Package ‘DiffNet’

February 28, 2017

Type Package
Title Detection of Statistically Significant Changes in Complex Biological Networks
Version 1.0-0
Date 2017-02-27
Author Raghvendra Mall [aut, cre], Khalid B. Kunji [aut]
Maintainer Raghvendra Mall <rmall@hbku.edu.qa>
Repository CRAN
Description Provides an implementation of statistically significant differential sub-network analysis for paired biological networks.
License GPL (>= 3)
URL https://www.r-project.org,
Imports Rcpp (>= 0.12.7), Matrix, qlecMatrix, data.table, Hmisc, gplots, igraph, IsA, foreach, doParallel
LazyLoad yes
LinkingTo Rcpp, RcppEigen
Depends R (>= 3.3.2)
NeedsCompilation yes
Date/Publication 2017-02-28 11:08:32

R topics documented:
calculate_p_value ... 2
differential_subnetwork_analysis_closedform 2
differential_subnetwork_analysis_fastapprox 4
differential_subnetwork_analysis_original 5
diffnet ... 6
DiffNet_GHD_Fast .. 7
calculate_p_value

Calculate asymptotic p-values

Description

Calculate p-values given first order moment mu and second order moment std

Usage

```r
calculate_p_value(mu, std, val)
```

Arguments

- **mu**
 - First order moment: mean for the GHD statistic
- **std**
 - Second order moment: std for the GHD statistic
- **val**
 - Value of GHD statistic

Value

Returns the p-value for the GHD statistic (whose distribution follows normal distribution).

Author(s)

Raghvendra Mall <rmall@hbku.edu.qa>

differential_subnetwork_analysis_closedform

Closed-Form Approach for Identifying Differential Sub-networks in Paired Graphs

Description

This method identifies the differential sub-network between two graphs using the proposed Closed-Form approach of Mall et al paper.

Usage

```r
differential_subnetwork_analysis_closedform(ghd_val, mu_perm, p,
                                           matrixA, matrixB, threshold)
```
Arguments

ghd_val Generalized Hamming Distance value calculated using topological graphs of g_A and g_B.

mu_perm Asymptotic value of mean permutation for graph g_A.

p Represents the number of nodes in graph g_A which is the same as number of nodes in graph g_B.

matrixA Topological matrix obtained from graph g_A.

matrixB Topological matrix obtained from graph g_B.

threshold Threshold after which the "closed-form" technique switches to use a model selection criterion similar to the "original" approach to identify statistically significant changes between two networks. By default its value is 1e-250 and a good range for this value is between 1e-50 to 1e-250.

Value

A data frame comprising of:

actual_id Id of a node from the set of nodes in g_A

dim_name Name associated with a node from the set of nodes in g_A.

p_val P-value associated with that node.

ghd_val Generalized Hamming Distance between the topological matrices after removal of that node.

mu_perm Asymptotic first order moment: mean value.

std_perm Asymptotic second order moment: standard deviation value.

v7 Adjusted p-value associated with that node.

Author(s)

Raghvendra Mall <rmall@hbku.edu.qa>

References

See Also

differential_subnetwork_analysis_original, differential_subnetwork_analysis_fastapprox
differential_subnetwork_analysis_fastapprox

Fast-Approximation Approach for Identifying Differential Subnetworks in Paired Graphs

Description

This method identifies the differential sub-network between two graphs using the proposed Fast-Approximation approach of Mall et al paper.

Usage

differential_subnetwork_analysis_fastapprox(ghd_val, mu_perm, p,
matrixA, matrixB, threshold)

Arguments

ghd_val Generalized Hamming Distance value calculated using topological graphs of g_A and g_B.
mu_perm Asymptotic value of mean permutation for graph g_A.
p Represents the number of nodes in graph g_A which is the same as number of nodes in graph g_B.
matrixA Topological matrix obtained from graph g_A.
matrixB Topological matrix obtained from graph g_B.
threshold Threshold after which the "fast-approx" technique switches to use a model selection criterion similar to the "original" approach to identify statistically significant changes between two networks. By default its value is 1e-250 and a good range for this value is between 1e-50 to 1e-250.

Value

A data frame comprising of:

actual_id Id of a node from the set of nodes in g_A
dim_name Name associated with a node from the set of nodes in g_A.
p_val P-value associated with that node.
ghd_val Generalized Hamming Distance between the topological matrices after removal of that node.
mu_perm Asymptotic first order moment: mean value.
std_perm Asymptotic second order moment: standard deviation value.
v7 Adjusted p-value associated with that node.

Author(s)

Raghvendra Mall <rmall@hbku.edu.qa>
differential_subnetwork_analysis_original

References

See Also
differential_subnetwork_analysis_original, differential_subnetwork_analysis_closedform

differential_subnetwork_analysis_original

Original dGHD Approach for Identifying Differential Sub-networks in Paired Graphs

Description

This method identifies the differential sub-network between two graphs using the original dGHD approach of Ruan et al paper.

Usage

differential_subnetwork_analysis_original(ghd_val, mu_perm, p, matrixA, matrixB, threshold)

Arguments

ghd_val Generalized Hamming Distance value calculated using topological graphs of g_A and g_B.
mu_perm Asymptotic value of mean permutation for graph g_A.
p Represents the number of nodes in graph g_A which is the same as number of nodes in graph g_B.
matrixA Topological matrix obtained from graph g_A.
matrixB Topological matrix obtained from graph g_B.
threshold Not used in the original approach.

Value

A data frame comprising of:

actual_id Id of a node from the set of nodes in g_A
dim_name Name associated with a node from the set of nodes in g_A.
p_val P-value associated with that node.
ghd_val Generalized Hamming Distance between the topological matrices after removal of that node.
mu_perm Asymptotic first order moment: mean value.
std_perm Asymptotic second order moment: standard deviation value.
v7 Adjusted p-value associated with that node.
Author(s)
Raghvendra Mall <rmall@hbku.edu.qa>

References

See Also
differential_subnetwork_analysis_closedform, differential_subnetwork_analysis_fastapprox

diffnet

Detection of Statistically Significant Changes in Paired Biological Networks

Description
Performs differential network analysis for paired biological networks to identify statistically significant changes between two graphs. Currently, the approaches available for doing this include the "closed-form", "original" (dGHD) and the "fast-approx" techniques described in the paper of Mall et al. The methods works better for large-scale complex biological networks (in pairs).

Usage
```r
diffnet(g_A = sample_grg(6, 0.15, torus = TRUE, coords = TRUE),
g_b = permute(g_A, c(sample(5), 6)), p = 6,
threshold = 1e-50, approach = "closed-form")
```

Arguments
- `g_A`: An igraph object representing graph g_A
- `g_B`: An igraph object representing the second graph B with same number of nodes.
- `p`: Represents the number of nodes in graph g_A which is the same as number of nodes in graph g_B
- `threshold`: Threshold after which the "closed-form" and "fast-approx" techniques switch to use a model selection criterion similar to the "original" approach to identify statistically significant changes between two networks. By default its value is 1e-250 and a good range for this value is between 1e-50 to 1e-250.
- `approach`: Either "closed-form"/"original"/"fast-approx". By default its "closed-form"

Value
An ordered vector representing the p-value for each node. Nodes whose p-values are less than 0.01 form the differential sub-networks in paired graphs g_A and g_B.
DiffNet_GHD_Fast

Author(s)

Raghvendra Mall <rmall@hbku.edu.qa>

References

Examples

```r
library("DiffNet")
# this step is optional, it helps speed up calculations, run in parallel on 2 processors
library(doParallel)
registerDoParallel(2)
# Run the differential network analysis technique on sample data
p <- diffnet()
```

Description

Provides a very fast implementation for generalized hamming distance statistic.

Format

The format is: List of 4

- `name`: chr "DiffNet_GHD_Fast"
- `address`: Class 'RegisteredNativeSymbol' <externalptr>
- `dll`: List of 5
 - `name`: chr "DiffNet"
 - `path`: chr "/home/rmall/R/x86_64-pc-linux-gnu-library/3.3/DiffNet/libs/DiffNet.so"
 - `dynamicLookup`: logi FALSE
 - `handle`: Class 'DLLHandle' <externalptr>
 - `info`: Class 'DLLInfoReference' <externalptr>
 - `numParameters`: int 2 - attr(*, "class")= chr "DLLInfo"

Author(s)

Raghvendra Mall <rmall@hbku.edu.qa>

See Also

DiffNet_MU_Fast, DiffNet_STD_Fast
Description

Provides a very fast implementation for obtaining the asymptotic mean for GHD statistic

Format

The format is: List of 4 $ name : chr "DiffNet_MU_Fast" $ address :Class 'RegisteredNativeSymbol' <externalptr> $ dll :List of 5 ..$ name : chr "DiffNet" ..$ path : chr "/home/rmall/R/x86_64-pc-linux-gnu-library/3.3/DiffNet/libs/DiffNet.so" ..$ dynamicLookup : logi FALSE ..$ handle :Class 'DLLHandle' <externalptr> ..$ info :Class 'DLLInfoReference' <externalptr> ..- attr(*, "class")= chr "DLLInfo" $ numParameters: int 2 - attr(*, "class")= chr [1:2] "CallRoutine" "NativeSymbol-Info"

Author(s)

Raghvendra Mall <rmall@hbku.edu.qa>

See Also

[ghd_fast](#), [std_fast](#)

Description

Provides a very fast implementation for obtaining the asymptotic standard deviation for GHD statistic

Format

The format is: List of 4 $ name : chr "DiffNet_STD_Fast" $ address :Class 'RegisteredNativeSymbol' <externalptr> $ dll :List of 5 ..$ name : chr "DiffNet" ..$ path : chr "/home/rmall/R/x86_64-pc-linux-gnu-library/3.3/DiffNet/libs/DiffNet.so" ..$ dynamicLookup : logi FALSE ..$ handle :Class 'DLLHandle' <externalptr> ..$ info :Class 'DLLInfoReference' <externalptr> ..- attr(*, "class")= chr "DLLInfo" $ numParameters: int 2 - attr(*, "class")= chr [1:2] "CallRoutine" "NativeSymbol-Info"

Author(s)

Raghvendra Mall <rmall@hbku.edu.qa>
GHD_Fast

Fast Implementation for Generalized Hamming Distance Statistic

Description

Provides a very fast implementation for generalized hamming distance statistic.

Usage

GHD_Fast(A, B)

Arguments

<table>
<thead>
<tr>
<th>A</th>
<th>Topological matrix obtained from graph g_A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Topological matrix obtained from graph g_B.</td>
</tr>
</tbody>
</table>

Value

Returns the Generalized Hamming Distance between topological matrices of graphs g_A and g_B.

Author(s)

Raghvendra Mall <rmall@hbku.edu.qa>

See Also

MU_Fast, STD_Fast

MU_Fast

Fast Implementation of First Order Moment of Generalized Hamming Distance Statistic

Description

Provides a very fast implementation for obtaining the asymptotic mean for GHD statistic

Usage

MU_Fast(A, B)
Arguments

A Topological matrix obtained from graph g_A.
B Topological matrix obtained from graph g_B.

Value

Returns the asymptotic mean value for GHD statistic between permutations of topological matrices of graphs g_A and graph g_B.

Author(s)

Raghvendra Mall <rmall@hbku.edu.qa>

See Also

GHD_Fast, STD_Fast
Index

calculate_p_value, 2

differential_subnetwork_analysis_closedform,
 2, 5, 6

differential_subnetwork_analysis_fastapprox,
 3, 4, 6

differential_subnetwork_analysis_original,
 3, 5, 5

diffnet, 6

DiffNet_GHD_Fast, 7

DiffNet_MU_Fast, 7, 8

DiffNet_STD_Fast, 7, 8

GHD_Fast, 8, 9, 9, 10

MU_Fast, 9, 9, 10

STD_Fast, 8–10, 10