Package ‘DetR’

October 12, 2022

Type Package

Title Suite of Deterministic and Robust Algorithms for Linear Regression

Version 0.0.5

Date 2018-05-13

Suggests mvtnorm

Imports robustbase, MASS, pcaPP

Depends R (>= 3.1.1),

LinkingTo Rcpp (>= 0.10.5), RcppEigen (>= 0.3.2.2)

SystemRequirements C++11

Description DetLTS, DetMM (and DetS) Algorithms for Deterministic, Robust Linear Regression.

License GPL (>= 2)

LazyLoad yes

NeedsCompilation yes

Author Kaveh Vakili [aut, cre],
Valentin Todorov [ctb] (modified code originally from the R package robustbase: function ltscheckout, LTScnp2 and LTScnp2.rew and from robustbase:::.detmcd()),
Peter Filzmoser [ctb] (translations of the code for computing the Qn found in package pcaPP),
Heinrich Fritz [ctb] (translations of the code for computing the Qn found in package pcaPP),
Klaudius Kalcher [ctb] (translations of the code for computing the Qn found in package pcaPP),
Kjell Konis [ctb] (translations of the code scaleTau2 found in package robustbase),
Martin Maechler [ctb] (translations of the code scaleTau2 found in package robustbase),
Matias Salibian-Barrera [ctb] (modified code for the FastS from the authors's website),
Peter Rousseeuw [ctb] (modified code originally from the R package
robustbase: function ltscheckout, LTScnp2 and LTScnp2.rew and from robustbase::detmcd()
Katrien van Driessen [ctb] (modified code originally from the R package robustbase: function ltscheckout, LTScnp2 and LTScnp2.rew and from robustbase::detmcd())

Maintainer Kaveh Vakili <vakili.kaveh.email@gmail.com>
Repository CRAN
Date/Publication 2018-05-19 11:35:38 UTC

R topics documented:

DetR-package ... 2
chis2009 ... 3
DetLTS ... 4
DetMM ... 6
inQn ... 8
inUMCD ... 9
OGKCStep ... 10
quanf ... 11
test_function ... 12

Index 14

DetR-package Deterministic and Robust Algorithms for Regression.

Description

This packages contains various robust and deterministic algorithms for linear regression.

Details

Package: DetR
Type: Package
Version: 0.0.1
Date: 2012-09-19
Depends: matrixStats, robustbase, MASS
License: GPL (>= 2)
LazyLoad: yes

Index:

DetR-package Robust and Deterministic Algorithms for Linear Regression
DetLTS DetLTS algorithm (deterministic counterpart of FastLTS).
OGKCStep Tests of OGK+Csteps.
test_function unit test functions.

Author(s)

Kaveh Vakili [aut, cre], using translation and modifications of codes from other packages (see Description and the individual functions’ helpfiles)
Maintainer: Kaveh Vakili <vakili.kaveh.email@gmail.com>

chis2009 CHIS 2009 Adult Health Survey Data

Description

The chis2009 data frame has 17179 rows and 26 columns.

Usage

chis2009

Format

This data frame contains the following columns:
ab1 GENERAL HEALTH CONDITION
ac13 NUMBER OF TIMES DRANK FRUIT-FLAV LAST MONTH - UNIT
ac14 NUMBER OF TIMES ATE ICE CREAM/FROZEN DESSERTS LAST MONTH
ad41w NUMBER OF TIMES WALKED AT LEAST 10 MIN FOR LEISURE PAST 7 DAYS
ad42w AVERAGE LENGTH OF TIME WALKED FOR LEISURE
ae2 NUMBER OF TIMES ATE FRUIT IN PAST MO
ae27 NUMBER OF DAYS MODERATE PHYSICAL ACTIVITY IN PAST WEEK
ae27a TIME PER DAY OF MODERATE PHYSICAL ACTIVITY
ae3 NUMBER OF TIMES ATE FRNCH FRIES, HME FRIES, HSH BRWNS IN PAST MO
ae7 NUMBER OF TIMES ATE VEGETABLES IN PAST MO
ah5 NUMBER OF TIMES SAW MD IN PAST 12 MOS
ak3 NUMBER OF USUAL HRS WORKED PER WEEK
ak7 LENGTH OF TIME WORKING AT MAIN JOB
distress SERIOUS PSYCHOLOGICAL DISTRESS
aheduc EDUCATIONAL ATTAINMENT
timead LENGTH OF TIME LIVED AT CURRENT ADDRESS (IN MONTHS)
The 2009 California Health Interview Survey (CHIS 2009). The CHIS is a population based telephone survey of California’s population. The survey aims to collect extensive information on health status, health conditions, health related behaviors, health insurance coverage as well as access to health care services. Within each household, separate interviews are conducted with a randomly selected adult (age 18 and over). The dataset consists of 536 features measured for 47614 respondents.

Source

DetLTS

Robust and Deterministic Linear Regression via DetLTS

Description

Function to compute the DetLTS estimates of regression.

Usage

DetLTS(x, y, intercept = 1, alpha = 0.75, h = NULL, scale_est = "scaleTau2")

Arguments

x Matrix of design variables. Never contains an intercept.
y Vector of responses.
intercept A boolean indicating whether the regression contains an intercept.
alpha numeric parameter controlling the size of the subsets over which the determinant is minimized, i.e., alpha*n observations are used for computing the determinant. Allowed values are between 0.5 and 1 and the default is 0.75. Can be a vector.
DetLTS

h

Integer in $\lceil \frac{(n+p+1)}{2} \rceil$, n which determines the number of observations which are awarded weight in the fitting process. Can be a vector. If both h and α are set to non default values, α will be ignored.

scale_est

A character string specifying the variance functional. Possible values are "Qn" or "scaleTau2".

Value

The function DetLTS returns a list with as many components as there are elements in the h. Each of the entries is a list containing the following components:

- **crit**
 the value of the objective function of the LTS regression method, i.e., the sum of the h smallest squared raw residuals.

- **coefficients**
 vector of coefficient estimates (including the intercept by default when intercept=TRUE), obtained after reweighting.

- **best**
 the best subset found and used for computing the raw estimates, with $\text{length(best)} = \text{quan} = h.\alpha.\text{n}(\alpha,n,p)$.

- **fitted.values**
 vector like y containing the fitted values of the response after reweighting.

- **residuals**
 vector like y containing the residuals from the weighted least squares regression.

- **scale**
 scale estimate of the reweighted residuals.

- **alpha**
 same as the input parameter α.

- **quan**
 the number h of observations which have determined the least trimmed squares estimator.

- **intercept**
 same as the input parameter intercept.

- **cnp2**
 a vector of length two containing the consistency correction factor and the finite sample correction factor of the final estimate of the error scale.

- **raw.coefficients**
 vector of raw coefficient estimates (including the intercept, when intercept=TRUE).

- **raw.scale**
 scale estimate of the raw residuals.

- **raw.resid**
 vector like y containing the raw residuals from the regression.

- **raw.cnp2**
 a vector of length two containing the consistency correction factor and the finite sample correction factor of the raw estimate of the error scale.

- **lts.wt**
 vector like y containing weights that can be used in a weighted least squares. These weights are 1 for points with reasonably small residuals, and 0 for points with large residuals.

- **raw.weights**
 vector containing the raw weights based on the raw residuals and raw scale.

- **method**
 character string naming the method (Least Trimmed Squares).

Author(s)

Vakili Kaveh using translation of the C code from pcaPP (by Peter Filzmoser, Heinrich Fritz, Klaudius Kalcher, see citation("pcaPP")) for the Qn and scaleTau2 (Original by Kjell Konis with substantial modifications by Martin Maechler) from robustbase (see citation("scaleTau2")) as well as R code from function ltsReg in package robustbase (originally written by Valentin Todorov valentin.todorov@chello.at, based on work written for S-plus by Peter Rousseeuw and Katrien van Driessen from University of Antwerp, see citation("ltsReg")))
DetMM

Robust and Deterministic Linear Regression via DetMM

Description

Function to compute the DetMM estimates of regression.

Usage

DetMM(x, y, intercept=1, alpha=0.75, h=NULL, scale_est="scaleTau2", tuning.chi=1.54764, tuning.psi=4.685061)

Arguments

x Matrix of design variables. Never contains an intercept.
y Vector of responses.
intercept A boolean indicating whether the regression contains an intercept.
alpha numeric parameter controlling the size of the subsets over which the determinant is minimized, i.e., alpha*n observations are used for computing the determinant. Allowed values are between 0.5 and 1 and the default is 0.75. Can be a vector.
DetMM

Value

The function `DetLTS` returns a list with as many components as there are elements in the `h`. Each of the entries is a list containing the following components:

- **coefficients**
 - The estimate of the coefficient vector

- **scale**
 - The scale as used in the M steps.

- **residuals**
 - Residuals associated with the estimator.

- **converged**
 - `TRUE` if the IRWLS iterations have converged.

- **iter**
 - Number of IRWLS iterations

- **rweights**
 - The “robustness weights” \(\psi(r_i/S)/(r_i/S) \).

- **fitted.values**
 - Fitted values associated with the estimator.

- **DetS**
 - A similar list that contains the results of (initial) returned by DetS

Author(s)

Vakili Kaveh using translation of the C code from pcaPP (by Peter Filzmoser, Heinrich Fritz, Klaudius Kalcher, see citation("pcaPP")) for the Qn and scaleTau2 (Original by Kjell Konis with substantial modifications by Martin Maechler) from robustbase (see citation("scaleTau2")). This function calls lmrob in package robustbase.

References

Examples

```r
## generate data
set.seed(1234) # for reproducibility
n<-100
h<-c(55,76,89)
set.seed(123)
x0<-matrix(rnorm(n*2),nc=2)
y0<-rnorm(n)
out1<-DetMM(x0,y0,h=h)
```

```
inQn
Test function for the qn
```

Description

Test function for the qn used in DetR.

Usage

```r
inQn(x)
```

Arguments

- `x` Vector of 2 or more numbers. Should contain no ties.

Value

the value of the qn estimator of scale.

Author(s)

Kaveh Vakili. Calls code translated from the cde for computing the Qn found in package pcaPP (by Peter Filzmoser, Heinrich Fritz, Klaudius Kalcher, see citation("pcaPP")).

References

see pcaPP:::qn and citation("pcaPP").
Examples

```r
set.seed(123) # for reproducibility
x <- rnorm(101)
inQn(x)
# should be the same:
pcaPP::qn(x)
```

Test function for unimcd

Description

Test function for the unimcd used in DetR.

Usage

```r
inUMCD(x)
```

Arguments

- `x` Vector of 2 or more numbers. Should contain no ties.

Value

the value of the unimcd estimator of scale.

Author(s)

Kaveh Vakili

References

Examples

```r
set.seed(123) # for reproducibility
x <- rnorm(101)
inUMCD(x)
```
OGKCStep

Robust and Deterministic Linear Regression via OGKCStep

Description

Function to find the OGKCStep ('best') H-subset.

Usage

OGKCStep(x0, scale_est, alpha=0.5)

Arguments

x0
Matrix of continuous variables.

alpha
numeric parameter controlling the size of the subsets over which the determinant is minimized, i.e., alpha*n observations are used for computing the determinant. Allowed values are between 0.5 and 1 and the default is 0.5.

scale_est
A character string specifying the variance functional. Possible values are Qn or scaleTau2.

Value

best
the best subset found and used for computing the raw estimates, with length(best) == quan = h.alpha.n(alpha,n,p).

Author(s)

Large part of the the code are from function .detmcd in package robustbase , see citation("robustbase")

References

Examples

\begin{verbatim}
n<-100
set.seed(123)# for reproducibility
x0<-matrix(rnorm(n*2),nc=2)
out1<-OGKCStep(x0,alpha=0.5,scale_est=pcaPP::qn)

 #comparaison with DetMCD:

 #a) create data

set.seed(123456)
Simulation<-DetR:::fx01()
 #should be \approx 10
 sqrt(min(mahalanobis(Simulation$Data[Simulation$label==0,],rep(0,ncol(Simulation$Data)),
 Simulation$Sigma_u))/qchisq(0.975,df=ncol(Simulation$Data)))

 a0<-eigen(Simulation$Sigma_u)
 Su_ih<-(a0$vector)%*%diag(1/sqrt(a0$values))%*%t(a0$vector)

 #run algorithms
 A0<-robustbase::covMcd(Simulation$Data,nsamp='deterministic',scalefn=pcaPP::qn,alpha=0.5)
 A1<-OGKCStep(Simulation$Data,alpha=0.5,scale_est=pcaPP::qn)

 #get biases algorithms
 SB<-eigen(Su_ih%*%var(Simulation$Data[A1,])%*%Su_ih)$values
 log10(SB[1]/SB[ncol(Simulation$Data)-1])

 SB<-eigen(Su_ih%*%var(Simulation$Data[A0$best,])%*%Su_ih)$values
 log10(SB[1]/SB[ncol(Simulation$Data)-1])
\end{verbatim}

quanf
Converts alpha values to h-values

Description

DetLTS selects the subset of size h that minimizes the log-determinant criterion. The function quanf determines the size of h based on the rate of contamination the user expects is present in the data. This is an internal function not intended to be called by the user.

Usage

`quanf(n,p,alpha)`

Arguments

- **n**
 Number of rows of the data matrix.

- **p**
 Number of columns of the data matrix.

- **alpha**
 Numeric parameter controlling the size of the active subsets, i.e., "h=quanf(alpha,n,p)". Allowed values are between 0.5 and 1 and the default is 0.5.

Value

An integer number of the size of the starting p-subsets.
Author(s)

Kaveh Vakili

Examples

\texttt{quanf(p=3,n=500,alpha=0.5)}

Description

Functions to test the \texttt{cpp} codes in the package.

Usage

\texttt{test_function()}

Details

This is a series of \texttt{R} functions that, together, implement the \texttt{c++} codes used in the package and which can be used to test those.

Author(s)

Vakili Kaveh.

Examples

\begin{verbatim}
n<-100 p<-5 #set.seed(123) #for reproducibility.
Z<-matrix(rnorm(n*(p+1)),nc=p+1)
x<-Z[,1:p]
y<-Z[,p+1]
data=cbind(x,y)
alpha<-0.6;
test_R_0<-DetR:::test_fxOGK(x0=x,y0=y,cent_est='scaleTau2','scal_est='scaleTau2',
alpha=alpha)
h<-DetR:::quanf(alpha,n=n,p=p+1) #intercept=1
test_cpp<-DetR:::fxOGK(Data=datao,cent_est='scaleTau2','scal_est='scaleTau2',
intercept=1,\texttt{h}=h,doCsteps=1)
should be the same
\texttt{sort(test_cpp$bestRaw)}
\texttt{sort(as.numeric(test_R_0$bestRaw))}

should be the same
\texttt{test_R_1<-DetR:::test_Cstep(x=x,y=y,\texttt{h}=h,\texttt{z0}=test_R_0$bestRaw)}
\texttt{sort(test_R_1$bestCStep)}
\texttt{sort(test_cpp$bestCStep[1:h])}
\end{verbatim}
n<-100
p<-5
set.seed(123) #for reproducibility.
Z<-matrix(rnorm(n*(p+1)),nc=p+1)
x<-Z[,1:p]
y<-Z[,p+1]
datao<-cbind(x,y)
alpha<-0.6;
test_R_0<-DetR:::test_fxOGK(x0=x,y0=y,cent_est="median",scal_est="qn",
alpha=alpha)
h<-DetR:::quanf(alpha,n=n,p=p+1) #intercept=1
test_cpp<-DetR:::fxOGK(Data=datao,scale_est="qn",intercept=1,h=h,doCsteps=1)
###should be the same
sort(test_cpp$bestRaw)
sort(as.numeric(test_R_0$bestRaw))

###should be the same

###should be the same

###should be the same
Index

* datasets
 chis2009, 3
 * deterministic
 DetLTS, 4
 DetMM, 6
 OGKCStep, 10
 test_function, 12
 * multivariate
 DetLTS, 4
 DetMM, 6
 inQn, 8
 inUMCD, 9
 OGKCStep, 10
 quanf, 11
 test_function, 12
 * package
 DetR-package, 2
 * robust
 DetLTS, 4
 DetMM, 6
 inQn, 8
 inUMCD, 9
 OGKCStep, 10
 quanf, 11
 test_function, 12

chis2009, 3
DetLTS, 4
DetMM, 6
DetR-package, 2

h.alpha.n, 5, 10

inQn, 8
inUMCD, 9

length, 5, 10
OGKCStep, 10