determining if the basename should be interpreted as filename or as last directory. If set to NULL (default), the last entry will be interpreted if the last character is either `\` or `/` and as filename else.

Value

A list, containing the following components:

- `normpath`
 the normalized path as returned by `normalizePath`

- `drive`
 the drive if the OS is Windows, NA else

- `dirname`
 the path without directory and without filename

- `fullfilename`
 the filename including extension

- `filename`
 the filename without extension

- `extension`
 the file extension

Author(s)

Andri Signorell <andri@signorell.net>

See Also

`dirname`, `basename`

Examples

```r
# Not run: # Windows-specific example
path <- "C:/Documents/Projects/Import/eyestudy.dta"
SplitPath(path)

path <- "C:/Documents/Projects/Import/"
SplitPath(path)
```
SpreadOut

Spread Out a Vector of Numbers To a Minimum Interval

Description

Spread out a vector of numbers so that there is a minimum interval between any two numbers when in ascending or descending order.

Usage

SpreadOut(x, mindist = NULL, cex = 1.0)

Arguments

- **x**: a numeric vector which may contain NAs.
- **mindist**: the minimum interval between any two values when in ascending or descending order. If this is left to NULL (default) the function will check if a plot is open and then use 90% of `strheight`.
- **cex**: numeric character expansion factor; multiplied by `par("cex")` yields the final character size; the default NULL is equivalent to 1.

Details

SpreadOut starts at or near the middle of the vector and increases the intervals between the ordered values. NAs are preserved. SpreadOut first tries to spread groups of values with intervals less than `mindist` out neatly away from the mean of the group. If this doesn’t entirely succeed, a second pass that forces values away from the middle is performed.

SpreadOut is currently used to avoid overplotting of axis tick labels where they may be close together.

Value

On success, the spread out values. If there are less than two valid values, the original vector is returned.

Note

This function is borrowed from the package `plotrix` (SpreadOut) and has been integrated here with some minor changes.
Author(s)
Jim Lemon <jim@bitwrit.com.au>
some extensions Andri Signorell <andri@signorell>

Examples
```
SpreadOut(c(1, 3, 3, 3, 3, 5), 0.2)
SpreadOut(c(1, 2.5, 2.5, 3.5, 3.5, 5), 0.2)
SpreadOut(c(5, 2.5, 2.5, NA, 3.5, 1, 3.5, NA), 0.2)
```

this will almost always invoke the brute force second pass
SpreadOut(rnorm(10), 0.5)

Stamp

Date/Time/Directory Stamp the Current Plot

Description

Stamp the current plot in the extreme lower right corner. A free text or expression can be defined as text to the stamp.

Usage

```
Stamp(txt = NULL, las = par("las"), cex = 0.6)
```

Arguments

- **txt**
 - an optional single text string. If it is not given, the function will look for a defined option named `stamp`. If not found the current date will be taken as text.
 - If the `stamp` option is defined as expression the function will evaluate it. This can be used to define dynamic texts.

- **las**
 - numeric in 1,3, defining direction of the text. 1 means horizontal, 3 vertical.
 - Default is taken from `par("las")`.

- **cex**
 - numeric character expansion factor; multiplied by `par("cex")` yields the final character size. Defaults to 0.6.

Details

The text can be freely defined as option. If user and date should be included by default, the following option using an expression will help:

```
DescToolsOptions(stamp=expression(gettextf("%s/%s",
   Sys.getenv("USERNAME"), Format(Today(), fmt='yyyy-mm-dd')))))
```

For R results may not be satisfactory if `par(mfrow=)` is in effect.
StdCoef

Standardized Model Coefficients

Description

Standardize model coefficients by Standard Deviation or Partial Standard Deviation.

Usage

\[
\text{StdCoef}(x, \text{partial.sd} = \text{FALSE}, \ldots)
\]

\[
\text{PartialSD}(x)
\]

Arguments

- **x**: a fitted model object.
- **partial.sd**: logical, if set to `TRUE`, model coefficients are multiplied by partial SD, otherwise they are multiplied by the ratio of the standard deviations of the independent variable and dependent variable.
- \(...\): additional arguments passed to `coeftable`, e.g. `dispersion`.

Details

The standardized coefficients are meant to allow for a comparison of the importance of explanatory variables that have different variances. Each of them shows the effect on the response of increasing its predictor \(X(j)\) by one standard deviation, as a multiple of the response’s standard deviation. This is often a more meaningful comparison of the relevance of the input variables.

Note, however, that increasing one \(X(j)\) without also changing others may not be possible in a given application, and therefore, interpretation of coefficients can always be tricky. Furthermore, for binary input variables, increasing the variable by one standard deviation is impossible, since an increase can only occur from 0 to 1, and therefore, the standardized coefficient is somewhat counter-intuitive in this case.
Standardizing model coefficients has the same effect as centring and scaling the input variables. “Classical” standardized coefficients are calculated as $\beta^*_i = \beta_i \frac{s_{X_i}}{s_y}$, where β is the unstandardized coefficient, s_{X_i} is the standard deviation of associated dependent variable X_i and s_y is SD of the response variable.

If the variables are intercorrelated, the standard deviation of X_i used in computing the standardized coefficients β^*_i should be replaced by a partial standard deviation of X_i which is adjusted for the multiple correlation of X_i with the other X variables included in the regression equation. The partial standard deviation is calculated as $s^*_{X_i} = s_{X_i} \text{VIF}(X_i)^{-0.5} \left(\frac{n-1}{n-p}\right)^{0.5}$, where VIF is the variance inflation factor, n is the number of observations and p number of predictors in the model. Coefficient is then transformed as $\beta^*_i = \beta_i s^*_{X_i}$.

Value

A matrix with at least two columns for standardized coefficient estimate and its standard error. Optionally, third column holds degrees of freedom associated with the coefficients.

Author(s)

Kamil Bartoń

References

See Also

`coef`

Examples

```r
# Fit model to original data:
fm <- lm(Fertility ~ Agriculture + Examination + Education + Catholic,
data = swiss)

# Partial SD for the default formula:
psd <- PartialSD(lm(data = swiss))[-1] # remove first element for intercept

# Standardize data:
zswiss <- scale(swiss, scale = c(NA, psd), center = TRUE)
# Note: first element of 'scale' is set to NA to ignore the first column 'y'

# Coefficients of a model fitted to standardized data:
# zapsmall(coefTable(stdizeFit(fm, data = zGPA)))
# Standardized coefficients of a model fitted to original data:
# zapsmall(StdCoef(fm, partial = TRUE))
```
Standardizing nonlinear models:
fam <- Gamma("inverse")
fmg <- glm(log(Fertility) ~ Agriculture + Examination + Education + Catholic,
 data = swiss, family = fam)

psdg <- PartialSD(fmg)
zGPA <- stdize(GPA, scale = c(NA, psdg[-1]), center = FALSE)
fmgz <- glm(log(y) ~ z.x1 + z.x2 + z.x3 + z.x4, zGPA, family = fam)

Coefficients using standardized data:
coef(fmgz) # (intercept is unchanged because the variables haven't been
centred)
Standardized coefficients:
coef(fmg) * psdg

Str

Compactly Display the Structure of any R Object

Description

Basically a wrapper for `str()`, extended with an enumeration for the variables of a data.frame.

Usage

```r
Str(x, 
```

Arguments

- `x` any R object about which you want to have some information.
- `...` dots are passed to `str`.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

`str`

Examples

```r
Str(d.pizza)
```
String Abbreviation

Description
Abbreviate a character vector. The function includes starting from the first character as many characters as there are needed to result in a vector of unique values.

Usage

```r
strabbr(x, minchar = 1, method = c("left", "fix"))
```

Arguments
- `x`: character vector to be abbreviated
- `minchar`: integer, minimal number of characters for the abbreviations.
- `method`: one out of `left` or `fix`. While `left` restricts the result to as many characters are needed to ensure uniqueness, does `fix` yield a vector with all the elements being as long, as the the longest needed substring for differentiating the terms.

Value
The abbreviated strings.

Author(s)
Andri Signorell <andri@signorell.net>

See Also
`abbreviate, StrTrunc, StrTrim`

Examples

```r
strabbr(x=levels(d.pizza$driver), minchar=2)
strabbr(x=levels(d.pizza$driver), minchar=2, method="left")
strabbr(x=levels(d.pizza$driver), minchar=2, method="fix")

x <- c("Aaron", "Aramis", "Berta", "Bello", "Claudia", "Cardinale", "Doretta", "Emilia")
strabbr(x, minchar=2, method="left")
strabbr(x, minchar=2, method="fix")
```
Description

Align a vector of strings to the left, to the right, to the center or to the first occurrence of a specified character, e.g., to the decimal separator. Alignment is achieved by padding the strings with empty spaces (which evidently only will have an alignment effect if the text is displayed with a monospaced font).

Usage

\texttt{StrAlign(x, sep = "\r")}

Arguments

- \texttt{x} a character vector to be aligned.
- \texttt{sep} the character on whose position the strings will be aligned. Left alignment can be requested by setting \texttt{sep = "\l"}, right alignment by \texttt{"\r"} and center alignment by \texttt{"\c"}. Mind the backslashes, as if they are omitted, strings would be aligned to the character \texttt{l}, \texttt{r} or \texttt{c} respectively. Default value is \texttt{"\r"}, thus right alignment.

Details

Alignment to the left, right or center leave no room for misinterpretation. The function will determine the maximum string size in the vector, resize all the strings to this size by padding empty spaces either at the beginning or at the end of the strings. When it comes to center strings, it's not clear where to place strings with an even length in case the maximum length is odd (or vice versa). We will put the shorter distance of an uneven string at the left.

Any specific length of the strings can be created by \texttt{StrPad} if required.

In case of a given separator the strings will be aligned towards this separator. If a string does not contain the separator, the affected string will be aligned as if it had a separator as last character. This seems to be a good default, when integer numbers are to be aligned with numerical values. Note that the character length of the resulting strings can exceed the maximum length of the supplied strings.

The character strings will not be pruned of whitespaces, if the requested alignment does not explicitly require it. \texttt{StrTrim} can be used for that.

Value

- a character vector containing the aligned strings

Author(s)

Andri Signorell <andri@signorell.net>
See Also

strtrim, strpad, format

Examples

align on (the first occurring) B
x <- c("ABCDMN", "CDGHEBK", "BCI")
cbind(StrAlign(x, sep="B"))

align to decimal point
z <- c(" 6.0", "6.00 ", " 45.12 ", " 784", NA)
cbind(StrAlign(z, sep="."))

right align, the width will be the max number of characters in x
cbind(StrAlign(x, sep="\r"))
left align
cbind(StrAlign(x, sep="\l"))
center
cbind(StrAlign(x, sep="\c"))

Strata Stratified Sampling

Description

Stratified sampling with equal/unequal probabilities.

Usage

Strata(x, stratanames = NULL, size,
 method = c("srswor", "srswr", "poisson", "systematic"),
 pik, description = FALSE)

Arguments

x a data frame or a matrix; its number of rows is n, the population size.
stratanames vector of stratification variables.
size vector of stratum sample sizes (in the order in which the strata are given in the
 input data set).
method method to select units; implemented are: a) simple random sampling without
 replacement ("srswor"), b) simple random sampling with replacement ("srswr"),
 c) Poisson sampling ("poisson"), d) systematic sampling ("systematic") (default
 is "srswor").

pik vector of inclusion probabilities or auxiliary information used to compute them; this
 argument is only used for unequal probability sampling (Poisson and system-
 atic). If an auxiliary information is provided, the function uses the inclusion-
 probabilities function for computing these probabilities. If the method is "srswr"
and the sample size is larger than the population size, this vector is normalized to one.

description a message is printed if its value is TRUE; the message gives the number of selected units and the number of the units in the population. By default, the value is FALSE.

Value

The function produces an object, which contains the following information:

id the identifier of the selected units.
stratum the unit stratum.
prob the final unit inclusion probability.

Author(s)

Andri Signorell <andri@signorell.net>
rewritten based on the ideas of Yves Tille <yves.tille@unine.ch> and Alina Matei <alina.matei@unine.ch>

See Also

sample

Examples

Example from An and Watts (New SAS procedures for Analysis of Sample Survey Data)
generates artificial data (a 235X3 matrix with 3 columns: state, region, income).
the variable "state" has 2 categories ('nc' and 'sc').
the variable "region" has 3 categories (1, 2 and 3).
the sampling frame is stratified by region within state.
the income variable is randomly generated

m <- rbind(matrix(rep("nc",165), 165, 1, byrow=TRUE),
 matrix(rep("sc",70), 70, 1, byrow=TRUE))
m <- cbind.data.frame(m, c(rep(1, 100), rep(2,50), rep(3,15),
 rep(1, 30), rep(2, 40)), 1000 * runif(235))
names(m) <- c("state", "region", "income")

computes the population stratum sizes
table(m$region, m$state)

not run
nc sc
1 100 30
2 50 40
3 15 0
there are 5 cells with non-zero values
one draws 5 samples (1 sample in each stratum)
the sample stratum sizes are 10,5,10,4,6, respectively
the method is 'srswor' (equal probability, without replacement)
s <- Strata(m, c("region", "state"), size=c(10, 5, 10, 4, 6), method="srswor")

extracts the observed data
data.frame(income=m[s$id, "income"], s)

see the result using a contingency table
table(s$region, s$state)

The same data as in Example 1
the method is 'systematic' (unequal probability, without replacement)
the selection probabilities are computed using the variable 'income'
s <- Strata(m,c("region", "state"), size=c(10, 5, 10, 4, 6),
 method="systematic", pik=m$income)

extracts the observed data
data.frame(income=m[s$id, "income"], s)

see the result using a contingency table
table(s$region, s$state)

StrCap

Capitalize the First Letter of a String

Description

Capitalize the first letter of each element of the string vector.

Usage

```
StrCap(x, method=c("first", "word", "title"))
```

Arguments

- `x` string to be capitalized.
- `method` one out of "first" (default), "word", "title". "first" will only capitalize the first character of a string. "word" will capitalize all found words and "title" will also capitalize wordwise, but leave out: a, an, the, at, by, for, in, of, on, to, up, and, as, but, s, or and nor.

Value

Returns a vector of characters with the first letter capitalized

Author(s)

Charles Dupont <charles.dupont@vanderbilt.edu>, Andri Signorell <andri@signorell.net> (methods word and title)
Examples

capitalize first character
StrCap(c("Hello", "bob", "dan"))
but not all...
StrCap(c("Hello, bob, how are you?", "And you, DANIEL?"))

wordwise
StrCap(c("Capitalize all words in titles of publications and documents",
"but Up and UP, not all and all", NA), method="word")

wordwise omitting the ones listed above
StrCap(c("Capitalize all words in titles of publications and documents",
"but Up and UP, not all and all", NA), method="title")

do not touch non alphabetic characters
z <- c("Lorem ipsum dolor", "sit amet", "consectetur --", "adipiscing elit ",
"sed, --(do) / **eiusmod")
StrCap(z, method="title")

StrChop

Split a String into a Number of Sections of Defined Length

Description

Splitting a string into a number of sections of defined length is needed, when we want to split a
table given as a number of lines without separator into columns. The cutting points can either be
defined by the lengths of the sections or directly by position.

Usage

StrChop(x, len, pos)

Arguments

x the string to be cut in pieces.
len a vector with the lengths of the pieces.
pos a vector of cutting positions. Will be ignored when len has been defined.

Details

If length is going over the end of the string the last part will be returned, so if the rest of the string
is needed, it’s possible to simply enter a big number as last part length.

len and pos can’t be defined simultaneously, only alternatively.

Typical usages are

StrChop(x, len)
StrChop(x, pos)
`strcountw` Count Words in a String

Description
Count the number of words that appear within a character string.

Usage
`strcountw(x)`

Arguments
- `x` a vector of strings to be parsed.

Details
This is just a wrapper for a fine regexpr. It uses the expression `\b\W+\b` to separate the words. The code `\W` is equivalent to `[^[:alnum:]_]` whereas `[:alnum:]` contains `[alpha:]` and `[:digit:]`. So everything that is not an alphanumeric character, a digit or a _ (underscore) is used as separator for the words to be counted.

Value
an integer defining the number of word in the string
Author(s)
Andri Signorell <andri@signorell.net>, based on code from Adam Bradley <hisself@adambradley.net>

References

See Also
nchar

Examples

```r
strcountw("This is a true story!")
strcountw("Just_one_word")
strcountw("Not-just.one/word")

strcountw("And what about numbers 8899 or special characters $$x?\)
strcountw("Starting 'n ending with some whitespace ")

strcountw(c("This is a", "text in more", "than one line.")
```

StrDist

Compute Distances Between Strings

Description

StrDist computes distances between strings following to Levenshtein or Hamming method.

Usage

```r
StrDist(x, y, method = "levenshtein", mismatch = 1, gap = 1, ignore.case = FALSE)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>character vector, first string.</td>
</tr>
<tr>
<td>y</td>
<td>character vector, second string.</td>
</tr>
<tr>
<td>method</td>
<td>character, name of the distance method. This must be "levenshtein", "normlevenshtein" or "hamming". Default is "levenshtein", the classical Levenshtein distance.</td>
</tr>
<tr>
<td>mismatch</td>
<td>numeric, distance value for a mismatch between symbols.</td>
</tr>
<tr>
<td>gap</td>
<td>numeric, distance value for inserting a gap.</td>
</tr>
<tr>
<td>ignore.case</td>
<td>if FALSE (default), the distance measure will be case sensitive and if TRUE, case is ignored.</td>
</tr>
</tbody>
</table>
Details

The function computes the Hamming and the Levenshtein (edit) distance of two given strings (sequences). The Hamming distance between two vectors is the number mismatches between corresponding entries.

In case of the Hamming distance the two strings must have the same length.

In case of the Levenshtein (edit) distance a scoring and a trace-back matrix are computed and are saved as attributes "ScoringMatrix" and "TraceBackMatrix". The numbers in the trace-back matrix reflect insertion of a gap in string \(y \) (1), match/mismatch (2), and insertion of a gap in string \(x \) (3).

The edit distance is useful, but normalizing the distance to fall within the interval [0,1] is preferred because it is somewhat difficult to judge whether an LD of for example 4 suggests a high or low degree of similarity. The method "normlevenshtein" for normalizing the LD is sensitive to this scenario. In this implementation, the Levenshtein distance is transformed to fall in this interval as follows:

\[
l_{nd} = 1 - \frac{ld}{\max(\text{length}(x), \text{length}(y))}
\]

where \(ld \) is the edit distance and \(\max(\text{length}(x), \text{length}(y)) \) denotes that we divide by the length of the larger of the two character strings. This normalization, referred to as the Levenshtein normalized distance \(l_{nd} \), yields a statistic where 1 indicates perfect agreement between the two strings, and a 0 denotes imperfect agreement. The closer a value is to 1, the more certain we can be that the character strings are the same; the closer to 0, the less certain.

Value

StrDist returns an object of class "dist"; cf. dist.

Note

For distances between strings and for string alignments see also Bioconductor package Biostrings

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

See Also

adist, dist
Examples

x <- "GACGGATTATG"
y <- "GATCGGAATAG"
Levenshtein distance
d <- StrDist(x, y)
d
attr(d, "ScoringMatrix")
attr(d, "TraceBackMatrix")

Hamming distance
StrDist(x, y, method="hamming")

StrExtract

Extract Part of a String

Description

Extract a part of a string, defined as regular expression.

Usage

`StrExtract(x, pattern, ...)`

Arguments

- **x**: a character vector where matches are sought, or an object which can be coerced by `as.character` to a character vector.
- **pattern**: character string containing a regular expression (or character string for `fixed = TRUE`) to be matched in the given character vector. Coerced by `as.character` to a character string if possible. If a character vector of length 2 or more is supplied, the first element is used with a warning. Missing values are not allowed.
- **...**: the dots are passed to the the internally used function `regexpr()`, which allows to use e.g. Perl-like regular expressions.

Details

The function wraps `regexpr` and `regmatches`.

Value

A character vector.

Author(s)

Andri Signorell <andri@signorell.net>
StrIsNumeric

See Also

regexpr, regmatches

Examples

txt <- c("G1:E001", "G2:E002", "G3:E003")
extract everything after the :
StrExtract(":.*", txt)

StrIsNumeric x

Does a String Contain Only Numeric Data

Description

Check whether a string does only contain numeric data.

Usage

StrIsNumeric(x)

Arguments

x a character vector

Value

a logical vector with the same dimension as x

Author(s)

Andri Signorell <andri@signorell.net>

See Also

Other string functions, e.g. StrTrunc

Examples

x <- c("123", "-3.141", "foobar123")
StrIsNumeric(x)
StrLeft, StrRight \hspace{1cm} \textit{Returns the Left Or the Right Part Of a String}

\section*{Description}
Returns the left part or the right part of a string. The number of characters are defined by the argument \textit{n}. If \textit{n} is negative, this number of characters will be cut off from the other side.

\section*{Usage}
\begin{verbatim}
StrLeft(x, n)
StrRight(x, n)
\end{verbatim}

\section*{Arguments}
\begin{itemize}
 \item \textbf{x} \hspace{1cm} \text{a vector of strings.}
 \item \textbf{n} \hspace{1cm} \text{a positive or a negative integer, the number of characters to cut. If \textit{n} is negative, this number of characters will be cut off from the right with \textit{StrLeft} and from the right with \textit{StrRight}. \textit{n} will be recycled.}
\end{itemize}

\section*{Details}
The functions \textit{StrLeft} and \textit{StrRight} are simple wrappers to \textit{substr}.

\section*{Value}
the left (right) \textit{n} characters of \textit{x}

\section*{Author(s)}
Andri Signorell <andri@signorell.net>

\section*{See Also}
\begin{verbatim}
substr, StrTrim
\end{verbatim}

\section*{Examples}
\begin{verbatim}
StrLeft("Hello world!", n=5)
StrLeft("Hello world!", n=-5)

StrRight("Hello world!", n=6)
StrRight("Hello world!", n=-6)

StrLeft(c("Lorem", "ipsum", "dolor","sit","amet"), n=2)
StrRight(c("Lorem", "ipsum", "dolor","sit","amet"), n=c(2,3))
\end{verbatim}
StrPad

Pad a String With Justification

Description

StrPad will fill a string x with defined characters to fit a given length.

Usage

StrPad(x, width = NULL, pad = " ", adj = "left")

Arguments

- **x**: a vector of strings to be padded.
- **width**: resulting width of padded string. If x is a vector and width is left to NULL, it will be set to the length of the largest string in x.
- **pad**: string to pad with. Will be repeated as often as necessary. Default is " ".
- **adj**: adjustment of the old string, one of "left", "right", "center". If set to "left" the old string will be adjusted on the left and the new characters will be filled in on the right side.

Details

If a string x has more characters than width, it will be chopped on the length of width.

Value

the string

Author(s)

Christian W. Hoffmann <c-w.hoffmann@sunrise.ch>
some extensions Andri Signorell <andri@signorell.net>

Examples

StrPad("My string", 25, "XoX", "center")
[1] "XoXXoXoXMy stringXoXoXXoX"
StrPos

Find Position of First Occurrence Of a String

Description

Returns the numeric position of the first occurrence of a substring within a string. If the search string is not found, the result will be NA.

Usage

StrPos(x, pattern, pos = 1, ...)

Arguments

x
a character vector in which to search for the pattern, or an object which can be coerced by as.character to a character vector.

pattern
character string (search string) containing the pattern to be matched in the given character vector. This can be a character string or a regular expression.

pos
integer, defining the start position for the search within x. The result will then be relative to the begin of the truncated string. Will be recycled.

...
the dots are passed to the function regexpr.

Details

This is just a wrapper for the function regexpr.

Value

a vector of the first position of pattern in x

Author(s)

Andri Signorell <andri@signorell.net>

See Also

StrChop, regexpr

Examples

StrPos(x = levels(d.pizza$driver), pattern = "t")
StrRev

Reverse a String

Description

Returns a string in reverse order.

Usage

StrRev(x)

Arguments

x a string to be processed.

Value

string

Author(s)

Andri Signorell <andri@signorell.net>

See Also

String functions: nchar, match, grep, regexpr, substr, sub, gsub, StrTrunc, StrDist

Examples

StrRev("home")
StrRev("Anna")

StrTrim

Remove Leading/Trailing Whitespace From A String

Description

The function removes all spaces, tabs and newlines from the beginning and end of the supplied string. If these whitespace characters occur in the middle of the string, they are preserved. Trimming with method "left" deletes only leading whitespaces, "right" only trailing. Designed for users who were socialized by SQL.

Usage

StrTrim(x, pattern = " \t\n", method = "both")
Arguments

- **x**: the string to be trimmed.
- **pattern**: the pattern of the whitespaces to be deleted, defaults to space, tab and newline: \\
 " \t\n".
- **method**: one out of "both" (default), "left", "right". Determines on which side the string should be trimmed.

Details

The functions are defined depending on method as

- **both**: \(\text{gsub}(\text{pattern} = \text{gettextf}("^[\%s]+[\%s]+$", \text{pattern}, \text{pattern}), \text{replacement} = "", x=x) \)
- **left**: \(\text{gsub}(\text{pattern} = \text{gettextf}("^[\%s]+", \text{pattern}), \text{replacement} = "", x=x) \)
- **right**: \(\text{gsub}(\text{pattern} = \text{gettextf}("[\%s]+$", \text{pattern}), \text{replacement} = "", x=x) \)

Value

the string x without whitespaces

Author(s)

Andri Signorell <andri@signorell.net>

See Also

String functions: trimws, nchar, match, grep, regexpr, substr, sub, gsub, StrTrunc, StrDist

Examples

```r
StrTrim(" Hello world! ")

StrTrim(" Hello world! ", method="left")
StrTrim(" Hello world! ", method="right")

# user defined pattern
StrTrim(" ..Hello ... world! ", pattern=" \.")
```

StrTrunc

Truncate Strings and Add Ellipses If a String is Truncated.

Description

Truncates one or more strings to a specified length, adding an ellipsis (...) to those strings that have been truncated. Use formatC to justify the strings if needed.

Usage

```r
StrTrunc(x, maxlen = 20)
```
StrVal

Arguments

x a vector of strings.
maxlen the maximum length of the returned strings.

Value

The string(s) passed as ‘x’ now with a maximum length of ‘maxlen’ + 3 (for the ellipsis).

Author(s)

Andri Signorell,
following an idea of Jim Lemon in truncString()

See Also

String functions: nchar, match, grep, regexpr, substr, sub, gsub, StrTrim, StrDist

Examples

set.seed(1789)
x <- sapply(seq(10), function(x) paste(sample(letters, sample(20,1)),collapse=""))
x

strtrunc(x, maxlen=10)

right justification
formatC(strtrunc(x, maxlen=10), width = 10, flag=" ")

StrVal Extract All Numeric Values From a String

Description

Extract all numeric values from a string using a regular expression and return a list of all found values. If there are several, the values can be either pasted and/or casted from characters to numeric values.

Usage

StrVal(x, paste = FALSE, as.numeric = FALSE, dec =getOption("OutDec"))
Arguments

- `x` a character vector
- `paste` should separately extracted numbers be pasted together? This can be useful to reverse a prior format action. Default is `FALSE`.
- `as.numeric` logical value, determining if the extracted values should be converted to a number or be returned as characters. Default is `FALSE`.
- `dec` character string containing a single character. The preferred character to be used as the decimal point. Defaults `getOption("OutDec")`.

Details

If there are multiple numbers in the same string to paste and cast to numeric, pasting will be done first and after pasting the conversion will be performed. So if for example the numbers in `x = "34 way 066"` should be extracted `StrVal(x, paste = TRUE, as.numeric = TRUE)` will lead to `34066`. This is a useful choice for converting formatted numbers having some kind of bigmark.

Value

depending on the results the function will return either a character vector, in the case every element of `x` contained only one number, or a list of character vectors containing the found numbers.

Author(s)

Andri Signorell <andri@signorell.net>, Markus Naepflin <markus@naepfl.in> provided an optimized regex

See Also

other string functions in DescTools-package, section String functions

Examples

```R
# a simple vector with only one number per element
strval(c("week 1", "week 3", "week 4", "week 5"))

# several numbers per element, extract each part, do not paste and return characters
strval(c("This is 1. place: 45.2", "none", "12.1 but -2.7 follow, 10.2e23 "),
       paste = FALSE, as.numeric = FALSE)

# critical are numbers combined with signs, where we sequentially extract valid numbers
strval(c("-78-23-99", "$1e-15-34\times789+9", "$ - 34values"),
       paste = FALSE, as.numeric = FALSE)

# a typical use case for this function is to reverse a previously applied number format
x <- c(100000, 4564654632, -456463)
xf <- format(x, big.mark="'")
```
StuartMaxwellTest

StuartMaxwellTest

Stuart-Maxwell Marginal Homogeneity Test

Description

This function computes the marginal homogeneity test for a $k \times k$ matrix of assignments of objects to k categories or an $n \times 2 \times k$ matrix of category scores for n data objects by two raters. The statistic is distributed as chi-square with $k-1$ degrees of freedom.

It can be viewed as an extension of McNemar test to $k \times k$ table.

Usage

StuartMaxwellTest(x, y = NULL)

Arguments

x either a 2-way contingency table in matrix form, or a factor object.

y a factor object; ignored if x is a matrix.

Details

The null is that the probabilities of being classified into cells [i,j] and [j,i] are the same.

If x is a matrix, it is taken as a two-dimensional contingency table, and hence its entries should be nonnegative integers. Otherwise, both x and y must be vectors or factors of the same length. Incomplete cases are removed, vectors are coerced into factors, and the contingency table is computed from these.

Value

A list with class "htest" containing the following components:

- statistic the value of the test statistic.
- parameter the degrees of freedom.
- p.value the p-value of the test.
- method a character string indicating what type of test was performed.
- data.name a character string giving the name of the data.
Author(s)
Andri Signorell <andri@signorell.net>, based on Code from Jim Lemon

References

See Also
\texttt{mcnemar.test}, \texttt{chisq.test}, \texttt{MHChisqTest}, \texttt{BreslowDayTest}

Examples

```r
hyp <- as.table(matrix(c(20,3,0,10,30,5,5,15,40), nrow=3))
StuartMaxwellTest(hyp)

# Source: http://www.john-uebersax.com/stat/mcnemar.htm
mc <- as.table(matrix(c(
    732, 1524, 1575, 1577, 1602, 837, 1554, 1437,
    1672, 1600, 841, 1363, 1385, 1484, 1524, 791), nrow=4))

StuartMaxwellTest(mc)
```

StuartTauC

\textbf{Stuart } \tau_c

Description
Calculate Stuart's \(\tau_c \) statistic, a measure of association for ordinal factors in a two-way table. The function has interfaces for a table (matrix) and for single vectors.

Usage
```
StuartTauC(x, y = NULL, conf.level = NA, ...)
```

Arguments
- \texttt{x} a numeric vector or a table. A matrix will be treated as table.
- \texttt{y} NULL (default) or a vector with compatible dimensions to \texttt{x}. If \texttt{y} is provided, \texttt{table(x, y, ...)} is calculated.
- \texttt{conf.level} confidence level of the interval. If set to \texttt{NA} (which is the default) no confidence interval will be calculated.
- \texttt{...} further arguments are passed to the function \texttt{table}, allowing i.e. to set \texttt{useNA}. This refers only to the vector interface.
Stuart’s τ_c makes an adjustment for table size in addition to a correction for ties. τ_c is appropriate only when both variables lie on an ordinal scale.
It is estimated by

$$\tau_c = \frac{m \cdot (P - Q)}{n^2 \cdot (m - 1)}$$

where P equals twice the number of concordances and Q twice the number of discordances, n is the total amount of observations and $m = \min(R, C)$. The range of τ_c is $[-1, 1]$. See http://support.sas.com/documentation/cdl/en/statugfreq/63124/PDF/default/statugfreq.pdf, pp. 1739 for the estimation of the asymptotic variance.

Value

- a single numeric value if no confidence intervals are requested,
- otherwise a numeric vector with 3 elements for the estimate, the lower and the upper confidence interval

Author(s)

Andri Signorell <andri@signorell.net>

References

See Also

- `ConDisPairs` yields concordant and discordant pairs

Other association measures:
- `GoodmanKruskalGamma`, `KendallTauA` (τ_a), `cor` (method=”kendall”) for τ_b, `SomersDelta`, `Lambda`, `GoodmanKruskalTau`, `UncertCoef`, `MutInf`

Examples

```r
# example in:
# pp. S. 1821

# tab <- as.table(rbind(c(26,26,23,18,9),c(6,7,9,14,23)))

StuartTauC(tab, conf.level=0.95)
```
SysInfo

System Information

Description

SysInfo is a convenience function to compile some information about the computing system and environment used.

Usage

```r
SysInfo()
FindRProfile()
```

Details

The function `SysInfo` is mainly used to save the system environment information in ncdf files containing the results of some calculations.

`FindRProfile` returns path candidates where the profile could be found.

Value

character string with all version and system information of the current R system

Author(s)

Jannis v. Buttlar <jbuttlar@bgc-jena.mpg.de>, Andri Signorell <andri@signorell.net>

TextContrastColor

Choose Textcolor Depending on Background Color

Description

Text of a certain color when viewed against certain backgrounds can be hard to see. TextContrastColor returns either black or white depending on which has the better contrast.

Usage

```r
TextContrastColor(col, method = c("glynn", "sonego"))
```

Arguments

- `col`
 vector of any of the three kind of R colors, i.e., either a color name (an element of `colors()`), a hexadecimal string of the form "#rrggbb" or "#rrggbbbaa" (see rgb), or an integer i meaning palette()[i]. Non-string values are coerced to integer.

- `method`
 defines the algorithm to be used. Can be one out of "glynn" or "sonego". See details.
Details

A simple heuristic in defining a text color for a given background color, is to pick the one that is "farthest" away from "black" or "white". The way Glynn chooses to do this is to compute the color intensity, defined as the mean of the RGB triple, and pick "black" (intensity 0) for text color if the background intensity is greater than 127, or "white" (intensity 255) when the background intensity is less than or equal to 127. Sonego calculates \(L \leftarrow c(0.2, 0.6, 0) \times \frac{\text{col2rgb(color)}}{255} \) and returns \#000060 if \(L \geq 0.2 \) and \#FFFFA0 else.

Value

a vector containing the contrast color (either black or white)

Author(s)

Andri Signorell <andri@signorell.net> based on code of Earl F. Glynn, Stowers Institute for Medical Research, 2004

References

http://research.stowers.org/mcm/efg/R/Color/Chart/index.htm

(Reference for Sonego??)

Examples

works fine for grays
PlotArea(y=matrix(rep(1, times=3, each=8), ncol=8), x=1:3,
 col=gray(1:8 / 8), ylab="", xlab="", axes=FALSE)
text(x=2, y=1:8-0.5, levels(d.pizza$driver),
 col=TextContrastColor(gray(1:8 / 8)))

and not so fine, but still ok, for colors
par(mfrow=c(1,2))
PlotArea(y=matrix(rep(1, times=3, each=12), ncol=12), x=1:3,
 col=rainbow(12), ylab="", xlab="", axes=FALSE, main="method = Glynn")
text(x=2, y=1:12-0.5, levels(d.pizza$driver),
 col=TextContrastColor(rainbow(12)))

PlotArea(y=matrix(rep(1, times=3, each=12), ncol=12), x=1:3,
 col=rainbow(12), ylab="", xlab="", axes=FALSE, main="method = Sonego")
text(x=2, y=1:12-0.5, levels(d.pizza$driver),
 col=TextContrastColor(rainbow(12), method="sonego"))
TextToTable

Converts String To a Table

Description

Try to convert a string to a table, by first creating a data.frame using read.table. This can then be coerced to a matrix first, and subsequently to a table. The names of the dimensions can be specified.

Usage

TextToTable(x, dimnames = NULL, ...)

Arguments

x
the string to be interpreted as table.
dimnames
the names of the dimensions.
...
the dots will be passed to the function read.table and can be used for example to specify header, sep and row.names arguments.

Value

a table

Author(s)

Andri Signorell <andri@signorell.net>

See Also

read.table, as.table, as.matrix

Examples

txt <- "Democrat, Independent, Republican
M, 762, 327, 468
F, 484, 239, 477"

(tab <- TextToTable(txt, header=TRUE, sep="", dimnames=c("gender", "party")))
Theil-U

Theil's U Index of Inequality

Description
Calculate Theil’s U index of inequality.

Usage
TheilU(a, p, type = c(2, 1), na.rm = FALSE)

Arguments
a
a numeric vector with the actual observed values.
p
a numeric vector containing the predictions.
type
defining the type of Theil’s two U measures, see Details. Default is 2.
na.rm
logical, indicating whether NA values should be stripped before the computation proceeds. If set to TRUE complete cases of cbind(x, y) will be used. Defaults to FALSE.

Details
Theil proposed two error measures, but at different times and under the same symbol U, which has caused some confusion. $U_{\text{type } 1}$ is taken from Theil (1958, pp. 31-42). The argument a represents the actual observations and p the corresponding predictions. He left it open whether a and p should be used as absolute values or as observed and predicted changes. Theil (1966, chapter 2) proposed $U_{\text{type } 2}$ as a measure of forecast quality: "...where A_i and P_i stand for a pair of predicted and observed changes. ..."
As U_1 has some serious disadvantages (see Bliemel 1973) it is recommended to use U_2.

Author(s)
Andri Signorell <andri@signorell.net>

References

See Also
Gini
Description

The function can be used to add a title to a plot surrounded by a rectangular box. This is useful for plotting several plots in narrow distances.

Usage

TitleRect(label, bg = "grey", border = 1, col = "black", xjust = 0.5, line = 2, …)

Arguments

- label: the main title
- bg: the background color of the box.
- border: the border color of the box
- col: the font color of the title
- xjust: the x-justification of the text. This can be c(0, 0.5, 1) for left, middle- and right alignment.
- line: on which margin line, starting at 0 counting outwards
- …: the dots are passed to the text function, which can be used to change font and similar arguments.

Value

nothing is returned

Author(s)

Andri Signorell <andri@signorell.net>

See Also

title

Examples

plot(pressure)
TitleRect("pressure")
Comparison Table For Linear Models

Description

Collect the coefficients and some qualifying statistics of linear models and organize it in a table for comparison and reporting. The function supports linear and general linear models.

Usage

```r
TMod(..., FUN = NULL)
ModSummary(x, ...)
```

```r
# S3 method for class 'lm'
ModSummary(x, conf.level=0.95, ...)
# S3 method for class 'glm'
ModSummary(x, conf.level=0.95, ...)
```

Arguments

- `x` a (general) linear model object.
- `...` a list of (general) linear models.
- `conf.level` the level for the confidence intervals.
- `FUN` function with arguments `est`, `se`, `tval`, `pval`, `lci`, `uci` to display the coefficients. The default function will display the coefficient and significance stars for the p-values.

Details

In order to compare the coefficients of linear models, the user is left to his own devices. R offers no support in this respect. TMod jumps into the breach and displays the coefficients of several models in tabular form. For this purpose, different quality indicators for the models are displayed, so that a comprehensive comparison of the models is possible. In particular, it is easy to see the effect that adding or omitting variables has on forecast quality.

A plot function for a TMod object will produce a dotchart with the coefficients and their confidence intervals.

Value

character table

Author(s)

Andri Signorell <andri@signorell.net>
See Also

help

Examples

r.full <- lm(Fertility ~ ., swiss)
r.nox <- lm(Fertility ~ .-Examination - Catholic, swiss)
r.grp <- lm(Fertility ~ .-Education - Catholic + Cut(Q(Catholic), swiss)
r.gam <- glm(Fertility ~ ., swiss, family=Gamma(link="identity")
r.gama <- glm(Fertility ~ .- Agriculture, swiss, family=Gamma(link="identity")

TMod(r.full, r.nox, r.grp, r.gam, r.gama)

display confidence intervals
TMod(r.full, r.nox, r.gam, FUN = function(est, se, tval, pval, lci, uci){
 gettextf("%s [%s, %s]",
 Format(est, fmt=Fmt("num")),
 Format(lci, digits=3),
 Format(uci, digits=2)
)
})

cbind interface is not supported!!
d.titanic <- reshape(as.data.frame(Titanic),
idvar = c("Class","Sex","Age"),
timevar="Survived",
direction = "wide")
#
r.glm0 <- glm(cbind(Freq.Yes, Freq.No) ~ 1, data=d.titanic, family="binomial")
r.glm1 <- glm(cbind(Freq.Yes, Freq.No) ~ Class, data=d.titanic, family="binomial")
r.glm2 <- glm(cbind(Freq.Yes, Freq.No) ~ ., data=d.titanic, family="binomial")

d.titanic <- Untable(Titanic)

r.glm0 <- glm(Survived ~ 1, data=d.titanic, family="binomial")
r.glm1 <- glm(Survived ~ Class, data=d.titanic, family="binomial")
r.glm2 <- glm(Survived ~ ., data=d.titanic, family="binomial")

TMod(r.glm0, r.glm1, r.glm2)

plot OddsRatios

d.pima <- MASS::Pima.tr2

r.a <- glm(type ~ npreg + bp + skin + bmi + ped + age, data=d.pima, family=binomial)
r.b <- glm(type ~ npreg + glu + bp + skin, data=d.pima, family=binomial)
r.c <- glm(type ~ npreg + age, data=d.pima, family=binomial)

or.a <- OddsRatio(r.a)
or.b <- OddsRatio(r.b)
or.c <- OddsRatio(r.c)
create the model table
tm <- TMod(m_A=or.a, m_B=or.b, m_C=or.c)
... and plot it
plot(tm, main="ORs for Models A, B, C",
 pch=15, col=c(hred, hblue), xlim=c(0.5, 1.5), panel.first=abline(v=1, col="grey"))

ToLong, ToWide

Reshape a Vector From Long to Wide Shape Or Vice Versa

Description

Simple reshaping a vector from long to wide or from wide to long shape by means of a single factor.

Usage

```r
ToLong(x, varnames = NULL)
ToWide(x, g, by = NULL, varnames = NULL)
```

Arguments

- `x` the vector to be reshaped
- `g` the grouping vector to be used for the new columns. The resulting data.frame will return one column per grouplevel.
- `by` a vector to be used to merge the pieces of `x`. If this is left to `NULL` the pieces will be merged by rownames in the order they are supplied.
- `varnames` the variable names if not the grouping levels should be used.

Details

`ToLong` expects `x` as a matrix or a data.frame and reshapes it to a (long) factor representation. `ToWide` expects the vectors `x`, `g`, `by` whereas `x` being the variable, `g` the splitting factor and by a vector for rowwise merging.

Value

the reshaped object

Author(s)

Andri Signorell <andri@signorell.net>

See Also

`reshape`
Examples

d.x <- read.table(header=TRUE, text="
AA BB CC DD EE FF GG
7.9 18.1 13.3 6.2 9.3 8.3 10.6
9.8 14.0 13.6 7.9 2.9 9.1 13.0
6.4 17.4 16.0 10.9 8.6 11.7 17.5
")

ToLong(d.x)

ToWide by row numbers (by = NULL)
ToWide(PlantGrowth$weight, PlantGrowth$group)

To wide aligned by key
set.seed(41)
PlantGrowth$nr <- c(sample(12, 10), sample(12, 10), sample(12, 10))
head(PlantGrowth)

ToWide(PlantGrowth$weight, PlantGrowth$group, by = PlantGrowth$nr)

Create Table One Describing Baseline Characteristics

Description

Create a table summarizing continuous, categorical and dichotomous variables, optionally stratified by one or more variables, while performing adequate statistical tests.

Usage

```
TOne(x, grp = NA, add.length = TRUE, colnames = NULL, vnames = NULL, total = TRUE, align = "\\", FUN = NULL, TEST = NULL, intref = "high", fmt.pval = as.fmt(fmt = "+", na.form = " "))
```

Arguments

- `x`: a data.frame containing all the variables to be included in the table.
- `grp`: the grouping variable.
- `add.length`: logical. If set to TRUE (default), a row with the lengths of the group will be inserted as first row of the table.
- `colnames`: a vector of column names for the result table.
- `vnames`: a vector of variable names to be placed in the first column instead of the real names.
- `total`: logical, TRUE if totals should be added.
align the character on whose position the strings will be aligned. Left alignment can be requested by setting \texttt{sep = "\\l"}, right alignment by \texttt{"\\r"} and center alignment by \texttt{"\\c"}. Mind the backslashes, as if they are omitted, strings would be aligned to the \textbf{character} \texttt{l}, \texttt{r} or \texttt{c} respectively. Default value is \texttt{"\\l"}, thus left alignment.

\textbf{FUN} the function to be used as location and dispersion measure (typically \texttt{mean/sd} or alternatively \texttt{median/IQR}). See examples.

\textbf{TEST} a list of functions to be used to test the variables. Must be named as "\texttt{num}", "\texttt{cat}" and "\texttt{dich}" and be defined as function with arguments \texttt{(x, g)}, generating something similar to a \texttt{p.value}. (See examples.)

\textbf{intref} one out of "\texttt{high}" (default) or "\texttt{low}", defining which value of a dichotomous numeric or logical variable should be reported. Usually this will be \texttt{1} or \texttt{TRUE}. Setting it to "\texttt{low}" will report the lower value \texttt{0} or \texttt{FALSE}.

\textbf{fmt.pval} format code or function for the \texttt{p-values} of the tests, default is \texttt{as.fmt(fmt="p", na.form=" ")}

Details

There are three types of variables currently implemented: numeric, factor and variables with only two levels.

Value

a character matrix

Author(s)

Andri Signorell \texttt{<andri@signorell.net>}

See Also

\texttt{WrdTable}

Examples

```r
opt <- DescToolsOptions()

# define some special formats for count data, percentages and numeric results
# (those will be supported by \texttt{TOne})
Fmt(abs=as.fmt(digits=0, big.mark=""))
Fmt(per=as.fmt(digits=1, fmt="\%"))
Fmt(num=as.fmt(digits=1, big.mark=""))

TOne(x = d.pizza\[, c("temperature","delivery_min","driver","wine_ordered")\],
     grp=d.pizza\$quality)

# define median/IQR as describing functions for the numeric variables
TOne(iris[\[, -5\], iris[\[, 5\],
     FUN = function(x) gettextf("%s / %s",
                           Format(median(x, na.rm=TRUE), digits=1),
                           Format(IQR(x, na.rm=TRUE), digits=3))
```
ToWrd

Send Objects to Word

Description

Send objects like tables, ftables, lm tables, TOnes or just simple texts to a MS-Word document.
Usage

ToWrd(x, font = NULL, ..., wrd = DescToolsOptions("lastWord"))

S3 method for class 'Freq'
ToWrd(x, font = NULL, main = NULL, ..., wrd = DescToolsOptions("lastWord"))

S3 method for class 'table'
ToWrd(x, font = NULL, main = NULL, align = NULL,
 tablestyle = NULL, autofit = TRUE,
 row.names = FALSE, col.names = TRUE, ..., wrd = DescToolsOptions("lastWord"))

S3 method for class 'data.frame'
ToWrd(x, font = NULL, main = NULL, row.names = NULL, ...,
 wrd = DescToolsOptions("lastWord"))

S3 method for class 'ftable'
ToWrd(x, font = NULL, main = NULL, align = NULL,
 method = "compact", ..., wrd = DescToolsOptions("lastWord"))

S3 method for class 'TOne'
ToWrd(x, font = NULL, para = NULL, main = NULL, align = NULL,
 autofit = TRUE, ..., wrd = DescToolsOptions("lastWord"))

S3 method for class 'lm'
ToWrd(x, font = NULL, ..., wrd = DescToolsOptions("lastWord"))

S3 method for class 'character'
ToWrd(x, font = NULL, para = NULL, style = NULL, bullet = FALSE,
 ..., wrd = DescToolsOptions("lastWord"))

Default S3 method:
ToWrd(x, font = NULL, ..., wrd = DescToolsOptions("lastWord"))

Arguments

x the object to be transferred to Word.
font the font to be used to the output. This should be defined as a list containing
 fontname, fontsize, bold and italic flags:
 list(name="Arial", size=10, bold=FALSE, italic=TRUE).
para list containing paragraph format properties to be applied to the inserted text. For
 right align the paragraph one can set:
 list(alignment="r", LineBefore=0.5). See details for the full set of
 properties.
main a caption for a table. This will be inserted by Wrdcaption in Word and can be
 listed afterwards in a specific index. Default is NULL, which will insert nothing.
 Ignored if x is not a table.
align character vector giving the alignment of the table columns. "l" means left, "r" right and "c" center alignment. The code will be recycled to the length of the number of columns.

method string specifying how the "ftable" object is formatted (and printed if used as in write.ftable() or the print method). Can be abbreviated. Available methods are (see the examples):

"non.compact" the default representation of an "ftable" object.
"row.compact" a row-compact version without empty cells below the column labels.
"col.compact" a column-compact version without empty cells to the right of the row labels.
"compact" a row- and column-compact version. This may imply a row and a column label sharing the same cell. They are then separated by the string lsep.

autofit logical, defining if the columns of table should be fitted to the length of their content.

row.names logical, defining whether the row.names should be included in the output. Default is FALSE.

col.names logical, defining whether the col.names should be included in the output. Default is TRUE.

tablestyle either the name of a defined Word tablestyle or its index.

style character, name of a style to be applied to the inserted text.

... further arguments to be passed to or from methods.

bullet logical, defines if the text should be formatted as bullet points.

wrd the pointer to a word instance. Can be a new one, created by GetNewWrd() or an existing one, created by GetCurrWrd(). Default is the last created pointer stored in DescToolsOptions("lastWord").

Details

The paragraph format can be defined by means of these properties:

LeftIndent, RightIndent, SpaceBefore, SpaceBeforeAuto, SpaceAfter, SpaceAfterAuto, LineSpacingRule, Alignment, WidowControl, KeepWithNext, KeepTogether, PageBreakBefore, NoLineNumber, Hyphenation, FirstLineIndent, OutlineLevel, CharacterUnitLeftIndent, CharacterUnitRightIndent, CharacterUnitFirstLineIndent, LineUnitBefore, LineUnitAfter, MirrorIndents.

Value

if x is a table a pointer to the table will be returned

Author(s)

Andri Signorell <andri@signorell.net>
See Also

GetNewWrd

Examples

```r
## Not run:
# we can't get this through the CRAN test - run it with copy/paste to console

wrd <- GetNewWrd()

ToWrd("This is centered Text in Arial Black\n", para=list(Alignment=wdConst$wdAlignParagraphCenter,
    SpaceBefore=3, SpaceAfter=6),
    font=list(name="Arial Black", size=14),
    wrd=wrd)

sel <- wrd$Selection()$Borders(wdConst$wdBorderBottom)
sel[["LineStyle"]]<- wdConst$wdLineStyleSingle

tl <- TOne(x = d.pizza[, c("temperature","delivery_min","driver","wine_ordered")],
    grp=d.pizza$wine_delivered)

ToWrd(tl, font=list(name="Algerian"), wrd=wrd)

tab <- table(d.pizza$driver, d.pizza$area)

ToWrd(tab, font = list(size=15, name="Arial"), row.names = TRUE, col.names = TRUE,
    main= "my Title", wrd=wrd)

ToWrd(tab, font = list(size=10, name="Arial narrow"),
    row.names = TRUE, col.names=FALSE, wrd=wrd)

ToWrd(tab, font = list(size=15, name="Arial"), align="r",
    row.names = FALSE, col.names=TRUE, wrd=wrd)

ToWrd(tab, font = list(size=15, name="Arial"),
    row.names = FALSE, col.names=FALSE, wrd=wrd)

ToWrd(tab, tablestyle = "Mittlere Schattierung 2 - Akzent 4",
    row.names=TRUE, col.names=TRUE, wrd=wrd)

ToWrd(Format(tab, big.mark = "", digits=0), wrd=wrd)

zz <- ToWrd(Format(tab, big.mark = "", digits=0), wrd=wrd)
zz$Rows()$Select()
WrdFont(wrd = wrd) <- list(name="Algerian", size=14, bold=TRUE)

## End(Not run)
```
Description

Clean data by means of trimming, i.e., by omitting outlying observations.

Usage

Trim(x, trim = 0.1, na.rm = FALSE)

Arguments

x a numeric vector to be trimmed.
trim the fraction (0 to 0.5) of observations to be trimmed from each end of x. Values of trim outside that range (and < 1) are taken as the nearest endpoint. If trim is set to a value >1 it's interpreted as the number of elements to be cut off at each tail of x.
na.rm a logical value indicating whether NA values should be stripped before the computation proceeds.

Details

A symmetrically trimmed vector \(x \) with a fraction of trim observations (resp. the given number) deleted from each end will be returned. If \(\text{trim} \) is set to a value >0.5 or to an integer value > \(n/2 \) then the result will be NA.

Value

The trimmed vector \(x \). The indices of the trimmed values will be attached as attribute named "trimmed".

Note

This function is basically an excerpt from the base function \(\text{mean} \), which allows the vector \(x \) to be trimmed before calculating the mean. But what if a trimmed standard deviation is needed?

Author(s)

R-Core (function mean), Andri Signorell <andri@signorell.net>

See Also

\(\text{Winsorize} \)

Examples

```r
## generate data
set.seed(1234)  # for reproducibility
x <- rnorm(10)  # standard normal
x[1] <- x[1] * 10  # introduce outlier

## Trim data
x
```
Description

Performs one and two sample t-tests based on user supplied summary information instead of data as in `t.test()`.

Usage

```r
ttesta(mx, sx, nx, my = NULL, sy = NULL, ny = NULL, alternative = c("two.sided", "less", "greater"), mu = 0, paired = FALSE, var.equal = FALSE, conf.level = 0.95, ...)
```

Arguments

- `mx` a single number representing the sample mean of x.
- `my` an optional single number representing the sample mean of y.
- `sx` a single number representing the sample standard deviation of x.
- `sy` an optional single number representing the sample standard deviation of y.
- `nx` a single number representing the sample size of x.
- `ny` an optional single number representing the sample size of y.
- `alternative` a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". You can specify just the initial letter.
- `mu` a number indicating the true value of the mean (or difference in means if you are performing a two sample test).
- `paired` a logical indicating whether you want a paired t-test.
- `var.equal` a logical variable indicating whether to treat the two variances as being equal. If TRUE then the pooled variance is used to estimate the variance otherwise the Welch (or Satterthwaite) approximation to the degrees of freedom is used.
- `conf.level` confidence level of the interval.
- `...` further arguments to be passed to or from methods.
Details

alternative = "greater" is the alternative that x has a larger mean than y.

If paired is TRUE then both mx, sx and my, sy must be specified and nx must be equal to ny. If var.equal is TRUE then the pooled estimate of the variance is used. By default, if var.equal is FALSE then the variance is estimated separately for both groups and the Welch modification to the degrees of freedom is used.

If the input data are effectively constant (compared to the larger of the two means) an error is generated.

Value

A list with class "htest" containing the following components:

- statistic: the value of the t-statistic.
- parameter: the degrees of freedom for the t-statistic.
- p.value: the p-value for the test.
- conf.int: a confidence interval for the mean appropriate to the specified alternative hypothesis.
- estimate: the estimated mean or difference in means depending on whether it was a one-sample test or a two-sample test.
- null.value: the specified hypothesized value of the mean or mean difference depending on whether it was a one-sample test or a two-sample test.
- alternative: a character string describing the alternative hypothesis.
- method: a character string indicating what type of t-test was performed.
- data.name: a character string giving the name(s) of the data.

See Also

t.test

Examples

```
## Classical example: Student's sleep data
mx <- 0.75
my <- 2.33
sx <- 1.789010
sy <- 2.002249
nx <- ny <- 10
TTestA(mx=mx, my=my, sx=sx, sy=sy, nx=nx, ny=ny)

# compare to
with(sleep, t.test(extra[group == 1], extra[group == 2]))
```
TukeyBiweight

Calculate Tukey’s Biweight Robust Mean

Description
This calculates a robust average that is unaffected by outliers.

Usage
TukeyBiweight(x, const = 9, na.rm = FALSE,
 conf.level = NA, ci.type = "bca", R=1000, ...)

Arguments
x a numeric vector
const a constant. const is preassigned a value of 9 according to the Cook reference
 below but other values are possible.
na.rm logical, indicating whether NA values should be stripped before the computation
 proceeds. Defaults to FALSE.
conf.level confidence level of the interval. If set to NA (which is the default) no confidence
 interval will be calculated.
ci.type The type of confidence interval required. The value should be any subset of the
 values “basic”, “stud”, “perc”, “bca” or simply “all” which will compute
 all four types of intervals.
R The number of bootstrap replicates. Usually this will be a single positive integer.
 For importance resampling, some resamples may use one set of weights and
 others use a different set of weights. In this case R would be a vector of integers
 where each component gives the number of resamples from each of the rows of
 weights.
... the dots are passed to the function boot, when confidence intervalls are calculated.

Details
This is a one step computation that follows the Affy whitepaper below, see page 22. const determines
the point at which outliers are given a weight of 0 and therefore do not contribute to the calculation of
the mean. const = 9 sets values roughly +/-6 standard deviations to 0. const = 6 is also used in
tree-ring chronology development. Cook and Kairiukstis (1990) have further details.

An exact summation algorithm (Shewchuk 1997) is used. When some assumptions about the rounding
of floating point numbers and conservative compiler optimizations hold, summation error is completely
avoided. Whether the assumptions hold depends on the platform, i.e. compiler and CPU.

Value
A numeric mean.
TwoGroups

Author(s)

Mikko Korpela <mikko.korpela@aalto.fi>

References

See Also

HuberM, Range, RobScale

Examples

TukeyBiweight(rnorm(100))

| TwoGroups | Describe a Variable by a Factor with Two Levels |

Description

This function describes a numeric variable by a grouping factor with two levels. First, a descriptive text listing the frequencies and means of the two groups and the results of the significance test is generated. The results of Desc(x~g) are reported as they are provided by the function, followed by a plot consisting of a density plot and a box plot. This description makes sense, for example, if the age distribution of a collective is to be represented for both sexes.

Usage

TwoGroups(x, g, test = t.test, main = NULL, font.txt = NULL, font.desc = NULL, wrd = NULL, ...)

Arguments

x
the numeric variable to describe.

g
the grouping factor (preferably with two levels.)
test
the test to be applied, default is t.test().
main
the main title.
font.txt
the font chosen for the introducing text, when sending the output to Word.
font.desc
the font chosen for the description, when sending the output to Word.
UncertCoef

wrd the pointer to a running MS Word instance, as created by GetNewWrd() (for a new one) or by GetCurrWrd() for an existing one. Default is NULL, which will report all results to the console.

... the dots are sent to the internally used function Phrase(). They can be used to choose the language (lang) or provide variable name (xname).

Value

list with the results calculated by the used functions

Author(s)

Andri Signorell <andri@signorell.net>

See Also

Desc, PlotMultiDens, Phrase

Examples

x <- d.pizza$temperature
g <- factor(d.pizza$rabate)

we can change the colors for the plot by setting the DescToolsOptions
descToolsOptions(col=c(horange, hgreen))
TwoGroups(x, g, main="Temperature ~ Rebate")

for an output to Word simply define the wrd argument
wrd <- GetNewWrd()
TwoGroups(x, g, font.desc=list(name="Consolas", size=8),
main="Temperature ~ Rebate", wrd=wrd)

UncertCoef Uncertainty Coefficient

Description

The uncertainty coefficient \(U(C|R) \) measures the proportion of uncertainty (entropy) in the column variable \(Y \) that is explained by the row variable \(X \). The function has interfaces for a table, a matrix, a data.frame and for single vectors.

Usage

\[
\text{UncertCoef}(x, y = \text{NULL}, \text{direction} = \text{c("symmetric", "row", "column")},\]
\[
\text{conf.level} = \text{NA}, \text{p.zero.correction} = 1/\text{sum}(x)^2, \ldots)
\]
Arguments

x a numeric vector, a factor, matrix or data frame.
y NULL (default) or a vector, an ordered factor, matrix or data frame with compatible dimensions to x.
direction direction of the calculation. Can be "row" (default) or "column", where "row" calculates UncertCoef (R|C) ("column dependent").
conf.level confidence level of the interval. If set to NA (which is the default) no confidence interval will be calculated.
p.zero.correction slightly nudge zero values so that their logarithm can be calculated

Details

The uncertainty coefficient is computed as

\[U(C|R) = \frac{H(X) + H(Y) - H(XY)}{H(Y)} \]

and ranges from \([0, 1]\).

Value

Either a single numeric value, if no confidence interval is required, or a vector with 3 elements for estimate, lower and upper confidence interval.

Author(s)

Andri Signorell <andri@signorell.net> strongly based on code from Antti Arppe <antti.arppe@helsinki.fi>

References

See Also

Entropy, Lambda, Assocs

Examples

example from Goodman Kruskal (1954)

m <- as.table(cbind(c(1768,946,115), c(807,1387,438), c(189,746,288), c(47,53,16)))
dimnames(m) <- list(paste("A", 1:3), paste("B", 1:4))
m
UnirootAll

direction default is "symmetric"
UncertCoef(m)
UncertCoef(m, conf.level=0.95)

UncertCoef(m, direction="row")
UncertCoef(m, direction="column")

UnirootAll

Finds many (all) roots of one equation within an interval

Description

The function UnirootAll searches the interval from lower to upper for several roots (i.e., zero's) of a function f with respect to its first argument.

Usage

UnirootAll(f, interval, lower = min(interval), upper = max(interval),
 tol = .Machine$double.eps^0.2, maxiter = 1000, n = 100, ...)

Arguments

f the function for which the root is sought.
interval a vector containing the end-points of the interval to be searched for the root.
lower the lower end point of the interval to be searched.
upper the upper end point of the interval to be searched.
tol the desired accuracy (convergence tolerance).
maxiter the maximum number of iterations.
n number of subintervals in which the root is sought.
... additional named or unnamed arguments to be passed to f (but beware of partial matching to other arguments).

Details

f will be called as f(x, ...) for a numeric value of x.
Run demo(Jacobandroots) for an example of the use of UnirootAll for steady-state analysis.
See also second example of gradient This example is discussed in the book by Soetaert and Herman (2009).

Value

a vector with the roots found in the interval

Note

This is a verbatim copy from rootSolve::unirroot.all (v. 1.7).
Note

The function calls `uniroot`, the basic R-function.
It is not guaranteed that all roots will be recovered.
This will depend on n, the number of subintervals in which the interval is divided.
If the function "touches" the X-axis (i.e. the root is a saddle point), then this root will generally not
be retrieved. (but chances of this are pretty small).
Whereas `unitroot` passes values one at a time to the function, `unirootall` passes a vector of
values to the function. Therefore f should be written such that it can handle a vector of values. See
last example.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

`uniroot` for more information about input.

Examples

```r
## Mathematical examples

# a well-behaved case...
fun <- function (x) cos(2*x)^3

curve(fun(x), 0, 10, main = "UnirootAll")

All <- unirootall(fun, c(0, 10))
points(All, y = rep(0, length(All)), pch = 16, cex = 2)

# a difficult case...

f <- function (x) 1/cos(1+x^2)
AA <- unirootall(f, c(-5, 5))

curve(f(x), -5, 5, n = 500, main = "UnirootAll")

points(AA, rep(0, length(AA)), col = "red", pch = 16)

f(AA)  # !!!

## Vectorisation:

# from R-help Digest, Vol 130, Issue 27

integrand1 <- function(x) 1/x*dnorm(x)
integrand2 <- function(x) 1/(2*x-50)*dnorm(x)
integrand3 <- function(x, C) 1/(x+C)
```
Untable <- function(C) {
 integrate(integrand1, lower = 1, upper = 50)$value +
 integrate(integrand2, lower = 50, upper = 100)$value -
 integrate(integrand3, C = C, lower = 1, upper = 100)$value
}

uniroot passes one value at a time to the function, so res can be used as such
uniroot(res, c(1, 1000))

Need to vectorise the function to use UnirootAll:
res <- Vectorize(res)
UnirootAll(res, c(1, 1000))

Untable

Recover Original Data From Contingency Table

Description

Recreates the data.frame out of a contingency table x.

Usage

`Untable(x, ...)`

`## S3 method for class 'data.frame'
Untable(x, freq = "Freq", rownames = NULL, ...)

`## Default S3 method:
Untable(x, dimnames = NULL, type = NULL, rownames = NULL, colnames = NULL, ...)`

Arguments

- **x**: a numeric vector, a matrix, a table or a data.frame. If x is a vector, a matrix or a table it is interpreted as frequencies which are to be inflated to the original list. If x is a data.frame it is interpreted as a table in frequency form (containing one or more factors and a frequency variable).

- **dimnames**: the dimension names of x to be used for expanding. Can be used to expand a weight vector to its original values. If set to NULL (default) the dimnames of x will be used.

- **type**: defines the data type generated. This allows to directly define factors or ordered factors, but also numeric values. See examples.

- **rownames**: A names vector for the rownames of the resulting data.frame. If set to NULL (default) the names will be defined according to the table’s dimnames.

- **colnames**: A names vector for the colnames of the resulting data.frame. If set to NULL (default) the names will be defined according to the table’s dimnames.
freq character, the name of the frequency variable in case x is a data.frame.
...

Details

For x being a vector this reduces to rep(..., n) with n as vector (which is not supported by rep).

Value

a data.frame with the detailed data (even if x was a 1-dimensional table)

Author(s)

Andri Signorell <andri@signorell.net>

See Also

expand.grid, rep, gl, xtabs

Examples

d.titanic <- Untable(Titanic)
str(d.titanic)

... not the same as:
data.frame(Titanic)

tab <- table(set1=sample(letters[1:5], size=40, replace=TRUE),
 set2=sample(letters[11:15], size=40, replace=TRUE))
Untable(tab)

return a numeric vector by setting type and coerce to a vector by [,]
Untable(c(6,2,2), type="as.numeric")[,]

how to produce the original list based on frequencies, given as a data.frame

d.freq <- data.frame(xtabs(Freq ~ Sex + Survived, data=Titanic))

a data list with each individual

d.data <- Untable(xtabs(c(1364, 126, 367, 344) ~ .,
 expand.grid(levels(d.freq$Sex),levels(d.freq$Survived))))
head(d.data)

expand a weights vector
Untable(c(1,4,5), dimnames=list(c("Zurich","Berlin","London")))

and the same with a numeric vector
Untable(c(1,4,5), dimnames=list(c(5,10,15)), type="as.numeric")[,]
... which again is nothing else than
rep(times=c(1,4,5), x=c(5,10,15))
Unwhich

Description
The inverse function to `which` creates a logical vector/matrix from indices.

Usage
`Unwhich(idx, n, useNames = TRUE)`

Arguments
- `idx`: the indices as returned by `which`.
- `n`: integer, the length of the original vector.
- `useNames`: logical, determining if the names of the indices should be preserved.

Value
a logical vector of the length n, with TRUE on the positions i.

Author(s)
Nick Sabbe

References
`http://stackoverflow.com/questions/7659833/inverse-of-which`

See Also
`which`

Examples
```r
ll <- c(TRUE, FALSE, TRUE, NA, FALSE, FALSE, TRUE)
names(ll) <- letters[seq(ll)]
i <- which(ll)
# back again (loosing the names of the FALSEs)
Unwhich(i, length(ll))
```
VarCI

Confidence Intervals for the Variance

Description

Calculates confidence intervals for the variance. Available approaches are the classical one using the ChiSquare distribution, a more robust version proposed by Bonett and the bootstrap options available in the package boot.

Usage

```
VarCI(x, method = c("classic", "bonett", "norm", "basic", "stud", "perc", "bca"),
       conf.level = 0.95, sides = c("two.sided", "left", "right"),
       na.rm = FALSE, R = 999)
```

Arguments

- **x**: a (non-empty) numeric vector of data values.
- **method**: vector of character strings representing the type of intervals required. The value should be any subset of the values "classic", "bonett", "norm", "basic", "stud", "perc", "bca". See boot.ci.
- **conf.level**: confidence level of the interval.
- **sides**: a character string specifying the side of the confidence interval, must be one of "two.sided" (default), "left" or "right". You can specify just the initial letter. "left" would be analogue to a hypothesis of "greater" in a t.test.
- **na.rm**: logical. Should missing values be removed? Defaults to FALSE.
- **R**: number of bootstrap replicates. Usually this will be a single positive integer. For importance resampling, some resamples may use one set of weights and others use a different set of weights. In this case R would be a vector of integers where each component gives the number of resamples from each of the rows of weights. See boot.

Details

The confidence interval for the variance is very sensitive to non-normality in the data. Bonett (2006) has proposed an interval that is nearly exact when the data is normally distributed and provides good performance for moderately non-normal data. See the references for the details.

Value

a numeric vector with 3 elements:

- **var**: variance
- **lwr.ci**: lower bound of the confidence interval
- **upr.ci**: upper bound of the confidence interval
Author(s)
Andri Signorell <andri@signorell.net>

References
https://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/sdconfli.htm (might be outdated)

See Also
`MeanCI, MedianCI, VarTest, Var`

Examples
```
VarCI(d.pizza$price, na.rm=TRUE)
VarCI(d.pizza$price, conf.level=0.99, na.rm=TRUE)

VarCI(x, conf.level=0.9)

# and for the standard deviation
sqrt(VarCI(x, conf.level=0.9))

# from Bonett's paper
# expected results:
# -------------------------------
# conf.lvl   sd   lci    uci
# -------------------------------
#   90.0 0.5168 0.3592 0.9359
#   95.0 0.5168 0.3263 1.0841
#   99.0 0.5168 0.2607 1.5109

p <- c(15.83, 16.01, 16.24, 16.42, 15.33, 15.44, 16.88, 16.31)
sqrt(VarCI(p, method="bonett", conf.level=0.9))
sqrt(VarCI(p, method="bonett"))
sqrt(VarCI(p, method="bonett", conf.level=0.99))

# some bootstrap intervals
VarCI(x, method="norm")
VarCI(x, method="perc")
VarCI(x, method="bca")
```
Description

Performs either a one sample ChiSquare test to compare the variance of a vector with a given value or an F test to compare the variances of two samples from normal populations.

Usage

VarTest(x, ...)

Default S3 method:
VarTest(x, y,
 alternative = c("two.sided", "less", "greater"),
 ratio = 1, sigma.squared = 1,
 conf.level = 0.95, ...)

S3 method for class 'formula'
VarTest(formula, data, subset, na.action, ...)

Arguments

x, y numeric vectors of data values.
alternative a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". You can specify just the initial letter.
ratio the hypothesized ratio of the population variances of x and y.
sigma.squared a number indicating the true value of the variance, if one sample test is requested.
conf.level confidence level for the returned confidence interval.
formula a formula of the form lhs ~ rhs where lhs is a numeric variable giving the data values and rhs a factor with two levels giving the corresponding groups.
data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").
... further arguments to be passed to or from methods.

Details

The formula interface is only applicable for the 2-sample tests.

The null hypothesis is that the ratio of the variances of the populations from which x and y were drawn, or in the data to which the linear models x and y were fitted, is equal to ratio.

Value

A list with class "htest" containing the following components:

statistic the value of the F test statistic.
parameter the degrees of the freedom of the F distribution of the test statistic.
p.value the p-value of the test.
conf.int a confidence interval for the ratio of the population variances.
estimate the ratio of the sample variances of x and y.
null.value the ratio of population variances under the null.
alternative a character string describing the alternative hypothesis.
method the character string "F test to compare two variances".
data.name a character string giving the names of the data.

Author(s)
Andri Signorell <andri@signorell.net> (One sample test)
Two Sample test and help text from R-Core.

See Also
var.test, bartlett.test for testing homogeneity of variances in more than two samples from normal distributions; ansari.test and mood.test for two rank based (nonparametric) two-sample tests for difference in scale.

Examples
x <- rnorm(50, mean = 0, sd = 2)

One sample test
VarTest(x, sigma.squared = 2.5)

two samples
y <- rnorm(30, mean = 1, sd = 1)
VarTest(x, y) # Do x and y have the same variance?
VarTest(lm(x ~ 1), lm(y ~ 1)) # The same.

VecRot Vector Rotation (Shift Elements)

Description
Shift the elements of a vector in circular mode by k elements to the right (for positive k) or to the left (for negative k), such that the first element is at the (k+1)th position of the new vector and the last k elements are appended to the beginning.
vecshift does not attach the superfluous elements on one side to the other, but fills the resulting gaps with NAs.

Usage
VecRot(x, k = 1)
VecShift(x, k = 1)
Arguments

x a vector of any type.
k the number of elements to shift.

Details

The function will repeat the vector two times and select the appropriate number of elements from the required shift on.

Value

the shifted vector in the same dimensions as x.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

[, rep, lag]

Examples

VecRot(c(1,1,0,0,3,4,8), 3)
VecRot(letters[1:10], 3)
VecRot(letters[1:10], -3)
VecShift(letters[1:10], 3)
VecShift(letters[1:10], -3)

<table>
<thead>
<tr>
<th>VIF</th>
<th>Variance Inflation Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

Calculates variance-inflation and generalized variance-inflation factors for linear and generalized linear models. It’s a measure describing how much the variance of an estimated coefficient is increased because of collinearity.

Usage

VIF(mod)
Arguments

mod an object that responds to coef, vcov, and model.matrix, such as an lm or glm object.

Details

If all terms in an unweighted linear model have 1 df, then the usual variance-inflation factors are calculated.

The vif are defined as

$$vif_j = \frac{1}{1 - R^2_j}$$

where R^2_j equals the coefficient of determination for regressing the explanatory variable j in question on the other terms in the model. This is one of the well-known collinearity diagnostics.

If any terms in an unweighted linear model have more than 1 df, then generalized variance-inflation factors (Fox and Monette, 1992) are calculated. These are interpretable as the inflation in size of the confidence ellipse or ellipsoid for the coefficients of the term in comparison with what would be obtained for orthogonal data.

The generalized vifs are invariant with respect to the coding of the terms in the model (as long as the subspace of the columns of the model matrix pertaining to each term is invariant). To adjust for the dimension of the confidence ellipsoid, the function also prints $GVIF^{1/(2 \times df)}$ where df is the degrees of freedom associated with the term.

Through a further generalization, the implementation here is applicable as well to other sorts of models, in particular weighted linear models and generalized linear models.

Values of vif up to 5 are usually interpreted as uncritical, values above 5 denote a considerable multicollinearity.

Value

A vector of vifs, or a matrix containing one row for each term in the model, and columns for the GVIF, df, and $GVIF^{1/(2 \times df)}$.

Note

This is a verbatim copy from the function car::vif.

Author(s)

Henric Nilsson and John Fox <jfox@mcmaster.ca>

References

Vigenere

Examples

VIF(lm(Fertility ~ Agriculture + Education, data=swiss))
VIF(lm(Fertility ~ ., data=swiss))

Vigenere | Vigenere Cypher

Description

Implements a Vigenere cypher, both encryption and decryption. The function handle keys and text of unequal length and discards non-alphabetic characters.

Usage

Vigenere(x, key = NULL, decrypt = FALSE)

Arguments

x | the text to be encrypted
key | the key to be used. If this remains to NULL the PasswordDlg will be presented and the key can be entered there.
decrypt | boolean defining if the text should be encrypted or decrypted.

Details

All characters beside charlist = c(LETTERS, letters, 0:9) will be discarded from the text and from the key.

Value

the encrypted, resp. decrypted text

Author(s)

Andri Signorell <andri@signorell.net>

Examples

key <- "My FavoriteKey452"
(xenc <- Vigenere("Beware the Jabberwock, my son! The jaws that bite, the claws that catch!", key))

Vigenere(xenc, key, decrypt = TRUE)
note that everything besides the characters in the list will be discarded
Von Neumann’s Successive Difference Test

Description

A popular statistic to test for independence is the von Neumann ratio.

Usage

VonNeumannTest(x, alternative = c("two.sided", "less", "greater"), unbiased = TRUE)

Arguments

x a numeric vector containing the observations
alternative a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". You can specify just the initial letter.
unbiased logical. In order for VN to be an unbiased estimate of the true population value, the calculated value is multiplied by \(n/(n-1) \). Default is TRUE.

Details

The VN test statistic is in the unbiased case

\[
VN = \frac{\sum_{i=1}^{n-1} (x_i - x_{i+1})^2 \cdot n}{\sum_{i=1}^{n} (x_i - \bar{x})^2 \cdot (n-1)}
\]

It is known that \((VN - \mu)/\sigma\) is asymptotically standard normal, where \(\mu = \frac{2n}{n-1} \) and \(\sigma^2 = 4 \cdot \frac{n^2}{(n+1)(n-1)^2} \).

The VN test statistic is in the original (biased) case

\[
VN = \frac{\sum_{i=1}^{n-1} (x_i - x_{i+1})^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}
\]

The test statistic \((VN - 2)/\sigma\) is asymptotically standard normal, where \(\sigma^2 = \frac{4(n-2)}{(n+1)(n-1)} \).

Missing values are silently removed.

Value

A list with class "htest" containing the components:

- statistic the value of the VN statistic and the normalized statistic test.
- parameter, n the size of the data, after the remotion of consecutive duplicate values.
- p.value the p-value of the test.
- alternative a character string describing the alternative hypothesis.
- method a character string indicating the test performed.
- data.name a character string giving the name of the data.
Author(s)
Andri Signorell <andri@signorell.net>

References

See Also
BartelsRankTest

Examples
VonNeumannTest(d.pizza$temperature)

<table>
<thead>
<tr>
<th>wdConst</th>
<th>Word VBA Constants</th>
</tr>
</thead>
</table>

Description
This is a list with all VBA constants for MS Word 2010, which is useful for writing R functions based on recorded macros in Word. This way the constants need not be replaced by their numeric values and can only be complemented with the list’s name, say the VBA-constant `wd10Percent` for example can be replaced by `wdConstr$wd10Percent`. A handful constants for Excel are consolidated in *xlConst*.

Usage
```{r}
data(wdConst)
data(xlConst)
```

Format
The format is:
- List of 2755
- `$ wd100Words: num -4`
- `$ wd10Percent: num -6`
- `$ wd10Sentences: num -2`
- ...

Source
Microsoft
Winsorize

Description

Winsorizing a vector means that a predefined quantum of the smallest and/or the largest values are replaced by less extreme values. Thereby the substitute values are the most extreme retained values.

Usage

\[
\text{Winsorize}(x, \text{minval} = \text{NULL}, \text{maxval} = \text{NULL}, \text{probs} = c(0.05, 0.95), \text{na.rm} = \text{FALSE}, \text{type} = 7)
\]

Arguments

- \(x\): a numeric vector to be winsorized.
- \(\text{minval}\): the low border, all values being lower than this will be replaced by this value. The default is set to the 5%-quantile of \(x\).
- \(\text{maxval}\): the high border, all values being larger than this will be replaced by this value. The default is set to the 95%-quantile of \(x\).
- \(\text{probs}\): numeric vector of probabilities with values in \([0,1]\) as used in \text{quantile}.
- \(\text{na.rm}\): should NAs be omitted to calculate the quantiles? Note that NAs in \(x\) are preserved and left unchanged anyway.
- \(\text{type}\): an integer between 1 and 9 selecting one of the nine quantile algorithms detailed in \text{quantile} to be used.

Details

The winsorized vector is obtained by

\[
g(x) = \begin{cases}
-c & \text{for } x \leq -c \\
x & \text{for } |x| < c \\
c & \text{for } x \geq c
\end{cases}
\]

Consider standardizing (possibly robust) the data before winsorizing.

Value

A vector of the same length as the original data \(x\) containing the winsorized data.

Author(s)

Andri Signorell <andri@signorell.net>
See Also

`winsorize` from the package `robustHD` contains an option to winsorize multivariate data

scale, RobScale

Examples

```r
## generate data
set.seed(1234)  # for reproducibility
x <- rnorm(10)  # standard normal
x[1] <- x[1] * 10  # introduce outlier

## Winsorize data
x
Winsorize(x)

# use Large and Small, if a fix number of values should be winsorized (here k=3):
Winsorize(x, minval=tail(Small(x, k=3), 1), maxval=head(Large(x, k=3), 1))
```

WoolfTest

Woolf Test For Homogeneity in 2x2xk Tables

Description

Test for homogeneity on $2 \times 2 \times k$ tables over strata (i.e., whether the log odds ratios are the same in all strata).

Usage

`WoolfTest(x)`

Arguments

- `x` a $2 \times 2 \times k$ table, where the last dimension refers to the strata.

Value

A list of class "htest" containing the following components:

- `statistic` the chi-squared test statistic.
- `parameter` degrees of freedom of the approximate chi-squared distribution of the test statistic.
- `p.value` p-value for the test.
- `method` a character string indicating the type of test performed.
- `data.name` a character string giving the name(s) of the data.
- `observed` the observed counts.
- `expected` the expected counts under the null hypothesis.
Note

This function was previously published as woolf_test() in the vcd package and has been integrated here without logical changes.

Author(s)

David Meyer, Achim Zeileis, Kurt Hornik, Michael Friendly

References

See Also

mantelhaen.test, BreslowDayTest

Examples

migraine <- xtabs(freq ~ ., cbind(expand.grid(treatment=c("active","placebo"), response=c("better","same"), gender=c("female","male")), freq=c(16,5,11,20,12,7,16,19))

WoolfTest(migraine)

WrdCaption

Insert Caption to Word

Description

Insert a caption in a given level to a Word document. The caption is inserted at the current cursor position.

Usage

WrdCaption(x, index = 1, wrd = DescToolsOptions("lastWord"))

Arguments

x the text of the caption.
index integer from 1 to 9, defining the number of the heading style.
wrd the pointer to a word instance. Can be a new one, created by GetNewWrd() or an existing one, created by GetCurrWrd(). Default is the last created pointer stored in DescToolsOptions("lastWord").
WrdCellRange

Return the Cell Range Of a Word Table

Description

Return a handle of a cell range of a word table. This is useful for formating the cell range.

Usage

WrdCellRange(wtab, rstart, rend)

Arguments

wtab a handle to the word table as returned i.g. by WrdTable
rstart the left/upper cell of the cell range.
rend the right/lower cell of the cell range.

Details

Cell range selecting might be complicated. This function makes it easy.

Value

a handle to the range.

Examples

Not run: # Windows-specific example
wrd <- GetNewWrd()

insert a title in level 1
WrdCaption("My First Caption level 1", index=1, wrd=wrd)

works as well for several levels
sapply(1:5, function(i)
 WrdCaption(gettextf("My First Caption level %s",i), index=i, wrd=wrd)
)

End(Not run)
WrdFont

Author(s)

Andri Signorell <andri@signorell.net>

See Also

WrdTable

Examples

```r
## Not run:

# Windows-specific example
wrd <- GetNewWrd()
WrdTable(nrow=3, ncol=3, wrd=wrd)
crng <- WrdCellRange(rstart=c(1,2), rend=c(2,3))
crng$Select()

## End(Not run)
```

WrdFont

Get or Set the Font in Word

Description

WrdFont can be used to get and set the font in Word for the text to be inserted. *WrdFont* returns the font at the current cursor position.

Usage

```r
WrdFont(wrd = DescToolsOptions("lastWord"))
WrdFont(wrd) <- value
```

Arguments

- **value**

 the font to be used to the output. This should be defined as a list containing fontname, fontsize, bold and italic flags:
  ```r
  list(name="Arial", size=10, bold=FALSE, italic=TRUE, color=wdConst$wdColorBlack).
  ```

- **wrd**

 the pointer to a word instance. Can be a new one, created by GetNewWrd() or an existing one, created by GetCurrWrd(). Default is the last created pointer stored in DescToolsOptions("lastWord").

Details

The font color can be defined by a Word constant beginning with wdConst$wdColor. The defined colors can be listed with grep("wdColor", names(wdConst), val=TRUE).
Value

a list of the attributes of the font in the current cursor position:

- name: the fontname
- size: the fontsize
- bold
- italic
- color: the fontcolor

Author(s)

Andri Signorell <andri@signorell.net>

See Also

ToWrd, WrPlot, GetNewWrd, GetCurrWrd

Examples

```r
## Not run: # Windows-specific example
wrd <- GetNewWrd()

for(i in seq(10, 24, 2))
  ToWrd(gettextf("This is Arial size

for(i in seq(10, 24, 2))
  ToWrd(gettextf("This is Times size

## End(Not run)
```

WrdFormatCells

Format Cells Of a Word Table

Description

Format cells of a Word table.

Usage

```r
WrdFormatCells(wtab, rstart, rend, col = NULL, bg = NULL,
               font = NULL, border = NULL, align = NULL)
```
WrdFormatCells

Arguments

- **wtab**: A handle to the word table as returned, e.g., by `WrdTable`.
- **rstart**: The left/upper cell of the cell range.
- **rend**: The right/lower cell of the cell range.
- **col**: The foreground colour.
- **bg**: The background colour.
- **font**: The font to be used to the output. This should be defined as a list containing:
 - `fontname` as "Arial", `size` as 10, `bold` as FALSE, `italic` as TRUE, `color` as `wdConst$wdColorBlack`.
- **border**: The border of the cell range, defined as a list containing arguments for border, linestyle, linewidth and color. Border is a vector containing the parts of the border defined by the Word constants `wdConst$wdBorderBottom`, `wdBorderLeft`, `wdBorderTop`, `wdBorderRight`, `wdBorderHorizontal`, `wdBorderVertical`, `wdBorderDiagonalUp`, `wdBorderDiagonalDown`. Linestyle, linewidth, and color will be recycled to the required dimension.
- **align**: A character out of "1", "c", "r" setting the horizontal alignment of the cell range.

Details

Cell range selecting might be complicated. This function makes it easy.

Value

A handle to the range.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

`WrdTable`

Examples

```r
## Not run:  # Windows-specific example

m <- matrix(rnorm(12) * 100, nrow = 4,
            dimnames = list(LETTERS[1:4], c("Variable", "Value", "Remark")))

wrd <- GetNewWrd()
wt <- ToWrd(m)

WrdFormatCells(wt, rstart = c(3, 1), rend = c(4, 3),
               bg = wdConst$wdColorGold, font = list(name = "Arial Narrow", bold = TRUE),
               align = "c", border = list(color = wdConst$wdColorTeal,
                                         linewidth = wdConst$wdLineWidth300pt))
```
WrdInsertBookmark

Insert a Bookmark, Goto Bookmark and Update the Text of a Bookmark

Description

WrdInsertBookmark inserts a new bookmark in a Word document. WrdGotoBookmark allows to set the cursor on the bookmark and WrdUpdateBookmark sets the text within the range of the bookmark.

Usage

```r
WrdInsertBookmark(name, wrd = DescToolsOptions("lastWord"))
WrdGoto(name, what = wdConst$wdGoToBookmark, wrd = DescToolsOptions("lastWord"))
WrdUpdateBookmark(name, text, what = wdConst$wdGoToBookmark,
wrd = DescToolsOptions("lastWord"))
```

Arguments

- `name` the name of the bookmark.
- `text` the text of the bookmark.
- `what` a word constant, defining the type of object to be used to place the cursor.
- `wrd` the pointer to a word instance. Can be a new one, created by GetNewWrd() or an existing one, created by GetCurrWrd(). Default is the last created pointer stored in DescToolsOptions("lastWord").

Details

Bookmarks are useful to build structured documents, which can be updated later.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

WrdFont, WrdPlot, GetNewWrd, GetCurrWrd
Examples

```r
## Not run: # Windows-specific example
wrd <- GetNewWrd()
WrdText("a
\n\n\n\b", fontname=WrdGetFont()$name, fontsize=WrdGetFont()$size)
WrdInsertBookmark("chap_b")
WrdText("\n\n\n\n\n", fontname=WrdGetFont()$name, fontsize=WrdGetFont()$size)

WrdGoto("chap_b")
WrdUpdateBookmark("chap_b", "Goto chapter B and set text")

## End(Not run)
```

WrdMergeCells

Merges Cells Of a Defined Word Table Range

Description

Merges a cell range of a word table.

Usage

```
WrdMergeCells(wtab, rstart, rend)
```

Arguments

- `wtab`: a handle to the word table as returned i.e. by `WrdTable`
- `rstart`: the left/upper cell of the cell range.
- `rend`: the right/lower cell of the cell range.

Value

nothing

Author(s)

Andri Signorell <andri@signorell.net>

See Also

`WrdTable`, `WrdCellRange`
Examples

```r
## Not run:

# Windows-specific example
wrd <- GetNewWrd()
wtab <- WrdTable(nrow=3, ncol=3, wrd=wrd)
WrdMergeCells(wtab, rstart=c(1,2), rend=c(2,3))
```

End(Not run)

WrdPageBreak
Insert a Page Break

Description

Insert a page break in a MS-Word (R) document at the position of the cursor.

Usage

```r
WrdPageBreak(wrd = DescToolsOptions("lastWord"))
```

Arguments

- `wrd`: the pointer to a word instance. Can be a new one, created by `GetNewWrd()` or an existing one, created by `GetCurrWrd()`. Default is the last created pointer stored in `DescToolsOptions("lastWord")`.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

- `WrdFont`
- `WrdPlot`
- `GetNewWrd`
- `GetCurrWrd`

Examples

```r
## Not run: # Windows-specific example
wrd <- GetNewWrd()
WrdText("This is text on page 1.

```

End(Not run)
WrdParagraphFormat Get or Set the Paragraph Format in Word

Description

WrdParagraphFormat can be used to get and set the font in Word for the text to be inserted.

Usage

WrdParagraphFormat(wrd = DescToolsOptions("lastWord"))
WrdParagraphFormat(wrd) <- value

Arguments

value a list defining the paragraph format. This can contain any combination of:
LeftIndent, RightIndent, SpaceBefore, SpaceBeforeAuto, SpaceAfter, SpaceAfterAuto,
LineSpacingRule, Alignment, WidowControl, KeepWithNext, KeepTogether,
PageBreakBefore, NoLineNumber, Hyphenation, FirstLineIndent, OutlineLevel,
CharacterUnitLeftIndent, CharacterUnitRightIndent, CharacterUnitFirstLineIndent,
LineUnitBefore, LineUnitAfter and/or MirrorIndents. The possible values
of the arguments are found in the Word constants with the respective name.
The alignment for example can be set to wdAlignParagraphLeft, wdAlignParagraphRight,
wdAlignParagraphCenter and so on.
Left alignment with indentation would be set as:
list(Alignment=wdConst$wdAlignParagraphLeft, LeftIndent=42.55).

wrd the pointer to a word instance. Can be a new one, created by GetNewWrd() or
an existing one, created by GetCurrWrd(). Default is the last created pointer
stored in DescToolsOptions("lastWord").

Value

an object with the class paragraph, basically a list with the attributes of the paragraph in the current
cursor position:

LeftIndent left indentation in (in points) for the specified paragraphs.
RightIndent right indent (in points) for the specified paragraphs.
SpaceBefore spacing (in points) before the specified paragraphs.
SpaceBeforeAuto TRUE if Microsoft Word automatically sets the amount of spacing before the
specified paragraphs.
SpaceAfter amount of spacing (in points) after the specified paragraph or text column.
SpaceAfterAuto TRUE if Microsoft Word automatically sets the amount of spacing after the spec-
ified paragraphs.
LineSpacingRule
line spacing for the specified paragraph formatting. Use wdLineSpaceSingle, wdLineSpace1pt5, or wdLineSpaceDouble to set the line spacing to one of these values. To set the line spacing to an exact number of points or to a multiple number of lines, you must also set the LineSpacing property.

Alignment WdParagraphAlignment constant that represents the alignment for the specified paragraphs.

WidowControl TRUE if the first and last lines in the specified paragraph remain on the same page as the rest of the paragraph when Word repaginates the document. Can be TRUE, FALSE, or wdUndefined.

KeepWithNext TRUE if the specified paragraph remains on the same page as the paragraph that follows it when Microsoft Word repaginates the document. Read/write Long.

KeepTogether TRUE if all lines in the specified paragraphs remain on the same page when Microsoft Word repaginates the document.

PageBreakBefore TRUE if a page break is forced before the specified paragraphs. Can be TRUE, FALSE, or wdUndefined.

NoLineNumber TRUE if line numbers are repressed for the specified paragraphs. Can be TRUE, FALSE, or wdUndefined.

Hyphenation TRUE if the specified paragraphs are included in automatic hyphenation. FALSE if the specified paragraphs are to be excluded from automatic hyphenation.

FirstLineIndent value (in points) for a first line or hanging indent. Use a positive value to set a first-line indent, and use a negative value to set a hanging indent.

OutlineLevel outline level for the specified paragraphs.

CharacterUnitLeftIndent left indent value (in characters) for the specified paragraphs.

CharacterUnitRightIndent right indent value (in characters) for the specified paragraphs.

LineUnitBefore amount of spacing (in gridlines) before the specified paragraphs.

LineUnitAfter amount of spacing (in gridlines) after the specified paragraphs.

MirrorIndents Long that represents whether left and right indents are the same width. Can be TRUE, FALSE, or wdUndefined.

Author(s)
Andri Signorell <andri@signorell.net>

See Also
ToWrd, WrdPlot, GetNewWrd, GetCurrWrd
Examples

```r
## Not run:
# Windows-specific example
wrd <- GetNewWrd()  # get the handle to a new word instance

WrdParagraphFormat(wrd=wrd) <- list(Alignment=wdConst$wdAlignParagraphLeft,
                                   LeftIndent=42.55)

ToWrd("Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy
eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua.
At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd
gubergren, no sea takimata sanctus est.\n", wrd=wrd)

# reset
WrdParagraphFormat(wrd=wrd) <- list(LeftIndent=0)

## End(Not run)
```

WrdPlot

Insert Active Plot to Word

Description

This function inserts the plot on the active plot device to Word. The image is transferred by saving the picture to a file in R and inserting the file in Word. The format of the plot can be selected, as well as crop options and the size factor for inserting.

Usage

```r
WrdPlot(type = "png", append.cr = TRUE, crop = c(0, 0, 0, 0), main = NULL,
picscale = 100, height = NA, width = NA, res = 300,
dfact = 1.6, wrd = DescToolsOptions("lastWord"))
```

Arguments

- `type`: the format for the picture file, default is "png".
- `append.cr`: should a carriage return be appended? Default is TRUE.
- `crop`: crop options for the picture, defined by a 4-elements-vector. The first element is the bottom side, the second the left and so on.
- `main`: a caption for the plot. This will be inserted by InserCaption in Word. Default is NULL, which will insert nothing.
- `picscale`: scale factor of the picture in percent, default ist 100.
- `height`: height in cm, this overrides the picscale if both are given.
- `width`: width in cm, this overrides the picscale if both are given.
- `res`: resolution for the png file, defaults to 300.
- `dfact`: the size factor for the graphic.
the pointer to a word instance. Can be a new one, created by `GetNewWrd()` or an existing one, created by `GetCurrWrd()`. Default is the last created pointer stored in `DescToolsOptions("lastWord")`.

Value

Returns a pointer to the inserted picture.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

`ToWrd`, `WrdCaption`, `GetNewWrd`

Examples

```r
## Not run: # Windows-specific example
# let's have some graphics
plot(1,type="n", axes=FALSE, xlab="", ylab="", xlim=c(0,1), ylim=c(0,1), asp=1)
rect(0,0,1,1,col="black")
segments(x0=0.5, y0=seq(0.632,0.67, length.out=100),
    y1=seq(0.5,0.6, length.out=100), x1=1, col=rev(rainbow(100)))
polygon(x=c(0.35,0.65,0.5), y=c(0.5,0.5,0.75), border="white",
    col="black", lwd=2)
segments(x0=0,y0=0.52, x1=0.43, y1=0.64, col="white", lwd=2)
x1 <- seq(0.549,0.578, length.out=50)
segments(x0=0.43, y0=0.64, x1=x1, y1=-tan(pi/3) * x1 + tan(pi/3) * 0.93,
    col=rgb(1,1,1,0.35))

# get a handle to a new word instance
wrd <- GetNewWrd()
# insert plot with a specified height
WrdPlot(wrd=wrd, height=5)
ToWrd("Remember?\n", fontname="Arial", fontsize=14, bold=TRUE, wrd=wrd)
# crop the picture
WrdPlot(wrd=wrd, height=5, crop=c(9,9,0,0))

wpic <- WrdPlot(wrd=wrd, height=5, crop=c(9,9,0,0))
wpic

## End(Not run)
```
WrdSaveAs

Save Word Document

Description

Save MS-Word documents.

Usage

WrdSaveAs(fn, fileformat = "docx", wrd = DescToolsOptions("lastWord"))

Arguments

fn filename and -path for the document.
fileformat file format, one out of "doc", "htm", "pdf".
wrd the pointer to a word instance. Can be a new one, created by NewWrd() or an existing one, created by CurrWrd(). Default is the last created pointer stored in DescToolsOptions("lastWord").

Value

nothing returned

Author(s)

Andri Signorell <andri@signorell.net>

See Also

getnewwrd()

Examples

Not run:
Windows-specific example
wrd <- NewWrd()
WrdCaption("A Report")
WrdSaveAs(fn="report", fileformat="htm")

End(Not run)
WrdStyle
Get or Set the Style in Word

Description

WrdStyle can be used to get and set the style in Word for the text to be inserted. WrdStyle returns the style at the current cursor position.

Usage

```r
WrdStyle(wrd = DescToolsOptions("lastWord"))
WrdStyle(wrd) <- value
```

Arguments

- `value` the name of the style to be used to the output. This should be defined an existing name.
- `wrd` the pointer to a word instance. Can be a new one, created by `getNewWrd()` or an existing one, created by `GetCurrWrd()`. Default is the last created pointer stored in `DescToolsOptions("lastWord")`.

Value

character, name of the style

Author(s)

Andri Signorell <andri@signorell.net>

See Also

`ToWrd`, `WrdPlot`, `GetNewWrd`, `GetCurrWrd`

Examples

```r
## Not run: # Windows-specific example

wrd <- getNewWrd()
# the current style
WrdStyle(wrd)

## End(Not run)
```
Description

Create a table with a specified number of rows and columns in a Word document at the current position of the cursor.

Usage

WrdTable(nrow = 1, ncol = 1, heights = NULL, widths = NULL, main = NULL,

wrd = DescToolsOptions("lastWord"))

Arguments

nrow number of rows.
ncol number of columns.
heights a vector of the row heights (in [cm]). If set to NULL (which is the default) the Word defaults will be used. The values will be recycled, if necessary.
widths a vector of the column widths (in [cm]). If set to NULL (which is the default) the Word defaults will be used. The values will be recycled, if necessary.
main a caption for the plot. This will be inserted by InserCaption in Word. Default is NULL, which will insert nothing.
wrd the pointer to a word instance. Can be a new one, created by GetNewWrd() or an existing one, created by GetCurrWrd(). Default is the last created pointer stored in DescToolsOptions("lastWord").

Value

A pointer to the inserted table.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

GetNewWrd, ToWrd

Examples

Not run: # Windows-specific example
c

wrd <- GetNewWrd()
WrdTable(nrow=3, ncol=3, wrd=wrd)

End(Not run)
Draw Borders to a Word Table

Description

Drawing borders in a Word table is quite tedious. This function allows to select any range and draw border lines around it.

Usage

\[\text{WrdTableBorders}(\text{wtab}, \text{from} = \text{NULL}, \text{to} = \text{NULL}, \text{border} = \text{NULL}, \]
\[\quad \text{lty} = \text{wdConst}\$\text{wdLineStyleSingle}, \text{col} = \text{wdConst}\$\text{wdColorBlack}, \]
\[\quad \text{lwd} = \text{wdConst}\$\text{wdLineWidth050pt}, \text{wrd}) \]

Arguments

- `wtab` a pointer to a Word table as returned by WrdTable or T0ne.
- `from` integer, a vector with two elements specifying the left upper bound of the cell-range.
- `to` integer, a vector with two elements specifying the right bottom of the cell-range.
- `border` a Word constant (wdConst$wdBorder...) defining the side of the border.
- `lty` a Word constant (wdConst$wdLineStyle...) defining the line type.
- `col` a Word constant (wdConst$wdColor...) defining the color of the border. See examples for converting R colors to Word colors.
- `lwd` a Word constant (wdConst$wdLineWidth...pt) defining the line width.
- `wrd` a pointer to the current Word instance.

Value

nothing

Author(s)

Andri Signorell <andri@signorell.net>

See Also

WrdTable
Examples

```r
## Not run:

# create table
tab <- table(op=d.pizza$operator, area=d.pizza$area)

# send it to Word
wrd <- GetNewWrd()
wtab <- ToWrd(tab, wrd=wrd, tablestyle = NA)

# draw borders
WrdTableBorders(wtab, from=c(2,2), to=c(3,3), border=wdConst$wdBorderBottom, wrd=wrd)
WrdTableBorders(wtab, from=c(2,2), to=c(3,3), border=wdConst$wdBorderDiagonalUp, wrd=wrd)

# demonstrate linewidth and color
wtab <- ToWrd(tab, wrd=wrd, tablestyle = NA)
WrdTableBorders(wtab, col=RgbToLong(ColToRgb("olivedrab")),
                lwd=wdConst$wdLineWidth150pt, wrd=wrd)

WrdTableBorders(wtab, border=wdConst$wdBorderBottom,
                col=RgbToLong(ColToRgb("dodgerblue")),
                lwd=wdConst$wdLineWidth300pt, wrd=wrd)

# use an R color in Word
RrgbToLong(ColToRgb("olivedrab"))

# find a similar R-color for a Word color
ColToRgb(RgbToCol(LongToRgb(wdConst$wdColorAqua)))

## End(Not run)
```

XLDateToPOSIXct

Convert Excel Dates to POSIXct

Description

As I repeatedly forgot how to convert Excel dates to POSIX here’s the specific function.

Usage

```r
XLDateToPOSIXct(x, tz = "GMT", xl1904 = FALSE)
```

Arguments

- **x**: the integer vector to be converted.
- **tz**: a time zone specification to be used for the conversion, if one is required. See `as.POSIXct`.
- **xl1904**: logical, defining if the unspeakable 1904-system should be used. Default is FALSE.
Details

XLGetRange will return dates as integer values, because XL stores them as integers. An Excel date can be converted with the (unusual) origin of as.Date(myDate, origin="1899-12-30"), which is implemented here.

Microsoft Excel supports two different date systems, the 1900 date system and the 1904 date system. In the 1900 date system, the first day that is supported is January 1, 1900. A date is converted into a serial number that represents the number of elapsed days since January 1, 1900. In the 1904 date system, the first day that is supported is January 1, 1904. By default, Microsoft Excel for the Macintosh uses the 1904 date system, Excel for Windows the 1900 system. See also: https://support.microsoft.com/en-us/kb/214330.

Value

return an object of the class POSIXct. Date-times known to be invalid will be returned as NA.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

as.POSIXct

Examples

XLDatetoposixct(41025)
XLDatetoposixct(c(41025.23, 41035.52))

Import Data Directly From Excel

Description

The package RDComClient is used to open an Excel workbook and return the content (value) of one (or several) given range(s) in a specified sheet. Helpful, if pathologically scattered data on an Excel sheet, which can’t simply be saved as CSV-file, has to be imported in R.

XLGetWorkbook does the same for all the sheets in an Excel workbook.

Usage

XLGetRange(file = NULL, sheet = NULL, range = NULL, as.data.frame = TRUE, header = FALSE, stringsAsFactors = FALSE, echo = FALSE, datecols = NA, na.strings = NULL)

XLGetWorkbook(file, compactareas = TRUE)

XLCurrReg(cell)
XLGetRange

Arguments

- **file**
 - the fully specified path and filename of the workbook. If it is left as NULL, the function will look for a running Excel-Application and use its current sheet. The parameter `sheet` will be ignored in this case.

- **sheet**
 - the name of the sheet containing the range(s) of interest.

- **range**
 - a scalar or a vector with the address(es) of the range(s) to be returned (characters). Use "A1"-address mode to specify the ranges, for example "A1:F10".
 - If set to NULL (which is the default), the function will look for a selection that contains more than one cell. If found, the function will use this selection. If there is no selection then the current region of the selected cell will be used.

- **as.data.frame**
 - logical. Determines if the cellranges should be coerced into data.frames. Defaults to TRUE, as this is probably the common use of this function.

- **header**
 - a logical value indicating whether the range contains the names of the variables as its first line. Default is FALSE. `header` is ignored if `as.data.frame` has been set to FALSE.

- **stringsAsFactors**
 - logical. Should character columns be coerced to factors? The default is FALSE, which will return character vectors.

- **echo**
 - logical. If set to TRUE, the function will print the full command used, such that it can be copied into the R-script for future use.

- **datecols**
 - a character or integer vector, defining which columns in Excel are of date type and should directly be converted to Date columns in R. Ignored if `as.data.frame` is FALSE.

- **na.strings**
 - a character vector of strings which are to be interpreted as NA values. Blank fields are always considered to be missing values. Default is NULL, meaning none.

- **compactareas**
 - logical, defining if areas should be returned by XLGetWorkbook as list or as matrix (latter is default).

- **cell**
 - range of the left uppe cell, when current region should be used.

Details

The result consists of a list of lists, if `as.data.frame` is set to FALSE. Be then prepared to encounter NULL values. Those will prevent from easily being able to coerce the square data structure to a data.frame.

The following code will replace the NULL values by NA and coerce the data to a data.frame.

```r
# get the range D1:J69 from an excel file
xlrng <- XLGetRange(file="myfile.xlsx", sheet="Tabelle1",
                    range="D1:J69", as.data.frame=FALSE)

# replace NULL values by NA
xlrng[unlist(lapply(xlrng, is.null))] <- NA

# coerce the square data structure to a data.frame
d.lka <- data.frame(lapply(data.frame(xlrng), unlist))
```
This of course can be avoided by setting `as.data.frame = TRUE`.

The function will return dates as integer values, because XL stores them as integers. An Excel date can be converted with the (unusual) origin of `as.Date(myDate, origin="1899-12-30")`. See also `XLDatetOPOSIXct`, which does the job. The conversion can be applied directly by using `datecols` and enumerate date columns in the sheet data.

Value

If `as.data.frame` is set to `TRUE`, a single `data.frame` or a list of `data.frame`s will be returned. If set to `FALSE` a list of the cell values in the specified Excel range, resp. a list of lists will be returned.

`XLGetWorkbook` returns a list of lists of the values in the given workbook.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

`getnewxl`, `xlgetworkbook`

Examples

```r
## Not run: # Windows-specific example

XLGetRange(file="C:\My Documents\data.xls",
          sheet="Sheet1",
          range=c("A2:B5","M6:X23","C4:D40"))

# if the current region has to be read (incl. a header), place the cursor in the interesting region
# and run:
d.set <- XLGetRange(header=TRUE)

## End(Not run)
```

Use MS-Excel as Viewer for a Data.Frame

Description

`XLView` can be used to view and edit a `data.frame` directly in MS-Excel, resp. to create a new `data.frame` in MS-Excel.
Usage

\[
\text{XLView}(x, \text{col.names} = \text{TRUE}, \text{row.names} = \text{FALSE}, \text{na} = "", \text{preserveStrings} = \text{FALSE})
\]

\[
\text{ToXL}(x, \text{at}, ..., \text{xl}=\text{DescToolsOptions("lastXL")})
\]

\[
\text{ToXL}(x, \text{at}, ..., \text{xl}=\text{DescToolsOptions("lastXL")})
\]

\[
\text{ToXL}(x, \text{at}, ..., \text{xl}=\text{DescToolsOptions("lastXL")})
\]

\[
\text{ToXL}(x, \text{at}, \text{byrow} = \text{FALSE}, ..., \text{xl}=\text{DescToolsOptions("lastXL")})
\]

\[
\text{XLKill}()
\]

Arguments

\(x \)

is a data.frame to be transferred to MS-Excel. If data is missing a new file will be created.

\(\text{row.names} \)

either a logical value indicating whether the row names of \(x \) are to be written along with \(x \), or a character vector of row names to be written.

\(\text{col.names} \)

either a logical value indicating whether the column names of \(x \) are to be written along with \(x \), or a character vector of column names to be written. See the section on 'CSV files' write.table for the meaning of \(\text{col.names} = \text{NA} \).

\(\text{na} \)

the string to use for missing values in the data.

\(\text{preserveStrings} \)

logical, will preserve strings from being converted to numerics when imported in MS-Excel. See details. Default is FALSE.

\(\text{at} \)

can be a range adress as character (e.g. "A1"), a vector of 2 integers (e.g c(1,1)) or a cell object as it is returned by xl$Cells(1,1), denominating the left upper cell, where the data.frame will be placed in the MS-Excel sheet.

\(\text{byrow} \)

logical, defines if the vector should be inserted by row or by column (default).

\(\text{xl} \)

the pointer to a MS-Excel instance. An new instance can be created with GetNewXL(), returning the appropriate handle. A handle to an already running instance is returned by GetCurrXL(). Default is the last created pointer stored in DescToolsOptions("lastXL").

\(\ldots \)

further arguments are not used.

Details

The data.frame will be exported in CSV format and then imported in MS-Excel. When importing data, MS-Excel will potentially change characters to numeric values. If this seems undesirable (maybe we're loosing leading zeros) then you should enclose the text in quotes and preset a =. \text{a <- gettextf("%s", x)} would do the trick.

Take care: Changes to the data made in MS-Excel will NOT automatically be updated in the original data.frame. The user will have to read the csv-file into R again. See examples how to get this done.
ToXL() is used to export data frames or vectors directly to MS-Excel, without export the data to a csv-file and import it on the XL side. So it it possible to export several data.frames into one Workbook and edit the tables after ones needs.

XLkill will kill a running XL instance (which might be invisible). Background is the fact, that the simple XLS$quit() command would not terminate a running XL task, but only set it invisible (observe the TaskManager). This ghost version may sometimes confuse XLView and hinder to create a new instance. In such cases you have to do the garbage collection...

Value

the name/path of the temporary file edited in MS-Excel.

Note

The function works only in Windows and requires RDCOMClient to be installed (see: Additional_repositories in DESCRIPTION of the package).

Author(s)

Andri Signorell <andri@signorell.net>, ToXL() is based on code of Duncan Temple Lang <duncan@r-project.org>

See Also

GetNewXL, XLGetRange, XLGetWorkbook

Examples

```r
## Not run: # Windows-specific example
XLView(d.diamonds)

# edit an existing data.frame in MS-Excel, make changes and save there, return the filename
fn <- XLView(d.diamonds)
# read the changed file and store in new data.frame
d.frm <- read.table(fn, header=TRUE, quote="", sep=";")

# Create a new file, edit it in MS-Excel...
fn <- XLView()
# ... and read it into a data.frame when in R again
d.set <- read.table(fn, header=TRUE, quote="", sep=";")

# Export a ftable object, quite elegant...
XLView(format(ftable(Titanic), quote=FALSE), row.names = FALSE, col.names = FALSE)

# Export a data.frame directly to XL, combined with subsequent formatting
xl <- GetNewXL()
owb <- xl[["Workbooks"]]
$Add()
sheet <- xl$Sheets()$Add()
sheet[["name"]]
```

Description

Use RStudio’s manipulator to explore a data.frame by dynamically creating xy-scatterplots, boxplots and others. Numerical descriptions can as well be produced on the fly.

Usage

Xplore(x)

Arguments

x the data.frame to be explored.

Details

This function helps to get rid of the afterwards superfluous R-code created while exploring a dataset.
Author(s)
Andri Signorell <andri@signorell.net>

Examples

```r
## Not run:
Xplore(d.pizza)

## End(Not run)
```

YuenTTest

Yuen t-Test For Trimmed Means

Description

Performs one and two sample Yuen t-tests for trimmed means on vectors of data.

Usage

```r
YuenTTest(x, ...)  
```

Arguments

- `x` numeric vector of data values. Non-finite (e.g. infinite or missing) values will be omitted.
- `y` an optional numeric vector of data values: as with `x` non-finite values will be omitted.
- `alternative` is a character string, one of "greater", "less", or "two.sided", or the initial letter of each, indicating the specification of the alternative hypothesis. For one-sample tests, `alternative` refers to the true median of the parent population in relation to the hypothesized value of the mean.
- `paired` a logical indicating whether you want a paired z-test.
- `mu` a number specifying the hypothesized mean of the population.
- `conf.level` confidence level for the interval computation.
- `trim` the fraction (0 to 0.5) of observations to be trimmed from each end of `x` before the mean is computed. Values of `trim` outside that range are taken as the nearest endpoint.
formula: a formula of the form \(\text{lhs} \sim \text{rhs} \) where \(\text{lhs} \) gives the data values and \(\text{rhs} \) the corresponding groups.

data: an optional matrix or data frame (or similar: see \texttt{model.frame}) containing the variables in the formula \texttt{formula}. By default the variables are taken from \texttt{environment(formula)}.

subset: an optional vector specifying a subset of observations to be used.

na.action: a function which indicates what should happen when the data contain NAs. Defaults to \texttt{getOption("na.action")}.

... further arguments to be passed to or from methods.

Value

An object of class \texttt{htest} containing the following components:

- \texttt{statistic}: the value of the t-statistic.
- \texttt{parameter}: the degrees of freedom for the t-statistic and the trim percentage used.
- \texttt{p.value}: the p-value for the test.
- \texttt{conf.int}: a confidence interval for the trimmed mean appropriate to the specified alternative hypothesis.
- \texttt{estimate}: the estimated trimmed mean or difference in trimmed means depending on whether it was a one-sample test or a two-sample test.
- \texttt{null.value}: the specified hypothesized value of the trimmed mean or trimmed mean difference depending on whether it was a one-sample test or a two-sample test.
- \texttt{alternative}: a character string describing the alternative hypothesis.
- \texttt{method}: a character string indicating what type of test was performed.
- \texttt{data.name}: a character string giving the name(s) of the data.

Author(s)

Andri Signorell <andri@signorell.net>, based on R-Core code of \texttt{t.test}

References

See Also

\texttt{t.test, print.htest}
Examples

x <- rnorm(25, 100, 5)
YuenTTest(x, mu=99)

the classic interface
with(sleep, YuenTTest(extra[group == 1], extra[group == 2]))

the formula interface
YuenTTest(extra ~ group, data = sleep)

Stahel (2002), pp. 186, 196
d.tyres <- data.frame(A=c(44.5, 55, 52.5, 50.2, 45.3, 46.1, 52.1, 50.5, 50.6, 49.2),
B=c(44.9, 54.8, 55.6, 55.2, 55.6, 47.7, 53, 49.1, 52.3, 50.7))
with(d.tyres, YuenTTest(A, B, paired=TRUE))

d.oxen <- data.frame(ext=c(2.7, 2.7, 1.1, 3.0, 1.9, 3.0, 3.8, 0.3, 1.9, 1.9),
int=c(6.5, 5.4, 8.1, 3.5, 0.5, 3.8, 6.8, 4.9, 9.5, 6.2, 4.1))
with(d.oxen, YuenTTest(int, ext, paired=FALSE))

ZeroIfNA

Replace NAs by 0

Description

Replace NAs in a numeric vector x with 0. This function has the same logic as the zeroifnull function in SQL. NAIfZero() does replace zeros with NA. BlankIfNA() and NAIfBlank() do the same, but for character vectors.

Usage

ZeroIfNA(x)
NAIfZero(x)
BlankIfNA(x)
NAIfBlank(x)

Impute(x, FUN = function(x) median(x, na.rm = TRUE))

Arguments

x the vector x, whose NAs should be overwritten with 0s.
FUN the name of a function to be used as imputation. Can as well be a self defined function or a constant value. Default is median.

Value

the edited vector x
Zodiac

Author(s)

Andri Signorell <andri@signorell.net>

See Also

replace

Examples

z <- c(8, NA, 9, NA, 3)

ZeroIfNA(z)
[1] 8 0 9 0 3

Impute(z)
[1] 8 8 9 8 3

z <- c("a", NA, ",", NA, "k")

BlankIfNA(z)
[1] "a" "" "" "k"

Zodiac

Calculate the Zodiac of a Date

Description

Calculate the sign of zodiac of a date.

Usage

Zodiac(x, lang = c("en\l", "deu"), stringsAsFactors = TRUE)

Arguments

x
the date to be transformed.

lang
the language of the zodiac names, can be english (default) or german ("deu").

stringsAsFactors
logical. If set to TRUE (default) the result will consist of a factor with zodiac signs as levels.

Details

The really relevant things can sometimes hardly be found. You just discovered such a function... :-)
Description

Compute the test of hypothesis and compute confidence interval on the mean of a population when
the standard deviation of the population is known.

Usage

ZTest(x, ...)

Default S3 method:
ZTest(x, y = NULL, alternative = c("two.sided", "less", "greater"),
 paired = FALSE, mu = 0, sd_pop, conf.level = 0.95, ...)

S3 method for class 'formula'
ZTest(formula, data, subset, na.action, ...)

Arguments

x numeric vector of data values. Non-finite (e.g. infinite or missing) values will be omitted.

y an optional numeric vector of data values: as with x non-finite values will be omitted.

mu a number specifying the hypothesized mean of the population.

sd_pop a number specifying the known standard deviation of the population.
alternative a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". You can specify just the initial letter. For one-sample tests, alternative refers to the true mean of the parent population in relation to the hypothesized value of the mean.

paired a logical indicating whether you want a paired z-test.

conf.level confidence level for the interval computation.

formula a formula of the form `lhs ~ rhs` where `lhs` gives the data values and `rhs` a factor with two levels giving the corresponding groups.

data an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

... further arguments to be passed to or from methods.

Details

Most introductory statistical texts introduce inference by using the z-test and z-based confidence intervals based on knowing the population standard deviation. However statistical packages often do not include functions to do z-tests since the t-test is usually more appropriate for real world situations. This function is meant to be used during that short period of learning when the student is learning about inference using z-procedures, but has not learned the t-based procedures yet. Once the student has learned about the t-distribution the `t.test()` function should be used instead of this one (but the syntax is very similar, so this function should be an appropriate introductory step to learning `t.test()`).

The formula interface is only applicable for the 2-sample tests.

Value

A list with class "htest" containing the following components:

- `statistic` the value of the z-statistic.
- `p.value` the p-value for the test
- `conf.int` a confidence interval for the mean appropriate to the specified alternative hypothesis.
- `estimate` the estimated mean or difference in means depending on whether it was a one-sample test or a two-sample test.
- `null.value` the specified hypothesized value of the mean or mean difference depending on whether it was a one-sample test or a two-sample test.
- `alternative` a character string describing the alternative hypothesis.
- `method` a character string indicating what type of test was performed.
- `data.name` a character string giving the name(s) of the data.
Author(s)
Andri Signorell <andri@signorell.net>, based on R-Core code of \texttt{t.test},
documentation partly from Greg Snow <greg.snow@imail.org>

References

See Also
\texttt{t.test, print.htest}

Examples
\begin{verbatim}
x <- rnorm(25, 100, 5)
ZTest(x, mu=99, sd_pop=5)

the classic interface
with(sleep, ZTest(extra[group == 1], extra[group == 2], sd_pop=2))

the formula interface
ZTest(extra ~ group, data = sleep, sd_pop=2)

Stahel (2002), pp. 186, 196
d.tyres <- data.frame(A=c(44.5,55,52.5,50.2,45.3,46.1,52.1,50.5,50.6,49.2),
 B=c(44.9,54.8,55.6,55.2,55.6,47.7,53.4,49.1,52.3,50.7))
with(d.tyres, ZTest(A, B, sd_pop=3, paired=TRUE))

d.oxen <- data.frame(ext=c(2.7,2.7,1.1,1.3,0.1,1.9,3.0,3.8,3.8,0.3,1.9,1.9),
 int=c(6.5,5.4,8.1,3.5,0.5,3.8,6.8,4.9,9.5,6.2,4.1))
with(d.oxen, ZTest(int, ext, sd_pop=1.8, paired=FALSE))
\end{verbatim}

Description
The like operator is a simple wrapper for \texttt{grep(..., value=TRUE)}, whose complexity is hard to

crack for R-newbies.

Usage
\begin{verbatim}
x %like% pattern
x %like any% pattern
\end{verbatim}
Arguments

- **x**: a vector, typically of character or factor type
- **pattern**: simple character string to be matched in the given character vector.

Details

Follows the logic of simple SQL or basic commands.

Value

a vector (numeric, character, factor), matching the mode of x

Author(s)

Andri Signorell <andri@signorell.net>

See Also

match, pmatch, grep, %[]%, %overlaps%

Examples

```r
# find names ending on "or"
names(d.pizza) %like% "%or"

# find names starting with "d"
names(d.pizza) %like% "d%"

# ... containing er?
names(d.pizza) %like% "%er%"

# and combined, search for a name containing "un", ending on "or"
# or beginning with "F"
levels(d.pizza$driver) %like any% c("%un%", "%or", "%F")

# the positions on the vector
match(names(d.pizza) %like% "%er%", names(d.pizza))
```

Description

%nin% is a binary operator, which returns a logical vector indicating if there is a match or not for its left operand. A true vector element indicates no match in left operand, false indicates a match.

Usage

```
x %nin% table
```
Arguments

x a vector (numeric, character, factor)
table a vector (numeric, character, factor), matching the mode of x

Value

vector of logical values with length equal to length of x.

Author(s)

Frank E Harrell Jr <f.harrell@vanderbilt.edu>

See Also

match, %in%

Examples

c('a', 'b', 'c') %in% c('a', 'b')

%overlaps% Determines If And How Extensively Two Date Ranges Overlap

Description

%overlaps% determines if two date ranges overlap at all and returns a logical value. Interval returns the number of days of the overlapping part of the two date periods. Inspired by the eponymous SQL-functions.

Usage

x %overlaps% y

Overlap(x, y)

Interval(x, y)

Arguments

x range 1, vector of 2 numeric values or matrix with 2 columns, the first defining the left point the second the right point of the range.
y range 2, vector of 2 numeric values or matrix with 2 columns, the first defining the left point the second the right point of the range.
Details

%overlaps% returns TRUE or FALSE depending on if the two ranges overlap. The function Overlap returns the range of the overlapping region as numeric value. This will be 0, if the ranges do not overlap.
Interval returns the width of the empty space between 2 ranges. Again this will be 0 if the ranges overlap.
To handle overlapping ranges there are 4 cases to consider:

range a: [-----------------]
range b: [-----]
range c: [-------]
range d: [-----]

Ranges a and b overlap, the function Overlap will return the absolute value of the overlapping region (which will be 3 - 2 = 1 in this case). The result will be the same for Overlap(a, b) and Overlap(b, a).
Interval will have a direction. Ranges b and c do not overlap, Overlap will return 0, %overlaps% FALSE. Interval will return 2 for the case Interval(a, b) and -2 for Interval(b, a).
This functions can be of value, if one has to decide, whether confidence intervals overlap or not.

Value

returns a logical vector (match or not for each element of x).
Interval and Overlap return a numeric vector.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

similar operators: Between, %like%
for calculating the overlapping time: difftime

Examples

as.Date(c("2012-01-03", "2012-02-03")) %overlaps% as.Date(c("2012-03-01", "2012-03-03"))
as.Date(c("2012-01-03", "2012-02-03")) %overlaps% as.Date(c("2012-01-15", "2012-01-21"))

Interval(as.Date(c("2012-01-03", "2012-02-03")), as.Date(c("2012-03-01", "2012-03-03")))

both ranges are recycled if necessary
as.Date("2012-01-03") %overlaps% as.Date(c("2012-03-01", "2012-03-03"))

works with numerics as well
c(1, 18) %overlaps% c(10, 45)
%c%

Concatenates Two Strings Without Any Separator

Description

%c% is just a short operator implementation for `paste(x, y, separator="").`

Usage

`x %c% y`

Arguments

- `x` first string
- `y` second string, which will be pasted behind the first one.

Details

Still the paste syntax seems sometimes clumsy in daily life and so %c% might spare some keys.

Value

returns the concatenation as string.

Author(s)

Andri Signorell <andri@signorell.net>

See Also

`Between, %like%`

Examples

"foo" %c% "bar"

works with numerics as well
345 %c% 457
Index

*Topic IO
 Format, 206
 ParseSASDatalines, 342
 RndPairs, 437
 Sample, 446
 TOne, 512

*Topic aplot
 Arrow, 34
 Asp, 37
 AxisBreak, 44
 axTicks.POSIXct, 45
 BarText, 51
 BoxedText, 70
 BubbleLegend, 77
 ColorLegend, 99
 ConnLines, 112
 DrawArc, 169
 DrawBand, 171
 DrawBezier, 172
 DrawCircle, 173
 DrawEllipse, 175
 DrawRegPolygon, 176
 ErrBars, 189
 GeomTrans, 220
 lines.lm, 288
 lines.loess, 289
 LineToUser, 291
 PolarGrid, 410
 Rotate, 440
 Shade, 455
 Stamp, 479
 TitleRect, 508

*Topic arith
 Base Conversions, 52
 CartToPol, 79
 ConvUnit, 117
 DegToRad, 145
 DigitSum, 160
 Divisors, 165
 Extremes, 194
 Factorize, 197
 Frac, 210
 Gmean, 229
 Hmean, 243
 IsDichotomous, 259
 IsEuclid, 260
 IsOdd, 261
 matpow, 301
 NPVpow, 328
 PMT, 407
 Primes, 420
 RomanToInt, 439

*Topic array
 Abind, 21
 Cor, 119
 Cross, 130
 CrossN, 131
 Dot, 168
 matpow, 301

*Topic attribute
 CollapseTable, 96
 Unwhich, 529

*Topic category
 BinomDiffCI, 59
 split.formula, 475
 SplitAt, 476

*Topic character
 \%nin\%, 571
 Phrase, 352
 StrAbbr, 483
 StrAlign, 484
 StrCap, 487
 StrChop, 488
 StrCountW, 489
 StrDist, 490
 StrExtract, 492
 StrIsNumeric, 493
 StrLeft, StrRight, 494
INDEX

StrPad, 495
StrPos, 496
StrRev, 497
StrTrim, 497
StrTrunc, 498
StrVal, 499

*Topic **chron**
AddMonths, 26
AddMonthsYM, 27
axTicks.POSIXct, 45
Date Functions, 141
HmsToSec, 244
IsDate, 258
XLDatesToPOSIXct, 557
Zodiac, 567

*Topic **color**
ColToGrey, 102
ColToHex, 103
ColToHsv, 104
ColToRgb, 105
DescTools Palettes, 156
FindColor, 201
HexToCol, 240
HexToRgb, 242
MixColor, 319
RgbToCol, 435
SetAlpha, 453
TextContrastColor, 504

*Topic **datasets**
CourseData, 126
d.counties, 135
d.diamonds, 136
d.periodic, 137
d.pizza, 138
d.whisky, 139
Datasets for Simulation, 141
day.name, 144
wdConst, 538

*Topic **data**
SplitATat, 476

*Topic **distribution**
Benford, 53
ExtrVal, 195
Frechet, 211
Freq2D, 214
GenExtrVal, 217
GenPareto, 218
Gompertz, 231
GTTest, 236
Gumbel, 238
Order, 332
pRevGumbel, 418
RevWeibull, 434
RndPairs, 437
Sample, 446

*Topic **documentation**
Keywords, 274

*Topic **dplot**
CartToPol, 79
Clockwise, 84
FindColor, 201
Freq2D, 214

*Topic **file**
dir.choose, 161

*Topic **hplot**
Canvas, 78
identify.formula, 255
PlotACF, 353
PlotArea, 354
PlotBag, 356
PlotBubble, 359
PlotCandlestick, 361
PlotCirc, 363
PlotCorr, 365
PlotDot, 369
PlotECDF, 371
PlotFaces, 373
PlotFdist, 375
PlotFun, 378
PlotLinesA, 381
PlotLog, 383
PlotMarDens, 384
PlotMiss, 385
PlotMonth, 386
PlotMosaic, 387
PlotMultiDens, 388
PlotPolar, 391
PlotPyramid, 394
PlotQQ, 397
PlotTernary, 399
PlotTreeMap, 400
PlotVenn, 402
PlotViolin, 403
PlotViolin, 403
PlotWeb, 406
Xplore, 563

*Topic **htest**
AndersonDarlingTest, 31
BarnardTest, 46
BartelsRankTest, 49
BreslowDayTest, 71
BreuschGodfreyTest, 73
CochranArmitageTest, 87
ConoverTest, 113
Contrasts, 116
CramerVonMisesTest, 127
DunnettTest, 180
Dunntest, 182
DurbinWatsonTest, 184
EtaSq, 191
GTest, 236
HoeffD, 246
HotellingsT2Test, 249
JarqueBeraTest, 263
JonckheereTerpstraTest, 265
LehmacherTest, 283
LeveneTest, 284
LilliefTest, 286
MHChisqTest, 317
MosesTest, 321
NemenyiTest, 326
PageTest, 336
PearsonTest, 345
PostHocTest, 412
power.chisq.test, 415
RunsTest, 443
ScheffeTest, 449
ShapiroFranciaTest, 456
SiegelTukeyTest, 457
SignTest, 460
StuartMaxwellTest, 501
TTtest, 519
VarTest, 531
VonNeumannTest, 537
WoolfTest, 540
YuenTTtest, 564
ZTest, 568

*Topic list
BinTree, 65
SetNames, 454

*Topic logic
Between, Outside, 55
Closest, 85
IsDate, 258
Some numeric checks, 466

*Topic manipulate
as.matrix.xtabs, 35

*Topic manip
%c, 574
%like%, 570
%nin%, 571
%overlaps%, 572
Abind, 21
AllDuplicated, 29
Append, 32
AscToChar, 36
Coalesce, 86
CollapseTable, 96
CombPairs, 107
CutQ, 133
FctArgs, 198
FileOpenCmd, 199
FindCorr, 202
FixToTable, 205
Freq2D, 214
IdentifyA, 256
ImportFileDialog, 257
InDots, 258
PairApply, 339
ParseFormula, 341
Rencode, 426
Rename, 430
reorder.factor, 431
Rev, 433
RoundTo, 441
SaveAsDlg, 448
SelectVarDlg, 451
Some, 465
Sort, 469
SortMixed, 471
SplitPath, 477
StrLeft, StrRight, 494
StrTrim, 497
TextToTable, 506
ToLong, ToWide, 511
Untable, 527
VecRot, 533
XLGetRange, 558
XLView, 560
ZeroIfNA, 566

*Topic math
AUC, 43
Index

DigitSum, 160
Divisors, 165
Dummy, 178
Factorize, 197
lines.lm, 288
lines.loess, 289
Logit, 296
LogSt, 297
Measures of Shape, 312
Perm, 350
Primes, 420
StrDist, 490
Vigenere, 536

*Topic methods
LOF, 295

*Topic misc
BoxedText, 70
GetCurrWrd, 221
GetNewWrd, 222
GetNewXL, 224
KrippAlpha, 275
Label, Unit, 276
PlotBag, 356
SpreadOut, 478

*Topic models
BrierScore, 75
CorPolychor, 124
Eps, 188
FisherZ, 204
OddsRatio, 330
StdCoef, 480

*Topic model
Measures of Accuracy, 309
PseudoR2, 421

*Topic mod
Cstat, 132
TMod, 509

*Topic multivariate
Association measures, 37
Assocs, 40
ConDisPairs, 108
Cor, 119
CorPart, 122
Desc, 148
DivCoef, 162
DivCoefMax, 163
ExpFreq, 193
FisherZ, 204
Freq2D, 214
HotellingsT2Test, 249
ICC, 252
PercTable, 347
PlotCorr, 365
PlotViolin, 403
PlotWeb, 406
RelRisk, 429
UncertCoef, 523

*Topic multivar
CohenKappa, 94
Conf, 109
CronbachAlpha, 129
GoodmanKruskalGamma, 232
GoodmanKruskalTau, 234
KappaM, 267
KendallTauA, 269
KendallTauB, 270
KendallW, 272
OddsRatio, 330
SomersDelta, 468
SpearmanRho, 473
StuartTaUC, 502
TheilU, 507

*Topic nonparametric
BarnardTest, 46
BootCI, 66
GoodmanKruskalGamma, 232
GoodmanKruskalTau, 234
HodgesLehmann, 245
HoeffD, 246
KendallTauA, 269
KendallTauB, 270
SomersDelta, 468
StuartTaUC, 502

*Topic optimize
UnirootAll, 525

*Topic package
DescTools-package, 10

*Topic print
Abstract, 25
CatTable, 80
ColumnWrap, 106
Desc, 148
IsValidWrd, 263
PowerPoint Interface, 416
ToWrd, 514
WrdCaption, 541
WrdCellRange, 542
WrdFont, 543
WrdFormatCells, 544
WrdInsertBookmark, 546
WrdMergeCells, 547
WrdPageBreak, 548
WrdParagraphFormat, 549
WrdPlot, 551
WrdSaveAs, 553
WrdStyle, 554
WrdTable, 555
WrdTableBorders, 556

*Topic regression
Eps, 188
VIF, 534

*Topic robust
HodgesLehmann, 245
HuberM, 251
MAD, 299
Median, 314
RobScale, 438
Trim, 517
TukeyBiweight, 521
Winsorize, 539

*Topic smooth
SmoothSpline, 463

*Topic survey
SampleTwins, 447
Strata, 485

*Topic ts
BoxCoxLambda, 69

*Topic univar
Agree, 28
Atkinson, 42
BinomCI, 57
BootCI, 66
BoxCox, 67
CCC, 81
CoefVar, 91
Cor, 119
CutQ, 133
DenseRank, 146
Desc, 148
DoBy, 165
Entropy, 186
Freq, 212
Gini, 225
GiniSimpson, 228
Herfindahl, 239
HodgesLehmann, 245
HosmerLemeshowTest, 248
HuberM, 251
Lambda, 277
Lc, 279
LinScale, 292
LOCF, 294
MAD, 299
Mean, 302
MeanAD, 303
MeanCI, 304
MeanDiffCI, 306
MeanSE, 308
Median, 314
MedianCI, 316
Midx, 318
Mode, 320
MoveAvg, 323
MultinomCI, 324
ORToRelRisk, 334
Outlier, 335
PlotQQ, 397
PoissonCI, 409
Quantile, 424
Range, 425
RobScale, 438
SD, 450
SortMixed, 471
Trim, 517
TukeyBiweight, 521
VarCI, 530
Winsorize, 539

*Topic utilities
ColorDlg, 98
ColPicker, 101
Label, Unit, 276
List Variety Of Objects, 293
Mar, 300
PasswordDlg, 344
PlotPch, 390
Recycle, 428
Str, 482
StrAbbr, 483
StrCap, 487
StrCountW, 489
StrDist, 490
StrExtract, 492
INDEX

BinTree, 12, 65
BlankIfNA (ZeroIfNA), 566
body, 198
bondyield, 185
boot, 229, 243, 251, 305, 307, 313, 521, 530
boot.ci, 66, 229, 243, 305, 307, 308, 316, 530
BootCI, 66
BoxCox, 11, 67, 69
boxcox, 68
BoxCoxInv, 11
BoxCoxInv (BoxCox), 67
BoxCoxLambda, 11, 68, 69
boxed.labels, 71
BoxedText, 14, 70
boxplot, 336, 358, 376, 377, 404, 405
BreslowDayTest, 17, 71, 502, 541
BreuschGodfreyTest, 18, 73
BrierScore, 16, 75, 133
BubbleLegend, 14, 77, 100, 360
bw.nrd, 404
call, 455
Canvas, 13, 65, 78
cards, 20
cards (Datasets for Simulation), 141
CartToPol, 13, 79
CartToSph, 13
CartToSph (CartToPol), 79
CatTable, 19, 80
cbind, 24, 33
CCC, 17, 81
celling, 441, 442
CharToAsc, 13
CharToAsc (AscToChar), 36
charToRaw, 36
chisq.test, 38, 151, 193, 237, 318, 502
choose, 351
class.ind, 179
Clockwise, 12, 84
Closest, 12, 85
Coalesce, 12, 86
CochranArmitageTest, 17, 87
CochranQTest, 17, 89
coeff, 481, 535
CoefVar, 16, 91
CohenD, 16, 92
CohenKappa, 16, 29, 94, 130, 268
col2rgb, 104, 105, 454
CollapseTable, 11, 96
colMeans, 303
ColorDlg, 13, 98, 101
ColorLegend, 13, 99, 366
colorRamp, 320
colorRampPalette, 157
colors, 101, 103–105, 241, 391
ColPicker, 13, 99, 101
ColToGray, 13
ColToGray (ColToGrey), 102
ColToGrey, 13, 102
ColToHex, 13, 103, 241, 454
ColToHsv, 13, 104
ColToRgb, 13, 102–104, 105, 241, 436
ColumnWrap, 26, 106
CombN, 12
CombN (PermN), 350
combn, 107, 351
ComBPairs, 12, 107, 340, 351
CombSet, 12
CombSet (PermN), 350
Comparison, 56
complete.cases, 38
compute.bagplot (PlotBag), 356
Concatenate Strings (%c), 574
Conf, 17, 76, 109
correlationMatrix, 111
ConnLines, 14, 112
ConoverTest, 17, 113, 327
ContCoeff, 16, 41
ContCoeff (Association measures), 37
Contrasts, 16, 116
contrasts, 179
ConvUnit, 13, 117
Cor, 17, 119
cor.fk, 121
cor.test, 121, 205
CorCI, 16
CorCI (FisherZ), 204
CorPart, 16, 122
CorPolyChor, 16, 124
corr, 318
corrgram, 366
CountCompCases, 125, 386
CourseData, 126
Cov (Cor), 119
Cov.wt, 121
CramerV, 16, 41
CramerV (Association measures), 37
CramerVonMisesTest, 17, 127, 265, 288, 347, 457
createCOMReference (GetNewWrd), 222
CronbachAlpha, 16, 95, 129, 273
Cross, 130, 132, 169
CrossN, 131, 131
Cstat, 17, 132
cumsum, 213
currencySubstitution, 185
curve, 376, 379, 456
cut, 134, 213, 215, 365
CutQ, 11, 133
d.countries, 20, 135
d.diamonds, 136
d.periodic, 20, 137
d.pizza, 20, 138
d.prefix, 20, 208
d.prefix (ConvUnit), 117
d.units, 20
d.units (ConvUnit), 117
d.whisky, 20, 139
data.frame, 127
Datasets for Simulation, 141
Date, 18, 315
date, 302
Date Functions, 141
date-time, 302
DateTimeClasses, 143
Day, 18
Day (Date Functions), 141
day.abb, 18
day.abb (day.name), 144
day.name, 18, 144
Day<- (Date Functions), 141
DB, 18
DB (Depreciation), 147
dBenf, 15
dBenf (Benford), 53
DecToBin, 13
DecToBin (Base Conversions), 52
DecToHex, 13
DecToHex (Base Conversions), 52
DecToOct, 13
DecToOct (Base Conversions), 52
DegToRad, 13, 80, 145, 175
DenseRank, 11, 146
density, 376, 377, 384, 390, 404, 405
Depreciation, 147
Desc, 19, 148, 152, 523
Desc.formula, 341, 342
DescTools (DescTools-package), 10
DescTools Aliases, 155
DescTools Palettes, 156
DescToolsOptions, 20, 157, 209, 349
dexp, 232
dExtraVal, 15
dExtraVal (ExtraVal), 195
dFrechet, 15
dFrechet (Frechet), 211
dGenExtraVal, 15
dGenExtraVal (GenExtraVal), 217
dGenPareto, 15
dGenPareto (GenPareto), 218
dGompertz, 15
dGompertz (Gompertz), 231
dGumbel, 15
dGumbel (Gumbel), 238
DiffDays360, 18
DiffDays360 (Date Functions), 141
diffTime, 573
DigitSum, 11, 160
dir.choose, 161
dirname, 477
dist, 491
DivCoef, 16, 162, 228
DivCoefMax, 16, 163
Divisors, 11, 165, 197
dNegWeibull, 15
dNegWeibull (RevWeibull), 434
do.call, 167, 168, 305, 372
DoBy, 165
doCall, 167
dOrder, 15
dOrder (Order), 332
Dot, 131, 132, 168
dotchart, 369
DrawArc, 14, 169, 173, 174, 176, 177, 221, 441
DrawBand, 14, 171, 280, 288, 290, 398
DrawBezier, 14, 172
DrawCircle, 14, 170, 173, 176, 177
DrawEllipse, 14, 174, 175, 221, 441
Index

DrawRegPolygon, 14, 173, 174, 176, 176, 221, 441

dRevGumbel, 15
dRevGumbel (pRevGumbel), 418
dRevWeibull, 15
dRevWeibull (RevWeibull), 434

Dummy, 11, 178

DunnettTest, 17, 180

DunnTest, 17, 114, 115, 182, 327

duplicated, 29, 30

DurbinWatsonTest, 17, 75, 184
dweibull, 232

ecdf, 377

Entropy, 16, 186, 228, 524

Eps, 188

ErrBars, 14, 189, 370

EtaSq, 16, 191

expand.grid, 107, 528

ExpFreq, 15, 193

expression, 455

Extremes, 194

ExtrVal, 195

factor, 146, 178, 427, 432

factorial, 351

Factorize, 11, 197, 216, 262, 420

factorize, 197

FctArgs, 19, 198

Fibonacci, 11, 198

file.choose, 161, 200, 448

FileOpenCmd, 18, 199, 258

filter, 323

FindColor, 13, 78, 100, 201

FindCorr, 16, 202

findInterval, 201

FindPPProfile (SysInfo), 504

fisher.test, 48

FisherZ, 12, 204

FisherZinv, 12

FisherZinv (FisherZ), 204

FixToTable, 13, 205, 489

Flags (IsDichotomous), 259

fligner.test, 285

floor, 441, 442

Fmt, 19, 158, 348, 349

Fmt (format), 206

formalArgs, 198

formals, 198

Format, 19, 158, 159, 206, 348, 485

format, 209

format.info, 211

format.pval, 208

formatC, 207, 209, 498

formula, 214, 256, 342, 354

Frac, 11, 210

fractions, 208

Frechet, 211

Freq, 15, 120, 152, 212, 302, 315, 348, 349

Freq2D, 214

friedman.test, 272, 273, 338

ftable, 349

function, 464

GCD, 11, 165, 197, 420

GCD (GCD, LCM), 215

GCD, LCM, 215

genetic, 203

GenExtrVal, 217

GenPareto, 218

GeomSn, 219

GeomTrans, 220

GetCurrPP, 19

GetCurrPP (PowerPoint Interface), 416

GetCurrWrd, 19, 221, 263, 542, 544, 546, 548, 550, 554

GetCurrXL, 19

GetCurrXL (GetCurrWrd), 221

GetNewPP, 19, 224

GetNewPP (PowerPoint Interface), 416

GetNewWrd, 19, 222, 222, 517, 542, 544, 546, 548, 550, 552–555

GetNewXL, 19, 224, 224, 560, 562

Gini, 16, 225, 228, 240, 281, 507

GiniSimpson, 16, 228

GKgamma, 233

g1, 528

glm, 248

Gmean, 15, 229, 244, 329

Gompertz, 231

GoodmanKruskalGamma, 16, 41, 232, 235, 270, 271, 279, 469, 503

GoodmanKruskalTau, 16, 108, 233, 234, 271, 279, 469, 503

graphical parameters, 370

grep, 497–499, 570, 571

grey, 102

grid, 383
INDEX

growth of money, 185
Gsd, 15
Gsd (Gmean), 229
gsub, 430, 497–499
GTest, 18, 236
Gumbel, 238

hblue (DescTools Palettes), 156
hclust, 386
head, 466
hcor (DescTools Palettes), 156
help, 51, 274, 510
Herfindahl, 16, 42, 227, 228, 239
hetcor, 125
HexToCol, 13, 103, 240, 242
HexToDec, 13
HexToDec (Base Conversions), 52
HexToRgb, 13, 242
hgreen (DescTools Palettes), 156
HighLow, 11
HighLow (Extremes), 194
hist, 212, 213, 372, 376, 377
Hmean, 15, 230, 243
HmsToSec, 18, 244
HodgesLehmann, 15, 245, 317
Hoeffd, 15, 246
horange (DescTools Palettes), 156
HosmerLemeshowTest, 18, 248
HotellingST2Test, 18, 249
Hour, 18
Hour (Date Functions), 141
hred (DescTools Palettes), 156
huber, 251
HuberM, 15, 251, 522
hubers, 252
hyellow (DescTools Palettes), 156
ICC, 16, 83, 252, 273
identify, 14, 255, 257
identify.formula, 14, 255
IdentifyA, 14, 256
if, 56
ifelse, 56
image, 366
ImportFileDlg, 18, 257
Impute, 12
Impute (ZeroIfNA), 566
Indots, 19, 258
ineq, 42, 227, 240
integrate, 43
intersect, 30
Interval, 11, 56
Interval (%overlaps%), 572
IPMT (PMT), 407
IQR, 300
IRR, 18
IRR (NPV), 328
is.finite, 86
is.integer, 467
is.na, 86
is.numeric, 120, 369
isDate, 18, 258
IsDichotomous, 12, 259
IsEuclid, 12, 260
IsLeapYear, 18
IsLeapYear (Date Functions), 141
IsNumeric, 12
IsNumeric (Some numeric checks), 466
IsOdd, 12, 261
IsPrime, 12, 161, 165, 197, 216, 262, 420
IsValidWrd, 19, 221, 222, 263
IsWeekend, 18
IsWeekend (Date Functions), 141
IsWhole, 12, 261
IsWhole (Some numeric checks), 466
IsZero, 12
IsZero (Some numeric checks), 466
JarqueBeraTest, 17, 263
JonckheereTerpstraTest, 17, 265
KappaM, 16, 29, 95, 150, 267, 273
KendallTauB, 16, 41, 233, 269, 270, 279, 469
KendallW, 16, 83, 272
Keywords, 19, 274
KrippAlpha, 16, 275
kruskal.test, 113, 115, 183
ks.test, 323
Kurt, 16, 152
Kurt (Measures of Shape), 312
Label, 12, 25
Label (Label, Unit), 276
label, 277
Label, Unit, 276
Label<- (Label, Unit), 276
INDEX

lag, 534
lapply, 305
Large, 11
Large (Extremes), 194
LastDayOfMonth, 18
LastDayOfMonth (Date Functions), 141
layout, 377, 384
Lc, 16, 227, 279, 281
LCM, 11, 165, 197, 420
LCM (GCD, LCM), 215
leaps, 203
legend, 78, 100
LehmacherTest, 17, 283
length, 419
levels, 427
LeveneTest, 17, 284, 459
LillieTest, 17, 128, 265, 286, 347, 457
lines, 289
lines.Lc (Lc), 279
lines.lm, 14, 288
lines.loess, 14, 190, 289, 289
lines.smooth.spline, 14, 465
lines.smooth.spline (lines.loess), 289
lines.SmoothSpline (lines.loess), 289
LineToUser, 14, 291
LinScale, 11, 292
list, 197
List Variety Of Objects, 293
lm, 186, 289, 312
locator, 255, 257
LOCF, 12, 294
loess, 290
LOF, 16, 295
log, 299
log10, 299
Logit, 11, 296
logit, 297
LogitInv, 11
LogitInv (Logit), 296
logLik, 422
LogSt, 11, 297
LogStInv, 11
LogStInv (LogSt), 297
LongToRgb, 13
LongToRgb (RgbToCol), 435
Lorenz curve (Lc), 279
lower.tri, 107
ls, 293, 294
ls.str, 293, 294
lsf.str, 293, 294
LsFct, 19
LsFct (List Variety Of Objects), 293
LsObj, 19
LsObj (List Variety Of Objects), 293
ma, 324
MAD, 17, 299
mad, 152, 252, 304, 438, 451
MAE, 17
MAE (Measures of Accuracy), 309
mantelhaen.test, 541
MAPE, 17
MAPE (Measures of Accuracy), 309
mapply, 28
Mar, 14, 300
margin.table, 97, 348
Margins, 15
Margins (PercTable), 347
match, 497–499, 571, 572
matplot, 382
matpow, 301
matrix, 301
max, 195, 420, 426
MaxDigits, 11
MaxDigits (Frac), 210
mcnemar.test, 110, 284, 502
Mean, 17, 302
mean, 92, 93, 230, 314, 321, 438, 518
mean.POSIXct, 303
MeanAD, 15, 264, 303
MeanCI, 15, 67, 230, 243, 304, 308, 309, 317, 531
MeanDiffCI, 15, 306, 306
MeanSE, 15, 152, 308
Measures of Accuracy, 309
Measures of Shape, 312
Median, 15, 314, 425
median, 246, 300, 317, 321, 438, 566
MedianCI, 15, 67, 246, 306, 308, 316, 531
MHChisqTest, 17, 317, 502
Midx, 12, 318, 324
min, 426
Minute, 18
Minute (Date Functions), 141
MixColor, 13, 319
mixedsort, 432
Model, 15, 320
model.frame, 114, 166, 179, 180, 182, 249, 266, 280, 285, 307, 322, 326, 337, 342, 348, 360, 389, 443, 458, 461, 532, 565, 569
model.matrix, 535
ModelDlg, 18
ModelDlg (SelectVarDlg), 451
ModSummary (TM), 509
moneydemand, 185
Month, 18, 27, 28, 209, 259
Month (Date Functions), 141
month.abb, 144, 145
month.name, 144, 145
mod.test, 285, 458, 459, 533
mosaicplot, 388, 401
MosesTest, 17, 321
MoveAvg, 15, 319, 323
MSE, 17
MSE (Measures of Accuracy), 309
mtext, 291
MultinomCI, 16, 59, 61, 324, 410
MutInf (Entropy), 186
N (DescTools Aliases), 155
NA, 120, 146
NAIFBlank (ZeroIfNA), 566
NAIFZero, 12
NAIFZero (ZeroIfNA), 566
names, 424
nchar, 490, 497–499
Ndec, 11
Ndec (Frac), 210
NemenyiTest, 18, 115, 326
NMAE, 17
NMAE (Measures of Accuracy), 309
NMSE, 17
NMSE (Measures of Accuracy), 309
normalizePath, 477
Now, 18
Now (Date Functions), 141
NPV, 18, 147, 328, 363, 408
NPVFixBond, 18
NPVFixBond (NPV), 328
OctToDec, 13
OctToDec (Base Conversions), 52
OddsRatio, 16, 111, 330, 430
OPR, 18
OPR (NPV), 328
optim, 125
Order, 332
order, 146, 434, 470–472
ordered, 432
OrderMixed, 11
OrderMixed (SortMixed), 471
ORToRelRisk, 16, 334
outer, 107, 340
Outlier, 16, 335
Overlap, 18, 56
Overlap (%overlaps%), 572
p.adjust, 114, 115, 182, 183, 284, 412, 414
PageTest, 17, 336
PairApply, 19, 38, 39, 278, 339
pairwise.t.test, 414, 450
pairwise.table, 340
Pal, 13, 159
Pal (DescTools Palettes), 156
par, 51, 101, 301, 369, 377, 382, 391, 392, 478
ParseFormula, 19, 341
ParseSASDatalines, 19, 342
PartialSD (StdCoef), 480
PasswordDlg, 18, 344
paste, 81
pBenf (Benford), 53
pdf, 368
PDFManual, 20, 345
PearsonTest, 17, 128, 265, 288, 345, 457
PercentRank, 11
PercentRank (DenseRank), 146
PercTable, 15, 213, 347
Permt, 11, 350
pExtrVal (ExtrVal), 195
pFrechet (Frechet), 211
pGenExtrVal (GenExtrVal), 217
pGenPareto (GenPareto), 218
pGompertz (Gompertz), 231
pGumbel (Gumbel), 238
Phi, 16, 41, 234
Phi (Association measures), 37
Phrase, 352, 523
plot, 152, 255, 360, 381, 384, 385
plot.bagplot (PlotBag), 356
plot.Conf (Conf), 109
plot.default, 288, 379
plot.Desc (Desc), 148
plot.ecdf, 372, 376
plot.Lc (Lc), 279
plot.Lc1ist (Lc), 279
plot.palette (DescTools Palettes), 156
plot.PostHocTest (PostHocTest), 412
plot.window, 79, 369, 379
PlotACF, 14, 353
PlotArea, 14, 354
PlotBag, 14, 356
PlotBagPairs, 14
PlotBagPairs (PlotBag), 356
PlotBinTree, 12
PlotBinTree (BinTree), 65
PlotBubble, 14, 359, 362
PlotCandlestick, 14, 361
PlotCashFlow, 363
PlotCirc, 14, 363, 401
PlotCorr, 14, 39, 365, 407
PlotDev, 15, 367
PlotDot, 14, 369
PlotECDF, 15, 371
PlotFaces, 14, 373
PlotFdist, 14, 372, 375
PlotFun, 14, 378
PlotGACF, 14
PlotGACF (PlotACF), 353
PlotLinesA, 15, 381
PlotLog, 15, 383
PlotMar (PlotPch), 390
PlotMarDens, 14, 384
PlotMiss, 15, 126, 385
PlotMonth, 14, 386
PlotMosaic, 15, 387
PlotMultiDens, 14, 388, 403, 523
PlotPar, 18
PlotPar (PlotPch), 390
PlotPch, 19, 101, 390
PlotPolar, 14, 84, 364, 391, 411
PlotPyramid, 15, 394
PlotQQ, 15, 397
PlotTernary, 15, 399
PlotTreeMap, 15, 400
PlotVenn, 15, 402
PlotViolin, 15, 390, 403
PlotWeb, 15, 366, 406
pmatch, 571
PMT, 407
pNegWeibull (RevWeibull), 434
points, 381, 382, 384, 392, 399, 406
poisson.test, 410
PoissonCI, 16, 409
PolarGrid, 14, 392, 410
PolToCart, 13
PolToCart (CartToPol), 79
polygon, 170, 171, 173, 174, 176, 177, 221, 355, 404, 441, 455, 456
polyserial, 125
pOrder (Order), 332
PostHocTest, 17, 181, 412
postscript, 368
power.anova.test, 415
power.chisq.test, 415
power.t.test, 416
PowerPoint Interface, 416
PpAddSlide, 19
PpAddSlide (PowerPoint Interface), 416
PPMT (PMT), 407
PpPlot, 19
PpPlot (PowerPoint Interface), 416
PpText, 19
PpText (PowerPoint Interface), 416
Prec, 11
Prec (Frac), 210
predict.Lc (Lc), 279
pretty, 215
prettyNum, 209
pRevGumbel, 418
pRevWeibull (RevWeibull), 434
Primes, 11, 165, 197, 216, 262, 420
primes, 420
print.Assocs (Assocs), 40
print.Conf (Conf), 109
print.CorPolyChor, 125
print.CorPolyChor (CorPolyChor), 124
print.CountCompCases (CountCompCases), 125
print.default, 283
print.Desc (Desc), 148
print.DunnTest (DunnTest), 182
print.Freq (Freq), 212
print.HoeffD (HoeffD), 246
print.htest, 565, 570
print.ICC (ICC), 252
print.mtest (LehmacherTest), 283
rug, 377
runif, 437
runmean, 324
RunsTest, 17, 50, 443
Sample, 446
sample, 446, 448, 486
SampleTwins, 12, 447
sapply, 230, 243, 316
save, 448
SaveAsDlg, 18, 448
scale, 292, 540
scan, 343
scatter.smooth, 290
ScheffeTest, 17, 116, 414, 449
SD, 17, 450
sd, 92, 121, 314, 438
Second, 18
Second (Date Functions), 141
SecToHms, 18
SecToHms (HmsToSec), 244
select.list, 453
SelectVarDlg, 18, 451
Sens, 17
Sens (Conf), 109
seq, 434
SetAlpha, 13, 453
setdiff, 30
setequal, 30
SetNames, 12, 431, 454
setNames, 454, 455
Shade, 14, 455
shapiro.test, 32, 128, 265, 288, 347, 457
ShapiroFranciaTest, 17, 128, 265, 288, 347, 466
SiegelTukeyRank, 17
SiegelTukeyRank (SiegelTukeyTest), 457
SiegelTukeyTest, 17, 457
SIGN.test, 462
SignTest, 17, 316, 460
Skew, 16, 152
Skew (Measures of Shape), 312
Skye, 399
SLN, 18, 408
SLN (Depreciation), 147
Small, 11
Small (Extremes), 194
SMAPE, 17
SMAPE (Measures of Accuracy), 309
smooth.spline, 290, 465
SmoothSpline, 290, 463
Some, 12, 465
Some numeric checks, 466
somers2, 469
SomersDelta, 16, 41, 108, 233, 271, 279, 468, 503
Sort, 11, 469
sort, 146, 195, 434, 471, 472
SortMixed, 11, 471
SpearmanRho, 16, 41, 473
Spec, 17
Spec (Conf), 109
SphToCart, 13
SphToCart (CartToPol), 79
splinefun, 43
split, 30, 388, 475, 476
split.formula, 12, 475
SplitAt, 12, 476
SplitPath, 12, 477
SpreadOut, 14, 71, 478
sprintf, 209
Stamp, 14, 479
stars, 362
StdCoef, 17, 480
Str, 12, 482
str, 26, 482
StrAbbr, 13, 483
StrAlign, 13, 207, 209, 484
Strata, 16, 447, 448, 485
StrCap, 13, 487
StrChop, 13, 206, 488, 496
StrCountW, 12, 489
StrDist, 13, 490, 497–499
StrExtract, 13, 492
strheight, 478
StrIsNumeric, 13, 493
StrLeft, 13, 489
StrLeft (StrLeft, StrRight), 494
StrLeft, StrRight, 494
StrPad, 13, 209, 484, 485, 495
StrPos, 13, 496
strptime, 143
StrRev, 13, 497
StrRight, 13
StrRight (StrLeft, StrRight), 494
strsplit, 476
strtoi, 53
INDEX

StatTrim, 12, 483–485, 494, 497, 499
StatTrunc, 13, 483, 493, 497, 498, 498
StatVal, 13, 499
strwrap, 106
StuartMaxwellTest, 17, 284, 501
sub, 497–499
substr, 489, 494, 497–499
sum, 220
summary, 26, 152
summary.dist(IsEuclidian), 260
sunflowerplot, 360
sweep, 121, 292
SYD, 18
SYD (Depreciation), 147
symbol, 360
symbols, 360
symnum, 209
Sys.setlocale, 36, 209
SysInfo, 20, 504
table2d_summary, 349
tapply, 166
tarot, 20
tarot (Datasets for Simulation), 141
terms, 342
text, 51, 255, 480, 508
TextContrastColor, 13, 504
TextToTable, 12, 506
TheilU, 16, 507
tiff, 368
time interval, 302
times, 245
timezone, 18
timezone (Date Functions), 141
title, 353, 369, 384, 386, 392, 508
TitleRect, 14, 508
TMod, 19, 509
Today, 18
Today (Date Functions), 141
ToLong, 12
ToLong (ToLong, ToWide), 511
ToLong, ToWide, 511
TOne, 19, 158, 512, 556
ToWide, 12
ToWide (ToLong, ToWide), 511
ToWrd, 19, 223, 514, 542, 544, 550, 552, 554, 555
ToXL, 19
ToXL (XLView), 560
Trim, 11, 517
trunc, 211, 441, 442
truncString, 499
tS, 353, 386
TschuprowT, 16
TschuprowT (Association measures), 37
TTestA, 17, 519
TukeyBiweight, 15, 521
TukeyHSD, 414, 450
TwoGroups, 522
unclass, 35
unemployment, 185
union, 30
unique, 30
univroot, 330, 415, 526
UnivrootAll, 329, 525
Unit, 12
Unit (Label, Unit), 276
Unit (Label, Unit), 276
Untable, 11, 97, 527
Unwhich, 12, 529
Var, 17, 531
Var (Cor), 119
var, 93, 300, 451
var.test, 285, 533
VarCI, 15, 306, 308, 530
varclus, 247
VarTest, 17, 531, 531
vcov, 535
VecRot, 12, 533
VecShift, 12
VecShift (VecRot), 533
VIF, 17, 534
Vigenere, 12, 536
violinplot, 404
VonNeumannTest, 18, 537
wages, 185
wdConst, 538
Week, 18
Week (Date Functions), 141
Weekday, 18, 209
Weekday (Date Functions), 141
Weibull, 419
weighted.mean, 303
which, 12, 85, 529
wilcox.test, 115, 183, 245, 246, 317, 323, 458, 459, 462
Winsorize, 11, 518, 539, 540
WoolfTest, 17, 72, 284, 540
WrdCaption, 19, 515, 541, 552
WrdCellRange, 19, 542, 547
WrdFont, 19, 543, 546, 548
WrdFont<- (WrdFont), 543
WrdFormatCells, 19, 544
WrdGoto, 19
WrdGoto (WrdInsertBookmark), 546
WrdInsertBookmark, 19, 546
WrdKill, 19
WrdKill (GetNewWrd), 222
WrdMergeCells, 19, 547
WrdPageBreak, 548
WrdParagraphFormat, 19, 549
WrdParagraphFormat<- (WrdParagraphFormat), 549
WrdPlot, 19, 417, 542, 544, 546, 548, 550, 551, 554
WrdSaveAs, 19, 553
WrdStyle, 19, 554
WrdStyle<- (WrdStyle), 554
WrdTable, 19, 223, 513, 542, 543, 545, 547, 555, 556
WrdTableBorders, 19, 556
WrdUpdateBookmark, 19
WrdUpdateBookmark (WrdInsertBookmark), 546
write.table, 561
xlConst (wdConst), 538
XLCurrReg (XLGetRange), 558
XLDatediff POSIXct, 19, 557, 560
XLGetRange, 19, 225, 558, 558, 562
XLGetWorkbook, 19, 225, 560, 562
XLGetWorkbook (XLGetRange), 558
XLKill, 19
XLKill (XLView), 560
XLView, 19, 225, 560
Xplore, 19, 563
xtabs, 35, 528
xtfrm, 120
xy.coords, 220, 360, 440
Year, 18, 27, 28, 259, 568
Year (Date Functions), 141
YearDay, 18
YearDay (Date Functions), 141
YearMonth, 18
YearMonth (Date Functions), 141
YTM, 18
YTM (NPV), 328
YuenTest, 18, 564
YuleQ, 16, 233
YuleQ (Association measures), 37
YuleY, 16
YuleY (Association measures), 37
ZeroIfNA, 12, 566
Zodiac, 18, 567
ZTest, 17, 462, 568