Package ‘DiallelAnalysisR’

April 9, 2016

Type Package
Title Diallel Analysis with R
Version 0.1.1
Maintainer Muhammad Yaseen <myaseen208@gmail.com>
Description Performs Diallel Analysis with R using Griffing’s and Hayman’s approaches. Four different methods (1: Method-I (Parents + F1’s + reciprocals); 2: Method-II (Parents and one set of F1’s); 3: Method-III (One set of F1’s and reciprocals); 4: Method-IV (One set of F1’s only)) and two methods (1: Fixed Effects Model; 2: Random Effects Model) can be applied using Griffing’s approach.
Depends R (>= 3.1)
Imports ggplot2, stats
License GPL-2
LazyData TRUE
RoxygenNote 5.0.1.9000
NeedsCompilation no
Author Muhammad Yaseen [aut, cre], Kent M. Eskridge [ctb]
Repository CRAN
Date/Publication 2016-04-09 01:18:36

R topics documented:

Griffing ... 2
GriffingData1 .. 6
GriffingData2 .. 7
GriffingData3 .. 8
GriffingData4 .. 9
Hayman ... 10
HaymanData ... 12

Index 14
Griffing

Description
Griffing is used for performing Diallel Analysis using Griffing’s Approach.

Usage
Griffing(y, Rep, Cross1, Cross2, data, Method, Model)

Arguments
- y: Numeric Response Vector
- Rep: Replicate as factor
- Cross1: Cross 1 as factor
- Cross2: Cross 2 as factor
- data: A data.frame
- Method: Method for Diallel Analysis using Griffing’s approach. It can take 1, 2, 3, or 4 as argument depending on the method being used.
 1. Method-I (Parents + F₁’s + reciprocals);
 2. Method-II (Parents and one set of F₁’s);
 3. Method-III (One set of F₁’s and reciprocals);
 4. Method-IV (One set of F₁’s only).
- Model: Model for Diallel Analysis using Griffing’s approach. It can take 1 or 2 as arguments depending on the model being used.
 1. Fixed Effects Model;
 2. Random Effects Model.

Details
Diallel Analysis using Griffing’s approach.

Value
- Means
- ANOVA Analysis of Variance (ANOVA) table
- Genetic Components
- Effects of Crosses
- StdErr: Standard Errors of Crosses

Author(s)
Muhammad Yaseen (<myaseen208@gmail.com>)
References

See Also

Hayman, GriffingData1, GriffingData2, GriffingData3, GriffingData4

Examples

```r
#-----------------------------------------------------------
## Diamel Analysis with Griffing's Approach Method 1 & Model 1
#-----------------------------------------------------------
Griffing1Data1 <- Griffing(
  y = Yield
  , Rep = Rep
  , Cross1 = Cross1
  , Cross2 = Cross2
  , data = GriffingData1
  , Method = 1
  , Model = 1
)
names(Griffing1Data1)
Griffing1Data1
Griffing1Data1Means <- Griffing1Data1$Means
Griffing1Data1ANOVA <- Griffing1Data1$ANOVA
Griffing1Data1Genetic.Components <- Griffing1Data1$Genetic.Components
Griffing1Data1Effects <- Griffing1Data1$Effects
Griffing1Data1StdErr <- as.matrix(Griffing1Data1$StdErr)

#-----------------------------------------------------------
## Diamel Analysis with Griffing's Approach Method 1 & Model 2
#-----------------------------------------------------------
Griffing2Data1 <- Griffing(
  y = Yield
  , Rep = Rep
  , Cross1 = Cross1
  , Cross2 = Cross2
  , data = GriffingData1
  , Method = 1
  , Model = 2
)
names(Griffing2Data1)
Griffing2Data1
Griffing2Data1Means <- Griffing2Data1$Means
Griffing2Data1ANOVA <- Griffing2Data1$ANOVA
```
Griffing2Data1Genetic.Components <- Griffing2Data1$Genetic.Components

#---
Diallel Analysis with Griffing's Approach Method 2 & Model 1
#---
Griffing1Data2 <- Griffing(
 y = Yield
 , Rep = Rep
 , Cross1 = Cross1
 , Cross2 = Cross2
 , data = GriffingData2
 , Method = 2
 , Model = 1
)
names(Griffing1Data2)
Griffing1Data2
Griffing1Data2Means <- Griffing1Data2$Means
Griffing1Data2ANOVA <- Griffing1Data2$ANOVA
Griffing1Data2Genetic.Components <- Griffing1Data2$Genetic.Components
Griffing1Data2Effects <- Griffing1Data2$Effects
Griffing1Data2StdErr <- as.matrix(Griffing1Data2$StdErr)

#---
Diallel Analysis with Griffing's Approach Method 2 & Model 2
#---
Griffing2Data2 <- Griffing(
 y = Yield
 , Rep = Rep
 , Cross1 = Cross1
 , Cross2 = Cross2
 , data = GriffingData2
 , Method = 2
 , Model = 2
)
names(Griffing2Data2)
Griffing2Data2
Griffing2Data2Means <- Griffing2Data2$Means
Griffing2Data2ANOVA <- Griffing2Data2$ANOVA
Griffing2Data2Genetic.Components <- Griffing2Data2$Genetic.Components

#---
Diallel Analysis with Griffing's Approach Method 3 & Model 1
#---
Griffing1Data3 <- Griffing(
 y = Yield
 , Rep = Rep
 , Cross1 = Cross1

Griffing

```r
, Cross2 = Cross2
, data  = GriffingData3
, Method = 3
, Model = 1
)
names(Griffing1Data3)
Griffing1Data3
Griffing1Data3Means <- Griffing1Data3$Means
Griffing1Data3ANOVA <- Griffing1Data3$ANOVA
Griffing1Data3Genetic.Components <- Griffing1Data3$Genetic.Components
Griffing1Data3Effects <- Griffing1Data3$Effects
Griffing1Data3StdErr <- as.matrix(Griffing1Data3$StdErr)

#---------------------------------------------------------------
## Diallel Analysis with Griffing's Approach Method 3 & Model 2
#---------------------------------------------------------------
Griffing2Data3 <-
Griffing(
  y   = Yield
, Rep = Rep
, Cross1 = Cross1
, Cross2 = Cross2
, data = GriffingData3
, Method = 3
, Model = 2
)
names(Griffing2Data3)
Griffing2Data3
Griffing2Data3Means <- Griffing2Data3$Means
Griffing2Data3ANOVA <- Griffing2Data3$ANOVA
Griffing2Data3Genetic.Components <- Griffing2Data3$Genetic.Components

#---------------------------------------------------------------
## Diallel Analysis with Griffing's Approach Method 4 & Model 1
#---------------------------------------------------------------
Griffing1Data4 <-
Griffing(
  y   = Yield
, Rep = Rep
, Cross1 = Cross1
, Cross2 = Cross2
, data = GriffingData4
, Method = 4
, Model = 1
)
names(Griffing1Data4)
Griffing1Data4
Griffing1Data4Means <- Griffing1Data4$Means
Griffing1Data4ANOVA <- Griffing1Data4$ANOVA
Griffing1Data4Genetic.Components <- Griffing1Data4$Genetic.Components
Griffing1Data4Effects <- Griffing1Data4$Effects
```
GriffingData1

Data for Diallel Analysis using Griffing Approach Method 1

Description

Griffing is used for performing Diallel Analysis using Griffing’s Approach.

Usage

data(GriffingData1)

Format

A data.frame with 256 rows and 4 variables.

Details

• Cross1 Cross 1
• Cross2 Cross 2
• Rep Replicate
• Yield Yield Response

Author(s)

Muhammad Yaseen (<myaseen208@gmail.com>)

GriffingData4StdErr <- as.matrix(GriffingData4$StdErr)

#---
Diallel Analysis with Griffing’s Approach Method 4 & Model 2
#---
Griffing2Data4 <- GriffinPanel(
 y = Yield,
 , Rep = Rep
 , Cross1 = Cross1
 , Cross2 = Cross2
 , data = GriffingData4
 , Method = 4
 , Model = 2
)

names(Griffing2Data4)
Griffing2Data4
Griffing2Data4Means <- Griffing2Data4$Means
Griffing2Data4ANOVA <- Griffing2Data4$ANOVA
Griffing2Data4Genetic.Components <- Griffing2Data4$Genetic.Components
GriffingData2

References

See Also

Griffing, GriffingData2, GriffingData3, GriffingData4

Examples

```r
data(G riffingData 1)
```

GriffingData2
Data for Diallel Analysis using Griffing Approach Method 2

Description

Griffing is used for performing Diallel Analysis using Griffing’s Approach.

Usage

```r
data(G riffingData2)
```

Format

A `data.frame` with 144 rows and 4 variables.

Details

- Cross1 Cross 1
- Cross2 Cross 2
- Rep Replicate
- Yield Yield Response

Author(s)

Muhammad Yaseen (<myaseen208@gmail.com>)

References

See Also

Griffing, GriffingData1, GriffingData3, GriffingData4

Examples

data(GriffingData2)

data(GriffingData3)

GriffingData3

Data for Diallel Analysis using Griffing Approach Method 3

Description

Griffing is used for performing Diallel Analysis using Griffing’s Approach.

Usage

data(GriffingData3)

Format

A data.frame with 224 rows and 4 variables.

Details

- Cross1 Cross 1
- Cross2 Cross 2
- Rep Replicate
- Yield Yield Response

Author(s)

Muhammad Yaseen (<myaseen208@gmail.com>)

References

See Also

Griffing, GriffingData1, GriffingData2, GriffingData4

Examples

data(GriffingData3)
GriffingData4

Data for Diallel Analysis using Griffing Approach Method 4

Description

Griffing is used for performing Diallel Analysis using Griffing’s Approach.

Usage

data(GriffingData4)

Format

A data.frame with 112 rows and 4 variables.

Details

- Cross1 Cross 1
- Cross2 Cross 2
- Rep Replicate
- Yield Yield Response

Author(s)

Muhammad Yaseen (<myaseen208@gmail.com>)

References

See Also

Griffing, GriffingData1, GriffingData2, GriffingData3

Examples

data(GriffingData4)
Hayman

Diallel Analysis using Hayman Approach

Description

Hayman is used for performing Diallel Analysis using Hayman's Approach.

Usage

Hayman(y, Rep, Cross1, Cross2, data)

Arguments

- y: Numeric Response Vector
- Rep: Replicate as factor
- Cross1: Cross 1 as factor
- Cross2: Cross 2 as factor
- data: A data.frame

Details

Diallel Analysis using Hayman's approach.

Value

- Means: Means
- ANOVA: Analysis of Variance (ANOVA) table
- Genetic Components: Genetic Components
- Effects: Effects of Crosses
- StdErr: Standard Errors of Crosses

Author(s)

Muhammad Yaseen (<myaseen208@gmail.com>)

References

Hayman

See Also

Griffing.HaymanData

Examples

#---
Diallel Analysis with Hayman's Approach
#---

Hayman1Data <-
 Hayman(
 y = Yield,
 Rep = Rep,
 Cross1 = Cross1,
 Cross2 = Cross2,
 data = Haymandata
)

Hayman1Data
names(Hayman1Data)

Hayman1DataMeans <- Hayman1Data$Means
Hayman1DataANOVA <- Hayman1Data$ANOVA
Hayman1DataWr.Vr.Table <- Hayman1Data$Wr.Vr.Table

Hayman1DataComponents.of.Variation <- Hayman1Data$Components.of.Variation
Hayman1DataOther.Parameters <- Hayman1Data$Other.Parameters
Hayman1DataFr <- Hayman1Data$Fr

#---------------------
Wr-Vr Graph
#---------------------

VOLO <- Hayman1Data$VOLO
In.Value <- Hayman1Data$In.Value
a <- Hayman1Data$a
b <- Hayman1Data$b
Wr.Vr <- Hayman1Data$Wr.Vr.Table

library(ggplot2)

ggplot(data=data.frame(x=c(0, max(In.Value, Wr.Vr$Wr, Wr.Vr$Wr, Wr.Vr$Vrei))),
 aes(x)) +
 stat_function(fun=function(x) {sqrt(x*VOLO)}, color="blue") +
 geom_hline(yintercept = 0) +
 geom_vline(xintercept = 0) +
 geom_abline(intercept = a, slope = b) +
 geom_abline(intercept = mean(Wr.Vr$Wr)-mean(Wr.Vr$Vr), slope = 1) +
 geom_segment(aes(
 x = mean(Wr.Vr$Wr),
 y = min(0, mean(Wr.Vr$Wr)),
 xend = mean(Wr.Vr$Wr),
 yend = max(0, mean(Wr.Vr$Wr))
)
)
Description

Griffing is used for performing Diallel Analysis using Hayman’s Approach.

Usage

data(HaymanData)

Format

A data.frame with 256 rows and 4 variables.

Details

- Cross1 Cross 1
- Cross2 Cross 2
- Rep Replicate
- Yield Yield Response

Author(s)

Muhammad Yaseen (<myaseen208@gmail.com>)
References

2. Test

Examples

data(HaymanData)
Index

*Topic datasets
GriffingData1, 6
GriffingData2, 7
GriffingData3, 8
GriffingData4, 9
HaymanData, 12

Griffing, 2, 7–9, 11
GriffingData1, 3, 6, 8, 9
GriffingData2, 3, 7, 7, 8, 9
GriffingData3, 3, 7, 8, 8, 9
GriffingData4, 3, 7, 8, 9

Hayman, 3, 10
HaymanData, 11, 12