Package ‘DiceEval’

December 4, 2023

Title Construction and Evaluation of Metamodels
Version 1.6.1
Date 2023-11-30
Author D. Dupuy and C. Helbert
Maintainer C. Helbert <Celine.Helbert@ec-lyon.fr>
Description Estimation, validation and prediction of models of different types: linear models, additive models, MARS, PolyMARS and Kriging.
License GPL-3
Depends DiceKriging
Suggests gam, mda, polspline
Encoding UTF-8
NeedsCompilation no
Repository CRAN
Date/Publication 2023-12-04 15:00:02 UTC

R topics documented:

DiceEval-package ... 2
crossValidation .. 4
dataIRSN5D .. 6
MAE ... 7
modelComparison .. 8
modelFit .. 9
modelPredict .. 11
penaltyPolyMARS .. 12
R2 ... 14
residualsStudy ... 15
RMA ... 15
RMSE ... 17
stepEvolution ... 18
testCrossValidation ... 19
testIRSN5D ... 20
Description

Construction and evaluation of metamodels.

<table>
<thead>
<tr>
<th>Package:</th>
<th>DiceEval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>1.4</td>
</tr>
<tr>
<td>Date:</td>
<td>2015-06-15</td>
</tr>
<tr>
<td>License:</td>
<td>GPL-3</td>
</tr>
</tbody>
</table>

Details

This package is dedicated to the construction of metamodels. A validation procedure is also proposed using usual criteria (RMSE, MAE etc.) and cross-validation procedure. Moreover, graphical tools help to choose the best value for the penalty parameter of a stepwise or a PolyMARS model. Another routine is dedicated to the comparison of metamodels.

Note

This work was conducted within the frame of the DICE (Deep Inside Computer Experiments) Consortium between ARMINES, Renault, EDF, IRSN, ONERA and TOTAL S.A. (http://emse.dice.fr/).

Functions `gam`, `mars` and `polymars` are required for the construction of metamodels. `km` provides Kriging models.

Author(s)

D. Dupuy & C. Helbert

References

See Also

`modelFit`, `modelPredict`, `crossValidation` and `modelComparison`

Different space-filling designs can be found in the DiceDesign package and we refer to the DiceKriging package for the construction of kriging models. This package takes part of a toolbox implemented during the Dice consortium.

Examples

```r
## Not run:
rm(list=ls())
# A 2D example
Branin <- function(x1,x2) {
  x1 <- 1/2*(15*x1+5)
  x2 <- 15/2*(x2+1)
  (x2 - 5.1/(4*pi^2)*(x1^2) + 5/pi*x1 - 6)^2 + 10*(1 - 1/(8*pi))*cos(x1) + 10
}
# A 2D uniform design with n points in [-1,1]^2
n <- 50
X <- matrix(runif(n*2,-1,1),ncol=2,nrow=n)
Y <- Branin(X[,1],X[,2])
Z <- (Y-mean(Y))/sd(Y)

# Construction of a PolyMARS model with a penalty parameter equal to 2
library(polspline)
modPolyMARS <- modelFit(X,Z,type = "PolyMARS",gcv=2.2)

# Prediction and comparison between the exact function and the predicted one
xtest <- seq(-1, 1, length= 21)
ytest <- seq(-1, 1, length= 21)
Zreal <- outer(xtest, ytest, Branin)
Zreal <- (Zreal-mean(Y))/sd(Y)
Zpredict <- modelPredict(modPolyMARS,expand.grid(xtest,ytest))
m <- min(floor(Zreal),floor(Zpredict))
M <- max(ceiling(Zreal),ceiling(Zpredict))
persp(xtest, ytest, Zreal, theta = 30, phi = 30, expand = 0.5,
col = "lightblue",main="Branin function",zlim=c(m,M),
ticktype = "detailed")
persp(xtest, ytest, matrix(Zpredict,nrow=length(xtest),
ncol=length(ytest)), theta = 30, phi = 30, expand = 0.5,
col = "lightblue",main="PolyMARS Model",zlab="Ypredict",zlim=c(m,M),
ticktype = "detailed")
```
Comparison of models

modelComparison(X, Y, type=c("Linear", "StepLinear", "PolyMARS", "Kriging"), formula=Y~X1+X2+X1:X2+I(X1^2)+I(X2^2), penalty=log(dim(X)[1]), gcv=4)

see also the demonstration example in dimension 5 (source: IRSN)
demo(IRSN5D)

End(Not run)

crossValidation

K-fold Cross Validation

Description

This function calculates the predicted values at each point of the design and gives an estimation of criterion using K-fold cross-validation.

Usage

crossValidation(model, K)

Arguments

- **model**: an output of the `modelFit` function. This argument is the initial model fitted with all the data.
- **K**: the number of groups into which the data should be split to apply cross-validation

Value

A list with the following components:

- **Ypred**: a vector of predicted values obtained using K-fold cross-validation at the points of the design
- **Q2**: a real which is the estimation of the criterion R^2 obtained by cross-validation
- **folds**: a list which indicates the partitioning of the data into the folds
- **RMSE_CV**: $RMSE$ by K-fold cross-validation (see more details below)
- **MAE_CV**: MAE by K-fold cross-validation (see more details below)

In the case of a Kriging model, other components to test the robustness of the procedure are proposed:

- **theta**: the range parameter theta estimated for each fold,
- **trend**: the trend parameter estimated for each fold,
- **shape**: the estimated shape parameter if the covariance structure is of type `powerexp`.
The principle of cross-validation is to split the data into \(K \) folds of approximately equal size \(A_1, A_1, \ldots, A_K, A_K \). For \(k = 1 \) to \(K \), a model \(\hat{Y}^{(-k)} \) is fitted from the data \(\cup_{j \neq k} A_k \) and this model is validated on the fold \(A_k \). Given a criterion of quality \(L \) (here, \(L \) could be the RMSE or the MAE criterion), the “evaluation” of the model consists in computing:

\[
L_k = \frac{1}{n/K} \sum_{i \in A_k} L\left(y_i, \hat{Y}^{(-k)}(x_i)\right).
\]

The cross-validation criterion is the mean of the \(K \) criterion:

\[
L_{CV} = \frac{1}{K} \sum_{k=1}^{K} L_k.
\]

The \(Q_2 \) criterion is defined as: \(Q_2 = R^2(Y, \hat{Y}_{pred}) \) with \(Y \) the response value and \(\hat{Y}_{pred} \) the value fit by cross-validation.

Note

When \(K \) is equal to the number of observations, *leave-one-out* cross-validation is performed.

Author(s)

D. Dupuy

See Also

- \(R_2 \)
- \(\text{modelFit} \)
- \(\text{MAE} \)
- \(\text{RMSE} \)
- \(\text{foldsComposition} \)
- \(\text{testCrossValidation} \)

Examples

```r
## Not run:
rm(list=ls())

# A 2D example
Branin <- function(x1, x2) {
  x1 <- x1*15-5
  x2 <- x2*15
  (x2 - 5/(4*pi^2)*(x1^2) + 5/pi*x1 - 6)^2 + 10*(1 - 1/(8*pi))*cos(x1) + 10
}

# Linear model on 50 points
n <- 50
X <- matrix(runif(n*2), ncol=2, nrow=n)
Y <- Branin(X[,1], X[,2])
modLm <- modelFit(X, Y, type = "Linear", formula=Y~X1+X2+X1:X2+I(X1^2)+I(X2^2))
R2(Y, modLm$model$fitted.values)
crossValidation(modLm, K=10)$Q2

# kriging model : gaussian covariance structure, no trend, no nugget effect
# on 16 points
n <- 16
X <- data.frame(x1=runif(n), x2=runif(n))
Y <- Branin(X[,1], X[,2])
mKm <- modelFit(X, Y, type="Kriging", formula=-1, covtype="powexp")
K <- 10
crossValidation(mKm, K=10)$Q2
```
out <- crossValidation(mKm, K)
par(mfrow=c(2,2))
plot(c(0,1:K),c(mKm$model@covariance@range.val[1],out$theta[,1]),
 xlab='\{Var\}',ylab='Theta1')
plot(c(0,1:K),c(mKm$model@covariance@range.val[2],out$theta[,2]),
 xlab='\{Var\}',ylab='Theta2')
plot(c(0,1:K),c(mKm$model@covariance@shape.val[1],out$shape[,1]),
 xlab='\{Var\}',ylab='p1',ylim=c(0,2))
plot(c(0,1:K),c(mKm$model@covariance@shape.val[2],out$shape[,2]),
 xlab='\{Var\}',ylab='p2',ylim=c(0,2))
par(mfrow=c(1,1))

End(Not run)

dataIRSN5D

5D benchmark from nuclear criticality safety assessments

Description

Nuclear criticality safety assessments are based on an optimization process to search for safety-penalizing physical conditions in a given range of parameters of a system involving fissile materials. In the following examples, the criticality coefficient (namely k-effective or keff) models the nuclear chain reaction trend:

- keff > 1 is an increasing neutrons production leading to an uncontrolled chain reaction potentially having deep consequences on safety,
- keff = 1 means a stable neutrons population as required in nuclear reactors,
- keff < 1 is the safety state required for all unused fissile materials, like for fuel storage.

Besides its fissile materials geometry and composition, the criticality of a system is widely sensitive to physical parameters like water density, geometrical perturbations or structure materials (like concrete) characteristics. Thereby, a typical criticality safety assessment is supposed to verify that k-effective cannot reach the critical value of 1.0 (in practice the limit value used is 0.95) for given hypothesis on these parameters.

The benchmark system is an assembly of four fuel rods contained in a reflecting hull. Regarding criticality safety hypothesis, the main parameters are the uranium enrichment of fuel (namely "e", U235 enrichment, varying in [0.03, 0.07]), the rods assembly geometrical characteristics (namely "p", the pitch between rods, varying in [1.0, 2.0] cm and "l", the length of fuel rods, varying in [10, 60] cm), the water density inside the assembly (namely "b", varying in [0.1, 0.9]) , and the hull reflection characteristics (namely "r", reflection coefficient, varying in [0.75, 0.95]).

In this criticality assessment, the MORET (Fernex et al., 2005) Monte Carlo simulator is used to estimate the criticality coefficient of the fuel storage system using these parameters (among other) as numerical input,. The output k-effective is returned as a Gaussian density which standard deviation is setup to be negligible regarding input parameters sensitivity.

Usage

data(dataIRSN5D)
Format

A data frame with 50 observations (lines) and 6 columns. Columns 1 to 5 correspond to the design of experiments for the input variables ("b", "e", "p", "r" and "l") and the last column the value of the output "keff".

Author(s)

Y. Richet

Source

IRSN (Institut de Radioprotection et de Sûreté Nucléaire)

References

MAE

Mean Absolute Error

Description

The mean of absolute errors between real values and predictions.

Usage

\[
MAE(Y, \text{Ypred})
\]

Arguments

- \(Y\) a real vector with the values of the output
- \(\text{Ypred}\) a real vector with the predicted values at the same inputs

Value

A real which represents the mean of the absolute errors between the real and the predicted values:

\[
MAE = \frac{1}{n} \sum_{i=1}^{n} |Y(x_i) - \hat{Y}(x_i)|
\]

where \(x_i\) denotes the points of the experimental design, \(Y\) the output of the computer code and \(\hat{Y}\) the fitted model.
modelComparison

Author(s)
D. Dupuy

See Also
other quality criteria as RMSE and RMA.

Examples
X <- seq(-1,1,0.1)
Y <- 3*X + rnorm(length(X),0,0.5)
Ypred <- 3*X
MAE(Y,Ypred)

modelComparison
Comparison of different types of metamodels

Description
modelComparison fits different metamodels and returns R^2 and RMSE criteria relating to each.

Usage
modelComparison(X,Y, type="all",K=10,test=NULL,...)

Arguments
X a data.frame containing the design of experiments
Y a vector containing the response variable
type a vector containing the type of models to compare.
The default value is "all"=c("Linear", "StepLinear","Additive", "PolyMARS", "MARS","Kriging")
K the number of folds for cross-validation (default value is set at 10)
test a data.frame containing the design and the response of a test set when available, the prediction criteria will be evaluated on the test design (default corresponds to no test set)
... according to the type argument, parameters can be specified (for example, formula and penalty for a stepwise procedure)

Value
A list containing two fields if the argument test equal NULL and three fields otherwise:

Learning R2 and RMSE criteria evaluated from learning set,
CV Q2 and RMSE_CV criteria using K-fold cross-validation,
Test R2 and RMSE criteria on the test set.

A graphical tool to compare the value of the criteria is proposed.
modelFit

Author(s)
D. Dupuy

See Also
modelFit and crossValidation

Examples

Not run:
data(dataIRSN5D)
X <- dataIRSN5D[,1:5]
Y <- dataIRSN5D[,6]
data(testIRSN5D)
library(gam)
library(mda)
library(polspline)
crit <- modelComparison(X,Y, type="all",test=testIRSN5D)

crit2 <- modelComparison(X,Y, type=rep("StepLinear",5),test=testIRSN5D,
penalty=c(1,2,5,10,20),formula=Y~.^2)

End(Not run)

modelFit

Fitting metamodels

Description

modelFit is used to fit a metamodel of class \texttt{lm}, \texttt{gam}, \texttt{mars}, \texttt{polymars} or \texttt{km}.

Usage

modelFit (X,Y, type, ...)

Arguments

\begin{itemize}
\item \texttt{X} \hspace{1cm} a data.frame containing the design of experiments
\item \texttt{Y} \hspace{1cm} a vector containing the response variable
\item \texttt{type} \hspace{1cm} represents the method used to fit the model:
\begin{itemize}
\item "Linear" \hspace{1cm} linear model,
\item "StepLinear" \hspace{1cm} stepwise,
\item "Additive" \hspace{1cm} gam,
\item "MARS" \hspace{1cm} mars
\item "PolyMARS" \hspace{1cm} polymars
\item "Kriging" \hspace{1cm} kriging model.
\end{itemize}
\end{itemize}
... corresponds to the parameter(s) of the model. The list of the needed arguments for each type of models is given below:

- **"Linear"** formula (see `formulaLm`),
- **"StepLinear"** formula penalty parameter,
- **"Additive"** formula (see `formulaAm`),
- **"MARS"** degree,
- **"PolyMARS"** gcv criteria.
- **"Kriging"** formula covtype

Value

A list with the following components:

- **X** a data frame representing the design of experiments
- **Y** a vector representing the response
- **type** the type of metamodel
- **model** a fitted model of the specified class

and the value of the parameter(s) depending on the fitted model.

Author(s)

D. Dupuy

See Also

- `modelPredict`

Examples

```r
# A 2D example
Branin <- function(x1,x2) {
  x1 <- x1*15-5
  x2 <- x2*15
  (x2 - 5/(4*pi^2)*(x1^2) + 5/pi*x1 - 6)^2 + 10*(1 - 1/(8*pi))*cos(x1) + 10
}
# a 2D uniform design and the value of the response at these points
X <- matrix(runif(24),ncol=2,nrow=12)
Z <- Branin(X[,1],X[,2])
Y <- (Z-mean(Z))/sd(Z)
# construction of a linear model
modLm <- modelFit(X,Y,type = "Linear",formula=Y~X1+X2+I(X1^2)+I(X2^2))
summary(modLm$model)
```

Not run:
construction of a stepwise-selected model
modStep <- modelFit(X,Y,type = "StepLinear",penalty=\log(\text{dim}(X)[1]),
formula=Y\sim X1+X2+X1\cdot X2+I(X1^2)+I(X2^2))
summary(modStep$model)

construction of an additive model
library(gam)
modAm <- modelFit(X,Y,type = "Additive",formula=Y\sim s(X1)+s(X2))
summary(modAm$model)

construction of a MARS model of degree 2
library(mda)
modMARS <- modelFit(X,Y,type = "MARS",degree=2)
print(modMARS$model)

construction of a PolyMARS model with a penalty parameter equal to 1
library(polspline)
modPolyMARS <- modelFit(X,Y,type = "PolyMARS",gcv=1)
summary(modPolyMARS$model)

construction of a Kriging model
modKm <- modelFit(X,Y,type = "Kriging")
str(modKm$model)

End(Not run)

modelPredict
Prediction at newdata for a fitted metamodel

Description

`modelPredict` computes predicted values based on the model given in argument.

Usage

```r
modelPredict(model,newdata)
```

Arguments

- **model**: a fitted model obtained from `modelFit`
- **newdata**: a matrix (or a data frame) which represents the predictor values at which the fitted values will be computed.

Value

- a vector of predicted values, obtained by evaluating the model at `newdata`.

Author(s)

D. Dupuy
penaltyPolyMARS

Choice of the penalty parameter for a PolyMARS model

Description

This function fits a PolyMARS model for different values of the penalty parameter and compute criteria.

See Also

- `modelFit`
penaltyPolyMARS

Usage

penaltyPolyMARS(X,Y,test=NULL,graphic=FALSE,K=10,
Penalty=seq(0,5,by=0.2))

Arguments

X a data.frame containing the design of experiments
Y a vector containing the response variable
test a data.frame containing the design and the response of a test set when available,
the prediction criteria will be computed for the test data (default corresponds to
no test set)
graphic if TRUE the values of the criteria are represented
K the number of folds for cross-validation (by default, K=10)
Penalty a vector containing the values of the penalty parameter

Value

A data frame containing
a the values of the penalty parameter
R2 the R2 criterion evaluated on the learning set
m the size of the selected model
If a test set is available the last row is
R2test the R2 criterion evaluated on the test set
If no test set is available, criteria computed by K-cross-validation are provided:
Q2 the Q2 evaluated by cross-validation (by default, K=10)
RMSE CV RMSE computed by cross-validation

Note that the penalty parameter could be chosen by minimizing the value of the RMSE by cross-validation.

Author(s)

D. Dupuy

See Also

modelFit, R2 and crossValidation

Examples

data(dataIRSN5D)
X <- dataIRSN5D[,1:5]
Y <- dataIRSN5D[,6]
data(testIRSN5D)
library(polspline)
Crit <- penaltyPolyMARS(X,Y,test=testIRSN5D[,,-7],graphic=TRUE)
Multiple R-Squared

Description

Coefficient of determination \(R^2 \)

Usage

\[R^2(Y, Y_{\text{pred}}) \]

Arguments

\(Y \) a real vector with the values of the output

\(Y_{\text{pred}} \) a real vector with the predicted values at the same inputs

Value

\[R^2 = 1 - \frac{SSE}{SST} \]

where \(SSE = \sum_{i=1}^{n}(Y(x_i) - \hat{Y}(x_i))^2 \) is the residual sum of squares

and \(SST = \sum_{i=1}^{n}(Y(x_i) - \bar{Y})^2 \) is the total sum of squares.

Note that the order of the input argument is important.

Author(s)

D. Dupuy

Examples

\[X \leftarrow \text{seq}(-1,1,0.1) \]
\[Y \leftarrow 3 \times X + \text{rnorm}(\text{length}(X),0,0.5) \]
\[Y_{\text{pred}} \leftarrow 3 \times X \]
\[\text{print}(R2(Y,Y_{\text{pred}})) \]
residualsStudy

Description

residualsStudy analyzes the residuals of a model: a plot of the residuals against the index, a plot of the residuals against the fitted values, the representation of the density and a normal Q-Q plot.

Usage

residualsStudy(model)

Arguments

model a fitted model obtained from modelFit

Author(s)

D. Dupuy

See Also

modelFit and modelPredict

Examples

data(dataIRSN5D)
X <- dataIRSN5D[,1:5]
Y <- dataIRSN5D[,6]
library(gam)
modAm <- modelFit(X,Y,type = "Additive",formula=formulaAm(X,Y))
residualsStudy(modAm)

RMA

Relative Maximal Absolute Error

Description

Relative Maximal Absolute Error

Usage

RMA(Y, Ypred)

Arguments

Y a real vector with the values of the output
Ypred a real vector with the predicted values at the same inputs
Value

The RMA criterion represents the maximum of errors between exact values and predicted one:

\[RMA = \max_{1 \leq i \leq n} \frac{|Y(x_i) - \hat{Y}(x_i)|}{\sigma_Y} \]

where \(Y \) is the output variable, \(\hat{Y} \) is the fitted model and \(\sigma_Y \) denotes the standard deviation of \(Y \).

The output of this function is a list with the following components:

- `max.value`: the value of the RMA criterion
- `max.data`: an integer \(i \) indicating the data \(x^i \) for which the RMA is reached
- `index`: a vector containing the data sorted according to the value of the errors
- `error`: a vector containing the corresponding value of the errors

Author(s)

D. Dupuy

See Also

other validation criteria as MAE or RMSE.

Examples

```r
X <- seq(-1,1,0.1)
Y <- 3*X + rnorm(length(X),0,0.5)
Ypred <- 3*X
print(RMA(Y,Ypred))

# Illustration on Branin function
Branin <- function(x1,x2) {
  x1 <- x1*15-5
  x2 <- x2*15
  (x2 - 5/(4*pi^2)*(x1^2) + 5/pi*x1 - 6)^2 + 10*(1 - 1/(8*pi))*cos(x1) + 10
}
X <- matrix(runif(24),ncol=2,nrow=12)
Z <- Branin(X[,1],X[,2])
Y <- (Z-mean(Z))/sd(Z)

# Fitting of a Linear model on the data (X,Y)
modLm <- modelFit(X,Y,type = "Linear",formula=Y~X1+X2+X1:X2+I(X1^2)+I(X2^2))

# Prediction on a grid
u <- seq(0,1,0.1)
Y_test_real <- Branin(expand.grid(u,u)[,1],expand.grid(u,u)[,2])
Y_test_pred <- modelPredict(modLm,expand.grid(u,u))
Y_error <- matrix(abs(Y_test_pred-(Y_test_real-mean(Z))/sd(Z)),length(u),length(u))
contour(u, u, Y_error,45)
Y_pred <- modelPredict(modLm,X)
out <- RMA(Y,Y_pred)
```
for (i in 1:dim(X)[1]){
 points(X[out$index[i],1],X[out$index[i],2],pch=19,col='red',cex=out$error[i]*10)
}

RMSE

Root Mean Squared Error

Description
The root of the Mean Squared Error between the exact value and the predicted one.

Usage
RMSE(Y, Ypred)

Arguments
Y a real vector with the values of the output
Ypred a real vector with the predicted values

Value
a real which represents the root of the mean squared error between the target response \(Y\) and the fitted one \(\hat{Y}\):

\[
RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (Y(x_i) - \hat{Y}(x_i))^2}.
\]

Author(s)
D. Dupuy

See Also
other validation criteria as MAE or RMA

Examples
X <- seq(-1,1,0.1)
Y <- 3*X + rnorm(length(X),0,0.5)
Ypred <- 3*X
print(RMSE(Y,Ypred))
Description

Graphical representation of the selected terms using stepwise procedure for different values of the penalty parameter.

Usage

```r
stepEvolution(X,Y,formula,P=1:7,K=10,test=NULL,graphic=TRUE)
```

Arguments

- **X**: a data.frame containing the design of experiments
- **Y**: a vector containing the response variable
- **formula**: a formula for the initial model
- **P**: a vector containing different values of the penalty parameter for which a stepwise selected model is fitted
- **K**: the number of folds for the cross-validation procedure
- **test**: an additional data set on which the prediction criteria are evaluated (default corresponds to no test data set)
- **graphic**: if TRUE the values of the criteria are represented

Value

A list with the different criteria for different values of the penalty parameter. This list contains:

- **penalty**: the values for the penalty parameter
- **m**: size m of the selected model for each value in P
- **R2**: the value of the R2 criterion for each model

According to the value of the **test** argument, other criteria are calculated:

- If a test set is available, **R2test** contains the value of the R2 criterion on the test set
- If no test set is available, the **Q2** and the **RMSE** computed by cross-validation are done.

Note

Plots are also available. A tabular represents the selected terms for each value in P.

The evolution of the R2 criterion, the evolution of the size m of the selected model and criteria on the test set or by K-folds cross-validation are represented.

These graphical tools can be used to select the best value for the penalty parameter.
The function `testCrossValidation` is used to test the robustness of the cross-validation procedure. It calculates the estimated K-fold cross-validation for different values of K. The function takes a fitted model from `modelFit`, a vector containing the values to test (default corresponds to 2, 5, 10, 20, 30, and the number of observations for leave-one-out procedure), and an integer given the number of times the K-fold cross-validation is performed for each value of K.

The value returned is a matrix of all the values obtained by K-fold cross-validation. Note that for each value of K, the cross-validation procedure is repeated N times in order to get an idea of the dispersion of the Q2 criterion and of the RMSE by K-fold cross-validation.

Author(s)
D. Dupuy
Description

These test data correspond to the five-dimensional case provided by the IRSN detailed in `dataIRSN5D`.

Usage

data(testIRSN5D)

Format

A data frame with 324 rows representing the number of observations and 6 columns: the first five corresponding to the input variables ("b","e","p","r" and "l") and the last to the response Keff.

Source

IRSN (Institut de Radioprotection et de Sûreté Nucléaire)

See Also

dataIRSN5D
Index

* datasets
 dataIRSN5D, 6
testIRSN5D, 20
* models
 crossValidation, 4
 DiceEval-package, 2
 MAE, 7
 modelComparison, 8
 modelFit, 9
 modelPredict, 11
 penaltyPolyMARS, 12
 R2, 14
 residualsStudy, 15
 RMA, 15
 RMSE, 17
 stepEvolution, 18
 testCrossValidation, 19
* package
 DiceEval-package, 2
crossValidation, 3, 4, 9, 13, 20
dataIRSN5D, 6, 20
DiceEval (DiceEval-package), 2
DiceEval-package, 2
foldsComposition, 5
formulaAm, 10
formulaLm, 10
gam, 2
km, 2
MAE, 4, 5, 7, 16, 17
mars, 2
modelComparison, 3, 8
modelFit, 3, 5, 9, 12, 13, 15
modelPredict, 3, 10, 11, 15
penaltyPolyMARS, 12
polymars, 2
R2, 5, 13, 14
residualsStudy, 15
RMA, 8, 15, 17
RMSE, 4, 5, 8, 16, 17
stepEvolution, 18
testCrossValidation, 5, 19
testIRSN5D, 20