Package ‘Dire’

October 12, 2022

Version 2.1.0
Date 2022-06-29
Title Linear Regressions with a Latent Outcome Variable
Maintainer Paul Bailey <pbailey@air.org>
Depends R (>= 4.0.0)
Imports foreach, iterators, methods, Matrix, haven, Rcpp (>= 1.0.8.3), MASS
Description Fit latent variable linear models, estimating score distributions for groups of people, following Cohen and Jiang (1999) <doi:10.2307/2669917>. In this model, a latent distribution is conditional on students item response, item characteristics, and conditioning variables the user includes. This latent trait is then integrated out. This software is intended to fit the same models as the existing software ‘AM’ <https://am.air.org/>. As of version 2, also allows the user to draw plausible values.
License GPL-2
VignetteBuilder knitr
Suggests knitr, rmarkdown, testthat, withr, doParallel, parallel, EdSurvey
URL https://american-institutes-for-research.github.io/Dire/
BugReports https://github.com/American-Institutes-for-Research/Dire/issues
ByteCompile true
Note This publication was prepared for NCES under Contract No. ED-IES-12-D-0002/0004 with the American Institutes for Research. Mention of trade names, commercial products, or organizations does not imply endorsement by the U.S. Government.
Encoding UTF-8
RoxygenNote 7.2.0
LinkingTo Rcpp, RcppArmadillo
NeedsCompilation yes
drawPVs

Author Emmanuel Sikali [pdr],
Paul Bailey [aut, cre],
Eric Buehler [aut],
Sun-joo Lee [aut],
Harold Doran [aut],
Claire Kelley [ctb]

Repository CRAN

Date/Publication 2022-06-29 22:00:02 UTC

R topics documented:

- `drawPVs`...
- `mml`...

Index 12

drawPVs

Draw plausible values (PVs) from an mml fit

Description

Draw plausible values (PVs) from an mml fit

Usage

```r
drawPVs(x, npv, pvVariableNameSuffix = "_dire", ...)
```

```r
## S3 method for class 'summary.mmlMeans'
drawPVs(x, npv = 5L, pvVariableNameSuffix = "_dire", ...)
```

```r
## S3 method for class 'mmlMeans'
drawPVs(
  x,
  npv = 5L,
  pvVariableNameSuffix = "_dire",
  stochasticBeta = FALSE,
  normalApprox = TRUE,
  newStuDat = NULL,
  newStuItems = NULL,
  returnPosterior = FALSE,
  construct = NULL,
  ...
)
```

```r
## S3 method for class 'mmlCompositeMeans'
drawPVs(
  x,
  npv = 5L,
  pvVariableNameSuffix = "_dire",
  stochasticBeta = FALSE,
  normalApprox = TRUE,
  newStuDat = NULL,
  newStuItems = NULL,
  returnPosterior = FALSE,
  construct = NULL,
  ...
)
```
drawPVs

```r
npv = 5L,
pvVariableNameSuffix = "_dire",
stochasticBeta = FALSE,
normalApprox = TRUE,
newStuDat = NULL,
newStuItems = NULL,
verbose = TRUE,
...
```

Arguments

- `x` a fit from a call to `mml`
- `npv` integer indicating the number of plausible values to draw
- `pvVariableNameSuffix` suffix added to new PV variables after construct name and before the plausible value ID. For example, if there is a construct `math` and the suffix is the default `_dire`, then the fourth plausible value would have a column name, `math_dire4`.
- `...` additional parameters
- `stochasticBeta` logical when TRUE the regression coefficients will be drawn from their posterior distribution. Can also be a data frame of values (see Details).
- `normalApprox` logical must be TRUE to use the normal approximation to the posterior distribution rather than drawing from the actual posterior distribution.
- `newStuDat` new `stuDat` object, (see `mml`) for which plausible values will be drawn
- `newStuItems` new `stuItems` object, (see `mml`); unlike in `mml` students with no items can be passed to this function
- `returnPosterior` logical set to TRUE to change output to include two additional data frames (see Value).
- `construct` character, changes the name of the columns in the final data frame
- `verbose` logical set to TRUE to see the status of the processing

Details

When the argument passed to stochasticBeta is a data frame then each column is an element that will be used as a regression coefficient for that index of the coefficients vector. The row index used for the nth PV will be the nth row.

Value

when `returnPosterior` is FALSE returns a object of class `DirePV` which is a list of two elements. first, a data frame with a row for every row of newStuDat (or the original stuDat object)

- `id` the value of `idVar` in the model run
• [construct][pvVariableNameSuffix][L] every other column is a plausible value of this format. The [construct] is the name of the construct, the [pvVariableNameSuffix] is the value of the pvVariableNameSuffix argument, and the [L] part is the plausible value index, from 1 to npv.

The second argument is named newpvvars and is a list with an element for each set of construct that lists all of the variables in that construct.

When returnPosterior is TRUE returns list with three elements. One is named posterior and has one row per idvar level in the newStuDat argument and three columns:
 • id the value of idVar in the model run
 • mu the posterior mean
 • sd the posterior standard deviation

the second list element is named X that is the design matrix for newStuDat (see Value for mml). The third list element is the rr1 element returned from mml with one column for each individual in newStuDat (see Value in mml).

Author(s)

Paul Bailey, Sun-joo Lee, and Eric Buehler

Examples

See Examples in mml

mml

Marginal Maximum Likelihood Estimation of Linear Models

Description

Implements a survey-weighted marginal maximum estimation, a type of regression where the outcome is a latent trait (such as student ability). Instead of using an estimate, the likelihood function marginalizes student ability. Includes a variety of variance estimation strategies.

Usage

mml(
 formula,
 stuItems,
 stuDat,
 idVar,
 dichotParamTab = NULL,
 polyParamTab = NULL,
 testScale = NULL,
 Q = 30,
 minNode = -4,
 maxNode = 4,
)
polyModel = c("GPCM", "GRM"),
weightVar = NULL,
multiCore = FALSE,
bobyqaControl = NULL,
composite = TRUE,
strataVar = NULL,
PSUVar = NULL,
fast = TRUE,
calcCor = TRUE,
verbose = 0
)

Arguments

formula a formula object in the style of lm
stuItems a list where each element is named a student ID and contains a data.frame; see Details for the format
stuDat a data.frame with a single row per student. Predictors in the formula must be in stuDat.
idVar a variable name on stuDat that is the identifier. Every ID from stuDat must appear on stuItems and vice versa.
dichotParamTab a data.frame of dichotomous item information, see Details
polyParamTab a data.frame of polytomous item information, see Details
testScale a data.frame of scaling information, see Details
Q an integer; the number of integration points
minNode a numeric; the smallest integration point for the latent variable
maxNode a numeric; the largest integration point for the latent variable
polyModel polytomous response model; one of GPCM for the Graded Partial Credit Model or GRM for the Graded Response Model
weightVar a variable name on stuDat that is the full sample weight
multiCore allows the foreach package to be used. You should have already setup the the registerDoParallel function in the doParallel package.
bobyqaControl deprecated. A list that gets passed to the bobyqa optimizer in minqa
composite a logical indicating if an overall test should be treated as a composite score; a composite is a weighted average of the subscales in it.
strataVar character naming a variable on stuDat, the variable indicating the stratum for each row. Used in post-hoc robust variance estimation.
PSUVar character naming a variable on stuDat; the primary sampling unit (PSU) variable. Used in post-hoc robust variance estimation. The values do not need to be unique across strata.
fast a logical indicating if cpp code should be used in mml processes. This should yield speed-ups to runs.
calcCor set to TRUE to calculate covariances. Needed to estimate variances and form plausible values
verbose integer, negative or zero for no details, increasingly verbose messages at one and two

Details

The mml function models a latent outcome conditioning on item response data, covariate data, item parameter information, and scaling information. These four parts are broken up into at least one argument each. Student item response data go into stuItems; whereas student covariates, weights, and sampling information go into stuDat. The dichotParamTab and polyParamTab contain item parameter information for dichotomous and polytomous items, respectively—the item parameter data is the result of an existing item parameter scaling. In the case of the National Assessment of Educational Progress (NAEP), they can be found online, for example, at NAEP technical documentation. Finally, information about scaling and subscale weights for composites are put in testScale.

The model for dichotomous responses data is, by default, three Parameter Logit (3PL), unless the item parameter information provided by users suggests otherwise. For example, if the scaling used a two Parameter Logit (2PL) model, then the guessing parameter can simply be set to zero. For polytomous responses data, the model is dictated by the polyModel argument.

The dichotParamTab argument is a data.frame with a column named ItemID that identifies the items and agrees with the key column in the stuItems argument, and, for a 3PL item, columns slope, difficulty, and guessing for the “a”, “d”, and “g” parameters, respectively; see the vignette for details of the 3PL model. Users can also use the column names directly from the vignette notation (“a”, “d”, and “g”) if they prefer. Items that are missing (NA) are not used in the likelihood function. Users wishing to apply a special behavior for a subset of items can use set those items to an invalid score and put that in the dichotParamTab column missingCode. They are then scored as if they are missingValue proportion correct. To use the guessing parameter for the proportion correct set missingValue to “c”.

The polyParamTab has columns ItemID that must match with the key column in the stuItems argument, as well as slope (which can also be called a) that corresponds to the a parameter in the vignette. Users must also specify the location of the cut points (d_{cj} in the vignette) which are named d1, d2, up to dn where n is one less than the number of score points. Some people prefer to also apply a shift to all of these and this shift is applied when there is a column named itemLocation by simply adding that to every d* column. Items are not included in the likelihood for an individual when their value on stuItems is NA, but no provision is made for guessing, nor special provision for missing codes in polytomous items.

For both dichotParamTab and polyParamTab users wishing to use a D parameter of 1.7 (or any other value) may specify that, per item, in a column named D.

When there are multiple constructs, subscales, or the user wants a composite score, additional, optional, columns test and subtest can be used. these columns can be numeric or text, they must agree with the same columns in testScale to scale the results.

Student data are broken up into two parts. The item response data goes into stuItems, and the student covariates for the formula go into stuDat. Information about items, such as item difficulties, is in paramTab. All dichotomous items are assumed to be 3PL, though by setting the guessing parameter to zero, the user can use a 2PL or the one Parameter Logit (1PL) or Rasch models. The model for polytomous responses data is dictated by the polyModel argument.

The marginal maximum likelihood then integrates the product of the student ability from the assessment data, and the estimate from the linear model estimates each student’s ability based on
the formula provided and a residual standard error term. This integration happens from the mini-
mum node to the maximum node in the control argument (described later in this section) with Q
quadrature points.

The stuItems argument has the scored student data. It is a list where each element is named with
student ID and contains a data.frame with at least two columns. The first required column is
named key and shows the item name as it appears in paramTab; the second column in named score
and shows the score for that item. For dichotomous items, the score is 0 or 1. For GPCM items, the
scores start at zero as well. For GRM, the scores start at 1.

For a GPCM model, P0 is the “a” parameter, and the other columns are the “d” parameters; see the
vignette for details of the GPCM model.

The quadrature points then are a range from minNode to maxNode with a total of Q nodes.

Value

When called for a single subscale or overall score, returns object of class mmlMeans. This is a list
with elements:

- call the call used to generate this mml.means object
- coefficients the unscaled marginal maximum likelihood regression coefficients
- LogLik the log-likelihood of the fit model
- X the design matrix of the marginal maximum likelihood regression
- Convergence a convergence note from the optimizer
- location used for scaling the estimates
- scale used for scaling the estimates
- Inlf the log-likelihood function of the unscaled parameters
- rrl the density function of each individual, conditional only on item responses in stuItems
- stuDat the stuDat argument
- weightVar the name of the weight variable on stuDat
- nodes the nodes the likelihood was evaluated on
- iterations the number of iterations required to reach convergence
- obs the number of observations used
- weightedObs the weighted N for the observations
- strataVar the column name of the stratum variable on stuDat; potentially used for variance estima-
tion
- PSUVar the column name of the PSU variable on stuDat; potentially used for variance estima-
tion
- itemScorePoints a data frame that shows item IDs, the number of score points, expected
scores (both from the paramTab arguments), as well as the occupied score points
- stuItems the data frame passed to mml reformatted for use in mml
- formula the formula passed to mml
- contrasts the contrasts used in forming the design matrix
- xlevels the levels of the covariates used in forming the design matrix
• polyModel the value of the argument of the same name passed to \textit{mml}
• paramTab a data frame that condenses dichotParamTab and polyParamTab
• fast the value of the argument of the same name passed to \textit{mml}
• idVar the value of the argument of the same name passed to \textit{mml}
• posteriorEsts the posterior estimates for the people in \textit{stuDat} included in the model

When a composite score is computed there are several subscales run and the return is a \textit{mmlCompositeMeans}. Many elements are themselves list with one element per construct. this is a list with elements:

• call the call used to generate this \textit{mml.means} object
• coefficients matrix of the unscaled marginal maximum likelihood regression coefficients, each row represents a subscale, each column represents a coefficient
• X the design matrix of the marginal maximum likelihood regression
• rrl a list of elements, each the rrl object for a subscale (see \textit{mmlMeans} output)
• ids The ID variable used for each row of \textit{stuDat}
• Convergence a vector of convergence notes from the optimizer
• lnlfl a list of log-likelihood functions of the unscaled parameters, by construct
• stuDat a list of \textit{stuDat} data frames, as used when fitting each construct, filtered to just relevant student records
• weightVar the name of the weight variable on \textit{stuDat}
• nodes the nodes the likelihood was evaluated on
• iterations a vector of the number of iterations required to reach convergence on each construct
• obs a vector of the the number of observations used on each construct
• testScale the testScale used to scale the data
• weightedObs a vector of the weighted N for the observations
• SubscaleVC the covariance matrix of subscales. The residuals are assumed to be multivariate normal with this covariance matrix
• idVar the name of the identifier used on \textit{stuDat} and \textit{stuItems} data
• resl list of \textit{mmlMeans} objects, one per construct
• strataVar the column name of the stratum variable on \textit{stuDat}; potentially used for variance estimation
• PSUVar the column name of the PSU variable on \textit{stuDat}; potentially used for variance estimation
• stuItems the data frame passed to \textit{mml} reformatted for use in \textit{mml}
• formula the formula passed to \textit{mml}
• contrasts the contrasts used in forming the design matrix
• xlevels the levels of the covariates used in forming the design matrix
• polyModel the value of the argument of the same name passed to \textit{mml}
• posteriorEsts the list of posterior estimates for the people in \textit{stuDat} included in the model
• SubscaleVC the matrix of latent correlations across constructs

LogLik is not returned because there is no likelihood for a composite model.
Author(s)
Harold Doran, Paul Bailey, Claire Kelley, Sun-joo Lee, and Eric Buehler

Examples

```r
## Not run:
require(EdSurvey)

# 1) make param tab for dichotomous items
dichotParamTab <- data.frame(ItemID = c("m109801", "m020001", "m111001",
    "m046301", "m046501", "m051501",
    "m111601", "m111301", "m11201",
    "m110801", "m110101"),
    test = rep("composite",11),
    subtest = c(rep("num",6),rep("alg",5)),
    slope = c(0.96, 0.69, 0.83,
        0.99, 1.03, 0.97,
        1.45, 0.59, 0.34,
        0.18, 1.20),
    difficulty = c(-0.37, -0.55, 0.85,
        -0.97, -0.14, 1.21,
        0.53, -1.84, -0.46,
        2.43, 0.70),
    guessing = c(0.16, 0.00, 0.17,
        0.31, 0.37, 0.18,
        0.28, 0.15, 0.09,
        0.05, 0.18),
    D = rep(1.7, 11),
    MODEL = rep("3pl", 11))

# param tab for GPCM items
polyParamTab <- data.frame(ItemID = factor(c("m0757cl", "m066501")),
    test = rep("composite",2),
    subtest = rep("alg",2),
    slope = c(0.43, 0.52), # could also be called "a"
    itemLocation = c(-1.21, -0.96), # added to d1 ... dn
    d1 = c(2.38, -0.56),
    d2 = c(-0.57, 0.56),
    d3 = c(-1.18, NA),
    D = c(1.7, 1.7),
    scorePoints = c(4L, 3L)) # number of score points, read d1 to d(n-1)

# read-in NAEP Primer data
sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))

# read in these items
items <- c(as.character(dichotParamTab$ItemID), as.character(polyParamTab$ItemID))
# dsex, student sex
# origwt, full sample weights
# repgrp1, stratum indicator
# jkunit, PSU indicator
edf <- getData(data=sdf, varnames=c(items, "dsex", "origwt", "repgrp1", "jkunit", "sdracem"),
    omittedLevels = FALSE, returnJKreplicates=FALSE)

# make up a student ID
```
edf$sid <- paste0("S",1:nrow(edf))
apply simplified scoring
for(i in 1:length(items)) {
 coli <- items[i]
 # save the original
 rawcol <- paste0(coli,"raw")
 edf[,rawcol] <- edf[,coli]
 if(coli %in% dichotParamTab$ItemID) {
 edf[,coli] <- ifelse(grepl("[ABCDE]", edf[,rawcol]), 0, NA)
 edf[,coli] <- ifelse(grepl("*", edf[,rawcol]), 1, edf[,coli])
 } else {
 # scale for m066501
 edf[,coli] <- ifelse(grepl("Incorrect", edf[,rawcol]), 0, NA)
 edf[,coli] <- ifelse(grepl("Partial", edf[,rawcol]), 1, edf[,coli])
 edf[,coli] <- ifelse(grepl("Correct", edf[,rawcol]), 2, edf[,coli])
 # scale for m0757cl
 edf[,coli] <- ifelse(grepl("None correct", edf[,rawcol]), 0, edf[,coli])
 edf[,coli] <- ifelse(grepl("One correct", edf[,rawcol]), 1, edf[,coli])
 edf[,coli] <- ifelse(grepl("Two correct", edf[,rawcol]), 2, edf[,coli])
 edf[,coli] <- ifelse(grepl("Three correct", edf[,rawcol]), 3, edf[,coli])
 }
 edf[,rawcol] <- NULL # delete original
}
stuItems has one row per student/item combination
stuItems <- edf[,c("sid", items)]
stuItems <- reshape(data=stuItems, varying=c(items), idvar=c("sid"),
 direction="long", v.names="score", times=items, timevar="key")
stuDat is one row per student an contains student-level information
stuDat <- edf[,c("sid", "origwt", "repgrp1", "jkunit", "dsex", "sdracem")]
testDat shows scaling and weights for subtests, an overall score can be treated as a subtest
testDat <- data.frame(test=c("composite", "composite"),
 subtest=c("num", "alg"),
 location=c(277.1563, 280.2948),
 scale=c(37.7297, 36.3887),
 subtestWeight=c(0.3,0.7))
estimate a regression for Algebra subscale
mmlA <- mml(alg ~ dsex,
 stuItems=stuItems, stuDat=stuDat,
 dichotParamTab=dichotParamTab, polyParamTab=polyParamTab,
 testScale=testDat,
 idVar="sid", weightVar="origwt", # these are column names on stuDat
 strataVar="repgrp1", PSUVar="jkunit")
summary, with Taylor standard errors
mmlAs <- summary.mmlMeans(mmlA, varType="Taylor")

estimate a regression for Numeracy subscale
mmlN <- mml(num ~ dsex,
 stuItems=stuItems, stuDat=stuDat,
 dichotParamTab=dichotParamTab, polyParamTab=polyParamTab,
mml

testScale=testDat,
idVar="sid", weightVar="origwt", # these are column names on stuDat
strataVar="repgrp1", PSUVar="jkunit")
summary, with Taylor standard errors
mmlNs <- summary.mmlMeans(mmlN, varType="Taylor")
mmlNs

draw plausible values for mmlA
head(pvd <- drawPVs.mmlMeans(mmlA))
alternative specification
head(pvs <- drawPVs.mmlMeans(summary.mmlMeans(mmlA, varType="Taylor"), stochasticBeta=TRUE))

composite regression
mmlC <- mml(composite ~ dsex,
 stuItems=stuItems, stuDat=stuDat,
dichotParamTab=dichotParamTab, polyParamTab=polyParamTab,
testScale=testDat,
idVar="sid", weightVar="origwt", # these are column names on stuDat
strataVar="repgrp1", PSUVar="jkunit")
summary, with Taylor standard errors
summary(mmlC, varType="Taylor")

draw plausible values for mmlC
head(pvd <- drawPVs.mmlCompositeMeans(mmlC))
alternative specification
mmlCsum <- summary.mmlCompositeMeans(mmlC, varType="Taylor")
head(pvs <- drawPVs.mmlCompositeMeans(mmlCsum, stochasticBeta=TRUE))

End(Not run)
Index

drawPVs, 2

mml, 3, 4, 4