Package ‘DiSSMod’

October 12, 2022

Type Package
Title Fitting Sample Selection Models for Discrete Response Variables
Version 1.0.0
Date 2019-04-15
Author Sang Kyu Lee <lsk0816@gmail.com>, Adelchi Azzalini <adelchi.azzalini@unipd.it>, Hyoung-Moon Kim <hmk966a@gmail.com>
Maintainer Sang Kyu Lee <lsk0816@gmail.com>
Description Tools to fit sample selection models in case of discrete response variables, through a parametric formulation which represents a natural extension of the well-known Heckman selection model are provided in the package. The response variable can be of Bernoulli, Poisson or Negative Binomial type. The sample selection mechanism allows to choose among a Normal, Logistic or Gumbel distribution.
Depends R (>= 2.10)
Imports sfsmisc, matrixcalc, psych, MASS
License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2019-04-15 10:42:40 UTC

R topics documented:

coef.DiSSMod 2
confint.DiSSMod 3
CreditMDR 4
DiSSMod 5
DoctorRWM 8
plot.DiSSMod 10
summary.DiSSMod 11
Description

coef method for a class "DiSSMod".

Usage

S3 method for class 'DiSSMod'
coef(object, only = NULL, ...)

Arguments

object an object of class "DiSSMod" made by the function DiSSMod.
only a character value for choosing specific variable’s coefficients. Initial value is
... not used, but exists because of the compatibility. NULL, which shows all vari-
ables will be returned, and if "response" is written, only coefficients for response vari-
ables will be returned.

Details

It looks as similar as the generic function coef, but this case there are two equations. Therefore, there exist little differences.

Value

a numeric vector or a list is given.

See Also

See also DiSSMod and coef.

Examples

example continued from DiSSMod
set.seed(45)
data(DoctorRWM, package = "DiSSMod")
n0 <- 600
set.n0 <- sample(1:nrow(DoctorRWM), n0)
reduce_DoctorRWM <- DoctorRWM[set.n0,]
result0 <- DiSSMod(response = as.numeric(DOCVIS > 0) ~ AGE + INCOME_SCALE + HHKIDS + EDUC + MARRIED,
 selection = PUBLIC ~ AGE + EDUC + FEMALE,
 data = reduce_DoctorRWM, resp.dist="bernoulli", select.dist = "normal",
 alpha = seq(-5.5, -0.5, length.out = 21), standard = TRUE)
confint.DiSSMod

coef(result0)

data(CreditMDR, package = "DiSSMod")
n1 <- 600
set.n1 <- sample(1:nrow(CreditMDR), n1)
reduce_CreditMDR <- CreditMDR[set.n1,]
result1 <- DiSSMod(response = MAJORDRG ~ AGE + INCOME + EXP_INC,
 selection = CARDHLDR ~ AGE + INCOME + OWNRENT + ADEPCNT + SELFEMPL,
 data = reduce_CreditMDR, resp.dist="poi", select.dist = "logis",
 alpha = seq(-0.3, 0.3,length.out = 21), standard = FALSE, verbose = 1)

coef(result1)

confint.DiSSMod

Getting Confidence Intervals for Parameters of Discrete Sample Selection Model Fits

Description

confint method for a class "DiSSMod".

Usage

S3 method for class 'DiSSMod'
confint(object, parm, level = 0.95, ...)

Arguments

object an object of class "DiSSMod" made by the function DiSSMod.
parm not used, but it exists for compatibility reasons.
level a numeric value between 0 and 1 for controlling the significance level of confidence interval; default value is 0.95.
... not used, but it exists for compatibility reasons.

Value

a list, containing level and confidence intervals for parameters, is given.

See Also

See also confint,DiSSMod and summary.DiSSMod.
Examples

```r
# example continued from DiSSMod
set.seed(45)
data(DoctorRWM, package = "DiSSMod")
n0 <- 600
set.n0 <- sample(1:nrow(DoctorRWM), n0)
reduce_DoctorRWM <- DoctorRWM[set.n0,]
result0 <- DiSSMod(response = as.numeric(DOCVIS > 0) ~ AGE + INCOME_SCALE + HHKIDS + EDUC + MARRIED,
                    selection = PUBLIC ~ AGE + EDUC + FEMALE,
                    data = reduce_DoctorRWM, resp.dist="bernoulli", select.dist = "normal",
                    alpha = seq(-5.5, -0.5, length.out = 21), standard = TRUE)
confint(result0, level = 0.90)

data(CreditMDR, package = "DiSSMod")
n1 <- 600
set.n1 <- sample(1:nrow(CreditMDR), n1)
reduce_CreditMDR <- CreditMDR[set.n1,]
result1 <- DiSSMod(response = MAJORDRG ~ AGE + INCOME + EXP_INC,
                    selection = CARDHLDR ~ AGE + INCOME + OWNRENT + ADEPCNT + SELFEMPL,
                    data = reduce_CreditMDR, resp.dist="poi", select.dist = "logis",
                    alpha = seq(-0.3, 0.3,length.out = 21), standard = FALSE, verbose = 1)
confint(result1)
```

CreditMDR

Credit cards derogatory reports data

Description

Data is originally from Greene (1992), used for studying statistical credit scoring methods.

Usage

data(CreditMDR)

Format

A data frame with 13444 observations of 8 variables as below;

- **MAJORDRG**: count of major derogatory reports (numeric)
- **CARDHLDR**: 1 for cardholders, 0 for denied applicants (categorical)
- **AGE**: age in years and twelfths of a year (numeric)
- **INCOME**: primary income, divided by 10,000 (numeric)
- **OWNRENT**: ownRent, individual owns (1) or rents (0) home (categorical)
- **ADEPCNT**: not classified yet (numeric)
- **SELFEMPL**: self employed: 1=yes, 0=no (categorical)
- **EXP_INC**: average expenditure for 12 months/average monthly income (numeric)
DiSSMod

Source

References

DiSSMod

Fitting Sample Selection Models for Discrete Response Variables

Description
Function *DiSSMod* fits sample selection models for discrete random variables, by suitably extending the formulation of the classical Heckman model to the case of a discrete response, but retaining the original conceptual framework. Maximum likelihood estimates are obtained by Newton-Raphson iteration combined with use of profile likelihood.

Usage
`DiSSMod(response, selection, data, resp.dist, select.dist, alpha, trunc.num, standard = FALSE, verbose = 1, eps = 1e-07, itmax = 1000)`

Arguments
- **response**: a formula for the response equation.
- **selection**: a formula for the selection equation.
- **data**: a data frame and data has to be included with the form of `data.frame`.
- **resp.dist**: a character for the distribution choice of the response variable, "bernoulli" for Bernoulli distribution, "poisson" for Poisson distribution, and "negbinomial" for Negative binomial distribution. Also, the character strings can be abbreviated and can be upper or lower case as preferred.
- **select.dist**: a character for the distribution choice of the selection variable, "gumbel" for Gumbel distribution, "normal" for Normal distribution, and "logistic" for Logistic distribution. Also, the character strings can be abbreviated and can be upper or lower case as preferred.
- **alpha**: a vector of *alpha* values on which the profile log-likelihood function is evaluated; if the argument is missing, a set of values in the interval (-10, 10) is used for the initial search, followed by a second search on a revised interval which depends on the outcome from the first search.
trunc.num
an integer numeric constant used as the truncation point of an infine summation
of probabilities involved when `resp.dist` equals "Poisson" or "NegBinomial";
if the argument is missing, a default choice is made, as described in the 'Details'
section. Notice: this default choice of `trunc.num` may be subject to revision
in some future version of the package, and the argument `trunc.num` itself may
possibly be replaced by some other ingredient.

standard
a logical value for the standardizing explanatory variables, if `TRUE` two types of
values (standardized and not) will be returned.

verbose
an integer value for the level of printed details (values: 0|1|2); the default value
is 1 which stands for shortly printed details. If the value is 2, more details are
viewed such as values of the log likelihood functions and iteration numbers. If
the value is 0, there is no printed detail.

eps
a numeric value for the estimating parameters, which is needed for the step of the
optimization. If the sum of absolute differences between present step estimated
parameters and former step estimated parameters is smaller than `eps`, we assume
that estimated parameters are optimized.

itmax
an integer stands for maximum number for the iteration of optimizing the pa-
rameters.

Details

The specification of the two linear models regulating the response variable and the selection me-
chanism, as indicated in the ‘Background’ section, is accomplished by two arguments of `formula`
type, denoted `response` and `selection`, respectively. Each `formula` is specified with the same syntax
of similar arguments in standard functions such as `lm` and `glm`, with the restriction that the intercept
term (which is automatically included) must not be removed.

The distributional assumptions associated to the `response` and `selection` components are speci-
fied by the arguments `resp.dist` and `select.dist`, respectively. Argument `select.dist` refers to
the unobservable continuous variable of which we observe only the dichotomous outcome Yes-No.

In this respect, a remark is appropriate about the option "Gumbel" for `select.dist`. This choice
is equivalent to the adoption of an Exponential distribution of the selection variables combined an
exponential transformation of the linear predictor of the `selection` argument, as it is presented in
Section 3.2 of Azzalini et al. (2019). Also, it corresponds to work with the log-transformation of an
Exponential variable, which is essentially a Gumbel type of variable, up to a linear transformation
with respect to its more commonly employed parameterization.

When `resp.dist` is "Poisson" or "NegBinomial" and `trunc.num` is missing, a default choice is
made; this equals 1.5*m or 2*m in the two respective cases, where m denotes the maximum observed
value of the response variable.

Function `DiSSMod` calls lower level functions, `nr.bin`, `nr.nbinom`, `nr.pois` and the others for the
actual numerical maximization of the log-likelihood via a Newton-Raphson iteration.

Notice that the automatic initialization of the alpha search interval, when this argument is missing,
may change in future versions of the package.

Value

`DiSSMod` returns an object of class "DiSSMod", which is a list containing following components:
call a matched call.
standard a logical value, stands for standardization or not.
st_loglik a vector containing the differences between log likelihoods and maximized log likelihood.
max_loglik a maximized log likelihood value.
mle_alpha a maximized likelihood estimator of alpha.
alpha a vector containing grids of the alpha
Nalpha a vector containing proper alpha, which does not have NA value for corresponding log likelihood.
um_NA a number of NA values of log likelihoods.
n_select a number of selected response variables.
n_all a number of all response variables.
estimate_response estimated values for the response model.
std_error_response estimated standard errors for the response model.
estimate_selection estimated values for the selection model.
std_error_selection estimated standard errors for the selection model.

Background

Function DiSSMod fits sample selection models for discrete random variables, by suitably extending the formulation of the classical Heckman model to the case of a discrete response, but retaining the original conceptual framework. This logic involves the following key ingredients: (1) a linear model indicating which explanatory variables influence the response variable; (2) a linear model indicating which (possibly different) explanatory variables, besides the response variable itself, influence a ‘selection variable’, which is intrinsically continuous but we only observe a dichotomous outcome from it, of type Yes-No, which selects which are the observed response cases; (3) distributional assumptions on the response and the selection variable.

The data fitting method is maximum likelihood estimation (MLE), which operates in two steps: (i) for each given value of parameter alpha which regulates the level of selection, MLE is performed for all the remaining parameters, using a Newton-Raphson iteration; (ii) a scan of the alpha axis builds the profile log-likelihood function and its maximum point represents the overall MLE.

A detailed account of the underlying theory and the operational methodology is provided by Azzalini et al. (2019).

References

See Also

The functions `summary.DiSSMod`, `coef.DiSSMod`, `confint.DiSSMod`, `plot.DiSSMod` are used to obtain and print a summary, coefficients, confidence interval and plot of the results.

The generic function `logLik` is used to obtain maximum log likelihood of the result.

See also `lm`, `glm` and `formula`.

Examples

```r
set.seed(45)
data(DoctorRWM, package = "DiSSMod")
n0 <- 600
set.n0 <- sample(1:nrow(DoctorRWM), n0)
reduce_DoctorRWM <- DoctorRWM[set.n0,]
result0 <- DiSSMod(response = as.numeric(DOCVIS > 0) ~ AGE + INCOME_SCALE + HHKIDS + EDUC + MARRIED,
                   selection = PUBLIC ~ AGE + EDUC + FEMALE,
                   data = reduce_DoctorRWM, resp.dist="bernoulli", select.dist = "normal",
                   alpha = seq(-5.5, -0.5, length.out = 21), standard = TRUE)
print(result0)

data(CreditMDR, package = "DiSSMod")
n1 <- 600
set.n1 <- sample(1:nrow(CreditMDR), n1)
reduce_CreditMDR <- CreditMDR[set.n1,]
result1 <- DiSSMod(response = MAJORDRG ~ AGE + INCOME + EXP_INC,
                   selection = CARDHLDR ~ AGE + INCOME + OWNRENT + ADEPCNT + SELFEMPL,
                   data = reduce_CreditMDR, resp.dist="poi", select.dist = "logis",
                   alpha = seq(-0.3, 0.3,length.out = 21), standard = FALSE, verbose = 1)
print(result1)
```

DoctorRWM

German doctor first visits data

Description

Data is from Riphahn, Wambach and Million (2003), used for studying longitudinal analysis concerning the usage of the German health insurance system. The original data contain a few years data for patients, but we have only for first year.

Usage

```
data(DoctorRWM)
```
Format

A data frame with 7293 observations of 26 variables as below;

ID identification number (numeric)
FEMALE female or not (categorical)
YEAR year (categorical)
AGE age (numeric)
HSAT health satisfaction coded 0 (low) to 10 (high) (numeric)
HANDDUM person is handicappe or not (categorical)
HANDPER percentage degree of handicap (numeric)
HHNINC monthly household net income (numeric)
HHKIDS child (ren) below age 16 in household (numeric)
EDUC years of schooling (numeric)
MARRIED person is married or not (categorical)
HAUPTS level of schooling (categorical)
REALS level of schooling (categorical)
FACHHS level of schooling (categorical)
ABITUR level of schooling (categorical)
UNIV level of schooling (categorical)
WORKING employed or not (categorical)
BLUEC person is blue collar worker or not (categorical)
WHITEC person is white collar worker or not (categorical)
SELF person is self-employed or not (categorical)
BEAMT civil servant or not (categorical)
DOCVIS number of doctor visits in last 3 months (numeric)
HOSPVIS number of hospital visits last year (numeric)
PUBLIC person is insured in public health insurance or not (categorical)
ADDON person is insured in add-on insurance or not (categorical)
INCOME_SCALE scaled income; original income/1000 (numeric)

Source

References

plot.DiSSMod

Relative Log Likelihood Plot for Discrete Sample Selection Model Fits

Description

plot method for a class "DiSSMod".

Usage

S3 method for class 'DiSSMod'
plot(x, ...)

Arguments

x
an object of class "DiSSMod" made by the function DiSSMod.

... additional control argument is as follows.

- level: an option for controlling the significance level of confidence interval. It has to be given in probability between 0 and 1. Initial level is set to $1 - \alpha = 0.95$.

Details

Function plot draws a convex line due to the values of twice relative log likelihoods by using the profile likelihood approach with following the grids of alpha. If confidence interval created from the function confint exists between the maximum and minimum value of the alpha, there will be two points drawn with the color red. Also, the Maximum Likelihood Estimator (MLE) of alpha can be seen easily, if it exists between the maximum and minimum value of the alpha.

See Also

See also DiSSMod and plot.

Examples

example continued from DiSSMod
set.seed(45)
data(DoctorRWM, package = "DiSSMod")
n0 <- 600
set.n0 <- sample(1:nrow(DoctorRWM), n0)
reduce_DoctorRWM <- DoctorRWM[set.n0,]
result0 <- DiSSMod(response = as.numeric(DOCVIS > 0) ~ AGE + INCOME_SCALE + HHKIDS + EDUC + MARRIED,
selection = PUBLIC ~ AGE + EDUC + FEMALE,
data = reduce_DoctorRWM, resp.dist="bernoulli", select.dist = "normal",
alpha = seq(-5.5, -0.5, length.out = 21), standard = TRUE)

plot(result0, level = 0.90)
data(CreditMDR, package = "DiSSMod")
n1 <- 600
set.n1 <- sample(1:nrow(CreditMDR), n1)
reduce_CreditMDR <- CreditMDR[set.n1,]
result1 <- DiSSMod(response = MAJORDRG ~ AGE + INCOME + EXP_INC,
selection = CARDHLDR ~ AGE + INCOME + OWNRENT + ADEPCNT + SELFEMPL,
data = reduce_CreditMDR, resp.dist="poi", select.dist = "logis",
alpha = seq(-0.3, 0.3,length.out = 21), standard = FALSE, verbose = 1)

plot(result1)

summary.DiSSMod

Summarizing Discrete Sample Selection Model Fits

Description

summary method for a class "DiSSMod".

Usage

```r
## S3 method for class 'DiSSMod'
summary(object, ...)

## S3 method for class 'summary.DiSSMod'
print(x, digits = max(3, getOption("digits") - 3), ...)
```

Arguments

- `object` an object of class "DiSSMod" made by the function DiSSMod.
- `...` additional control argument is as follows.
 - `level`: an option for controlling the significance level of confidence interval. It has to be given in probability between 0 and 1. Initial level is set to $1 - \alpha = 0.95$.
- `x` an object of class "summary.DiSSMod".
- `digits` a numeric number of significant digits.

Details

If `standard` equals TRUE, summary also additionally returns summary statistics of standardized results. Otherwise, it just returns summary statistics as similar statistics as the generic function `summary`.

The function `summary.DiSSMod` returns a list of summary statistics of the fitted discrete sample selection model given in object.

The components, which are not duplicated from the object, are as follows:

- **z.value_response**: Z statistics (normal distribution) for coefficients of response equation.
- **z.value_selection**: Z statistics (normal distribution) for coefficients of selection equation.
- **CI_alpha**: confidence interval of the parameter alpha.
- **level**: a numeric value between 0 and 1 for controlling the significance level of confidence interval. Initial level is set to $1 - \alpha = 0.95$.

See Also

See also `DiSSMod` and `summary`.

Examples

```r
# example continued from DiSSMod
set.seed(45)
data(DoctorRWM, package = "DiSSMod")
n0 <- 600
set.n0 <- sample(1:nrow(DoctorRWM), n0)
reduce_DoctorRWM <- DoctorRWM[set.n0,]
result0 <- DiSSMod(response = as.numeric(DOCVIS > 0) ~ AGE + INCOME_SCALE + HHKIDS + EDUC + MARRIED,
                   selection = PUBLIC ~ AGE + EDUC + FEMALE,
                   data = reduce_DoctorRWM, resp.dist="bernoulli", select.dist = "normal",
                   alpha = seq(-5.5, -0.5, length.out = 21), standard = TRUE)
summary(result0, level = 0.90)

data(CreditMDR, package = "DiSSMod")
n1 <- 600
set.n1 <- sample(1:nrow(CreditMDR), n1)
reduce_CreditMDR <- CreditMDR[set.n1,]
result1 <- DiSSMod(response = MAJORDRG ~ AGE + INCOME + EXP_INC,
                   selection = CARDHLD ~ AGE + INCOME + OWNRENT + ADEPCNT + SELFEMPL,
                   data = reduce_CreditMDR, resp.dist="poi", select.dist = "logis",
                   alpha = seq(-0.3, 0.3,length.out = 21), standard = FALSE, verbose = 1)
summary(result1)
```
Index

* Heckman model
 DiSSMod, 5
* datasets
 CreditMDR, 4
 DoctorRWM, 8
* discrete response
 DiSSMod, 5
* generalized linear models
 DiSSMod, 5
* maximum likelihood
 DiSSMod, 5
* sample selection
 DiSSMod, 5
* selection models
 DiSSMod, 5

coef, 2
coef.DiSSMod, 2, 8
confint, 3
confint.DiSSMod, 3, 8
CreditMDR, 4

DiSSMod, 2, 3, 5, 10, 12
DoctorRWM, 8

formula, 8

glm, 8

lm, 8
logLik, 8

plot, 10
plot.DiSSMod, 8, 10
print.summary.DiSSMod
 (summary.DiSSMod), 11

summary, 12
summary.DiSSMod, 3, 8, 11