Package ‘DoubleML’

March 31, 2023

Type Package
Title Double Machine Learning in R
Version 0.5.3
Description Implementation of the double/debiased machine learning framework of Chernozhukov et al. (2018) <doi:10.1111/ectj.12097> for partially linear regression models, partially linear instrumental variable regression models, interactive regression models and interactive instrumental variable regression models. ‘DoubleML’ allows estimation of the nuisance parts in these models by machine learning methods and computation of the Neyman orthogonal score functions. ‘DoubleML’ is built on top of ‘mlr3’ and the ‘mlr3’ ecosystem. The object-oriented implementation of ‘DoubleML’ based on the ‘R6’ package is very flexible.

License MIT + file LICENSE

BugReports https://github.com/DoubleML/doubleml-for-r/issues

Encoding UTF-8

Depends R (>= 3.5.0)
Imports R6 (>= 2.4.1), data.table (>= 1.12.8), stats, checkmate, mlr3 (>= 0.5.0), mlr3tuning (>= 0.3.0), mvltnorm, utils, clusterGeneration, readstata13, mlr3learners (>= 0.3.0), mlr3misc

RoxygenNote 7.2.3

Suggests knitr, rmarkdown, testthat, covr, patrick (>= 0.1.0), paradox (>= 0.4.0), dplyr, glmnet, lgr, ranger, sandwich, AER, rpart, bbotk, mlr3pipelines

VignetteBuilder knitr

Collate 'double_ml.R' 'double_ml_data.R' 'double_ml_iivm.R' 'double_ml_irm.R' 'double_ml_pliv.R' 'double_ml_plr.R' 'helper.R' 'datasets.R' 'zzz.R'

NeedsCompilation no
Abstract class DoubleML

Description

Abstract base class that can’t be initialized.

Format

R6::R6Class object.
Active bindings

all_coef (matrix())
Estimates of the causal parameter(s) for the n_rep different sample splits after calling fit().

all_dml1_coef (array())
Estimates of the causal parameter(s) for the n_rep different sample splits after calling fit() with dml_procedure = "dml1".

all_se (matrix())
Standard errors of the causal parameter(s) for the n_rep different sample splits after calling fit().

apply_cross_fitting (logical(1))
Indicates whether cross-fitting should be applied. Default is TRUE.

boot_coef (matrix())
Bootstrapped coefficients for the causal parameter(s) after calling fit() and bootstrap().

boot_t_stat (matrix())
Bootstrapped t-statistics for the causal parameter(s) after calling fit() and bootstrap().

coef (numeric())
Estimates for the causal parameter(s) after calling fit().

data (data.table)
Data object.

dml_procedure (character(1))
A character() ("dml1" or "dml2") specifying the double machine learning algorithm. Default is "dml2".

draw_sample_splitting (logical(1))
Indicates whether the sample splitting should be drawn during initialization of the object. Default is TRUE.

learner (named list())
The machine learners for the nuisance functions.

n_folds (integer(1))
Number of folds. Default is 5.

n_rep (integer(1))
Number of repetitions for the sample splitting. Default is 1.

params (named list())
The hyperparameters of the learners.

psi (array())
Value of the score function $\psi(W; \theta, \eta) = \psi_a(W; \eta)\theta + \psi_b(W; \eta)$ after calling fit().

psi_a (array())
Value of the score function component $\psi_a(W; \eta)$ after calling fit().

psi_b (array())
Value of the score function component $\psi_b(W; \eta)$ after calling fit().

predictions (array())
Predictions of the nuisance models after calling fit(store_predictions=TRUE).

models (array())
The fitted nuisance models after calling fit(store_models=TRUE).
pval (numeric())
 p-values for the causal parameter(s) after calling fit().

score (character(1), function())
 A character(1) or function() specifying the score function.

se (numeric())
 Standard errors for the causal parameter(s) after calling fit().

smpls (list())
 The partition used for cross-fitting.

smpls_cluster (list())
 The partition of clusters used for cross-fitting.

t_stat (numeric())
 t-statistics for the causal parameter(s) after calling fit().

tuning_res (named list())
 Results from hyperparameter tuning.

Methods

Public methods:

• DoubleML$new()
• DoubleML$print()
• DoubleML$fit()
• DoubleML$bootstrap()
• DoubleML$split_samples()
• DoubleML$set_sample_splitting()
• DoubleML$tune()
• DoubleML$summary()
• DoubleML$confint()
• DoubleML$learner_names()
• DoubleML$params_names()
• DoubleML$set_ml_nuisance_params()
• DoubleML$p_adjust()
• DoubleML$get_params()
• DoubleML$clone()

Method new(): DoubleML is an abstract class that can’t be initialized.
 Usage:
 DoubleML$new()

Method print(): Print DoubleML objects.
 Usage:
 DoubleML$print()

Method fit(): Estimate DoubleML models.
 Usage:
DoubleML

DoubleML$fit(store_predictions = FALSE, store_models = FALSE)

Arguments:

store_predictions (logical(1))
 Indicates whether the predictions for the nuisance functions should be stored in field predictions.
 Default is FALSE.

store_models (logical(1))
 Indicates whether the fitted models for the nuisance functions should be stored in field models if you want to analyze the models or extract information like variable importance.
 Default is FALSE.

Returns: self

Method bootstrap(): Multiplier bootstrap for DoubleML models.

Usage:
DoubleML$bootstrap(method = "normal", n_rep_boot = 500)

Arguments:

method (character(1))
 A character(1) ("Bayes", "normal" or "wild") specifying the multiplier bootstrap method.

n_rep_boot (integer(1))
 The number of bootstrap replications.

Returns: self

Method split_samples(): Draw sample splitting for DoubleML models.

The samples are drawn according to the attributes n_folds, n_rep and apply_cross_fitting.

Usage:
DoubleML$split_samples()

Returns: self

Method set_sample_splitting(): Set the sample splitting for DoubleML models.

The attributes n_folds and n_rep are derived from the provided partition.

Usage:
DoubleML$set_sample_splitting(smpls)

Arguments:

smpls (list())
 A nested list(). The outer lists needs to provide an entry per repeated sample splitting (length of the list is set as n_rep). The inner list is a named list() with names train_ids and test_ids. The entries in train_ids and test_ids must be partitions per fold (length of train_ids and test_ids is set as n_folds).

Returns: self

Examples:
library(DoubleML)
library(mlr3)
set.seed(2)
obj_dml_data = make_plr_CCDDHNR2018(n_obs=10)
dml_plr_obj = DoubleMLPLR$new(obj_dml_data,
 lrn("regr.rpart"), lrn("regr.rpart"))

simple sample splitting with two folds and without cross-fitting
smpls = list(list(train_ids = list(c(1, 2, 3, 4, 5)),
 test_ids = list(c(6, 7, 8, 9, 10))))
dml_plr_obj$set_sample_splitting(smpls)

sample splitting with two folds and cross-fitting but no repeated cross-fitting
smpls = list(list(train_ids = list(c(1, 2, 3, 4, 5), c(6, 7, 8, 9, 10)),
 test_ids = list(c(6, 7, 8, 9, 10), c(1, 2, 3, 4, 5))))
dml_plr_obj$set_sample_splitting(smpls)

sample splitting with two folds and repeated cross-fitting with n_rep = 2
smpls = list(list(train_ids = list(c(1, 2, 3, 4, 5), c(6, 7, 8, 9, 10)),
 test_ids = list(c(6, 7, 8, 9, 10), c(1, 2, 3, 4, 5))),
 list(train_ids = list(c(1, 3, 5, 7, 9), c(2, 4, 6, 8, 10)),
 test_ids = list(c(2, 4, 6, 8, 10), c(1, 3, 5, 7, 9))))
dml_plr_obj$set_sample_splitting(smpls)

Method tune(): Hyperparameter-tuning for DoubleML models.
The hyperparameter-tuning is performed using the tuning methods provided in the mlr3tuning
package. For more information on tuning in mlr3, we refer to the section on parameter tuning in
the mlr3 book.

Usage:
DoubleML$tune(
param_set,
 tune_settings = list(n_folds_tune = 5, rsmpl_tune = mlr3::rsmp("cv", folds = 5), measure = NULL, terminator = mlr3tuning::trm("evals", n_evals = 20), algorithm = mlr3tuning::tnr("grid_search"), resolution = 5),
 tune_on_folds = FALSE
)

Arguments:
param_set (named list())
 A named list with a parameter grid for each nuisance model/learner (see method learner_names()).
 The parameter grid must be an object of class ParamSet.
tune_settings (named list())
 A named list() with arguments passed to the hyperparameter-tuning with mlr3tuning to
 set up TuningInstance objects. tune_settings has entries
 • terminator (Terminator)
 A Terminator object. Specification of terminator is required to perform tuning.
 • algorithm (Tuner or character())
 A Tuner object (recommended) or key passed to the respective dictionary to specify the
 tuning algorithm used in tnr(). algorithm is passed as an argument to tnr(). If algorithm
 is not specified by the users, default is set to "grid_search". If set to "grid_search",
 then additional argument "resolution" is required.
• rsmp_tune (Resampling or character(1))
 A Resampling object (recommended) or option passed to rsmp() to initialize a Resampling for parameter tuning in mlr3. If not specified by the user, default is set to "cv" (cross-validation).

• n_folds_tune (integer(1), optional)
 If rsmp_tune = "cv", number of folds used for cross-validation. If not specified by the user, default is set to 5.

• measure (NULL, named list(), optional)
 Named list containing the measures used for parameter tuning. Entries in list must either be Measure objects or keys to be passed to msr(). The names of the entries must match the learner names (see method learner_names()). If set to NULL, default measures are used, i.e., "regr.mse" for continuous outcome variables and "classif.ce" for binary outcomes.

• resolution (character(1))
 The key passed to the respective dictionary to specify the tuning algorithm used in tnr().
 resolution is passed as an argument to tnr().

tune_on_folds (logical(1))
 Indicates whether the tuning should be done fold-specific or globally. Default is FALSE.

Returns: self

Method summary(): Summary for DoubleML models after calling fit().

Usage:
DoubleML$summary(digits = max(3L, getOption("digits") - 3L))

Arguments:
digits (integer(1))
 The number of significant digits to use when printing.

Method confint(): Confidence intervals for DoubleML models.

Usage:
DoubleML$confint(parm, joint = FALSE, level = 0.95)

Arguments:
parm (numeric() or character())
 A specification of which parameters are to be given confidence intervals among the variables for which inference was done, either a vector of numbers or a vector of names. If missing, all parameters are considered (default).

joint (logical(1))
 Indicates whether joint confidence intervals are computed. Default is FALSE.

level (numeric(1))
 The confidence level. Default is 0.95.

Returns: A matrix() with the confidence interval(s).

Method learner_names(): Returns the names of the learners.

Usage:
DoubleML$learner_names()
Returns: character() with names of learners.

Method `params_names()`: Returns the names of the nuisance models with hyperparameters.

Usage:
```
DoubleML$params_names()
```

Returns: character() with names of nuisance models with hyperparameters.

Method `set_ml_nuisance_params()`: Set hyperparameters for the nuisance models of DoubleML models.

Note that in the current implementation, either all parameters have to be set globally or all parameters have to be provided fold-specific.

Usage:
```
DoubleML$set_ml_nuisance_params(
    learner = NULL,
    treat_var = NULL,
    params,
    set_fold_specific = FALSE
)
```

Arguments:
- `learner` (character(1))
 - The nuisance model/learner (see method `params_names`).
- `treat_var` (character(1))
 - The treatment variable (hyperparameters can be set treatment-variable specific).
- `params` (named list())
 - A named list() with estimator parameters. Parameters are used for all folds by default. Alternatively, parameters can be passed in a fold-specific way if option `fold_specific` is TRUE. In this case, the outer list needs to be of length `n_rep` and the inner list of length `n_folds`.
- `set_fold_specific` (logical(1))
 - Indicates if the parameters passed in `params` should be passed in fold-specific way. Default is FALSE. If TRUE, the outer list needs to be of length `n_rep` and the inner list of length `n_folds`. Note that in the current implementation, either all parameters have to be set globally or all parameters have to be provided fold-specific.

Returns: self

Method `p_adjust()`: Multiple testing adjustment for DoubleML models.

Usage:
```
DoubleML$p_adjust(method = "romano-wolf", return_matrix = TRUE)
```

Arguments:
- `method` (character(1))
 - A character(1)("romano-wolf", "bonferroni", "holm", etc) specifying the adjustment method. In addition to "romano-wolf", all methods implemented in `p.adjust()` can be applied. Default is "romano-wolf".
- `return_matrix` (logical(1))
 - Indicates if the output is returned as a matrix with corresponding coefficient names.
Returns: numeric() with adjusted p-values. If return_matrix = TRUE, a matrix() with adjusted p_values.

Method get_params(): Get hyperparameters for the nuisance model of DoubleML models.

Usage:
DoubleML$get_params(learner)

Arguments:
learner (character(1))

The nuisance model/learner (see method nuisance_names())

Returns: named list() with params for the nuisance model/learner.

Method clone(): The objects of this class are cloneable with this method.

Usage:
DoubleML$clone(deep = FALSE)

Arguments:
depth Whether to make a deep clone.

See Also

Other DoubleML: DoubleMLIVM, DoubleMLIRM, DoubleMLPLIV, DoubleMLPLR

Examples

Method `DoubleML$set_sample_splitting`

library(DoubleML)
library(mlr3)
set.seed(2)
obj_dml_data = make_plr_CCDDHNR2018(n_obs=10)
dml_plr_obj = DoubleMLPLR$new(obj_dml_data,
 lrn("regr.rpart"), lrn("regr.rpart"))

simple sample splitting with two folds and without cross-fitting
smpls = list(list(train_ids = list(c(1, 2, 3, 4, 5)),
 test_ids = list(c(6, 7, 8, 9, 10))))
dml_plr_obj$set_sample_splitting(smpls)

sample splitting with two folds and cross-fitting but no repeated cross-fitting
smpls = list(list(train_ids = list(c(1, 2, 3, 4, 5), c(6, 7, 8, 9, 10)),
 test_ids = list(c(6, 7, 8, 9, 10), c(1, 2, 3, 4, 5))))
dml_plr_obj$set_sample_splitting(smpls)

sample splitting with two folds and repeated cross-fitting with n_rep = 2
smpls = list(list(train_ids = list(c(1, 2, 3, 4, 5), c(6, 7, 8, 9, 10)),
 test_ids = list(c(6, 7, 8, 9, 10), c(1, 2, 3, 4, 5))),
 list(train_ids = list(c(1, 3, 5, 7, 9), c(2, 4, 6, 8, 10)),
 test_ids = list(c(6, 7, 8, 9, 10), c(1, 2, 3, 4, 5))))
test_ids = list(c(2, 4, 6, 8, 10), c(1, 3, 5, 7, 9)))
dml_plr_obj$set_sample_splitting(smp)
DoubleMLClusterData$new(
 data = NULL,
 x_cols = NULL,
 y_col = NULL,
 d_cols = NULL,
 cluster_cols = NULL,
 z_cols = NULL,
 use_other_treat_as_covariate = TRUE
)

Arguments:
 data (data.table, data.frame())
 Data object.
 x_cols (NULL, character())
 The covariates. If NULL, all variables (columns of data) which are neither specified as
 outcome variable y_col, nor as treatment variables d_cols, nor as instrumental variables
 z_cols are used as covariates. Default is NULL.
 y_col (character(1))
 The outcome variable.
 d_cols (character())
 The treatment variable(s).
 cluster_cols (character())
 The cluster variable(s).
 z_cols (NULL, character())
 The instrumental variables. Default is NULL.
 use_other_treat_as_covariate (logical(1))
 Indicates whether in the multiple-treatment case the other treatment variables should be
 added as covariates. Default is TRUE.

Method print(): Print DoubleMLClusterData objects.
 Usage:
 DoubleMLClusterData$print()

Method set_data_model(): Setter function for data_model. The function implements the
 causal model as specified by the user via y_col, d_cols, x_cols, z_cols and cluster_cols and
 assigns the role for the treatment variables in the multiple-treatment case.
 Usage:
 DoubleMLClusterData$set_data_model(treatment_var)
 Arguments:
 treatment_var (character())
 Active treatment variable that will be set to treat_col.

Method clone(): The objects of this class are cloneable with this method.
 Usage:
 DoubleMLClusterData$clone(deep = FALSE)
 Arguments:
 deep Whether to make a deep clone.
Examples

library(DoubleML)
dt = make_pliv_multiway_cluster_CKMS2021(return_type = "data.table")
obj_dml_data = DoubleMLClusterData$new(dt,
y_col = "Y",
d_cols = "D",
z_cols = "Z",
cluster_cols = c("cluster_var_i", "cluster_var_j"))

Description

Double machine learning data-backend.

DoubleMLData objects can be initialized from a data.table. Alternatively DoubleML provides functions to initialize from a collection of matrix objects or a data.frame. The following functions can be used to create a new instance of DoubleMLData.

- DoubleMLData$new() for initialization from a data.table.
- double_ml_data_from_matrix() for initialization from matrix objects,
- double_ml_data_from_data_frame() for initialization from a data.frame.

Active bindings

all_variables (character())
All variables available in the dataset.
d_cols (character())
The treatment variable(s).
data (data.table)
Data object.
data_model (data.table)
Internal data object that implements the causal model as specified by the user via y_col, d_cols, x_cols and z_cols.
n_instr (NULL, integer(1))
The number of instruments.
n_obs (integer(1))
The number of observations.
n_treat (integer(1))
The number of treatment variables.
onother_treat_cols (NULL, character())
If use_other_treat_as_covariate is TRUE, other_treat_cols are the treatment variables that are not "active" in the multiple-treatment case. These variables then are internally added to the covariates x_cols during the fitting stage. If use_other_treat_as_covariate is FALSE, other_treat_cols is NULL.
DoubleMLData

\[\text{treat_col} \text{ (character(1))} \]
"Active" treatment variable in the multiple-treatment case.

\[\text{use_other_treat_as_covariate} \text{ (logical(1))} \]
Indicates whether in the multiple-treatment case the other treatment variables should be added as covariates. Default is TRUE.

\[\text{x_cols} \text{ (NULL, character())} \]
The covariates. If NULL, all variables (columns of data) which are neither specified as outcome variable \(y_col \), nor as treatment variables \(d_cols \), nor as instrumental variables \(z_cols \) are used as covariates. Default is NULL.

\[\text{y_col} \text{ (character(1))} \]
The outcome variable.

\[\text{z_cols} \text{ (NULL, character())} \]
The instrumental variables. Default is NULL.

Methods

Public methods:

- `DoubleMLData$new()`
- `DoubleMLData$print()`
- `DoubleMLData$set_data_model()`
- `DoubleMLData$clone()`

Method new(): Creates a new instance of this R6 class.

Usage:

```r
DoubleMLData$new(
  data = NULL,
  x_cols = NULL,
  y_col = NULL,
  d_cols = NULL,
  z_cols = NULL,
  use_other_treat_as_covariate = TRUE
)
```

Arguments:

- `data` (data.table, data.frame())
 Data object.
- `x_cols` (NULL, character())
 The covariates. If NULL, all variables (columns of data) which are neither specified as outcome variable \(y_col \), nor as treatment variables \(d_cols \), nor as instrumental variables \(z_cols \) are used as covariates. Default is NULL.
- `y_col` (character(1))
 The outcome variable.
- `d_cols` (character())
 The treatment variable(s).
- `z_cols` (NULL, character())
 The instrumental variables. Default is NULL.
use_other_treat_as_covariate (logical(1))
Indicates whether in the multiple-treatment case the other treatment variables should be
added as covariates. Default is TRUE.

Method print(): Print DoubleMLData objects.

Usage:

Method set_data_model(): Setter function for data_model. The function implements the
causal model as specified by the user via y_col, d_cols, x_cols and z_cols and assigns the role
for the treatment variables in the multiple-treatment case.

Usage:

Method clone(): The objects of this class are cloneable with this method.

Usage:

Examples

library(DoubleML)
df = make_plr_CCDDHNR2018(return_type = "data.table")
obj_dml_data = DoubleMLData$new(df,
y_col = "y",
d_cols = "d")

DoubleMLIIVM

Double machine learning for interactive IV regression models

Description

Double machine learning for interactive IV regression models.

Format

R6::R6Class object inheriting from DoubleML.
Details

Interactive IV regression (IIVM) models take the form

\[Y = \ell_0(D, X) + \zeta, \]
\[Z = m_0(X) + V, \]

with \(E[\zeta|X, Z] = 0 \) and \(E[V|X] = 0 \). \(Y \) is the outcome variable, \(D \in \{0, 1\} \) is the binary treatment variable and \(Z \in \{0, 1\} \) is a binary instrumental variable. Consider the functions \(g_0, r_0 \) and \(m_0 \), respectively, map the support of \((Z, X)\) to \((\epsilon, 1 - \epsilon)\) for some \(\epsilon \in (1/2, 1) \), such that

\[Y = g_0(Z, X) + \nu, \]
\[D = r_0(Z, X) + U, \]
\[Z = m_0(X) + V, \]

with \(E[\nu|Z, X] = 0, E[U|Z, X] = 0 \) and \(E[V|X] = 0 \). The target parameter of interest in this model is the local average treatment effect (LATE),

\[\theta_0 = \frac{E[y_1(Z, X)] - E[y_0(Z, X)]}{E[r_1(Z, X)] - E[r_0(Z, X)]}. \]

Super class

\texttt{DoubleML::DoubleML} -> \texttt{DoubleMLIIVM}

Active bindings

subgroups (named list(2))
Named list(2) with options to adapt to cases with and without the subgroups of always-takers and never-takes. The entry \texttt{always_takers} (logical(1)) specifies whether there are always takers in the sample. The entry \texttt{never_takers} (logical(1)) specifies whether there are never takers in the sample.

\begin{itemize}
 \item \texttt{trimming_rule} (character(1))
 A character(1) specifying the trimming approach.
 \item \texttt{trimming_threshold} (numeric(1))
 The threshold used for trimming.
\end{itemize}

Methods

\textbf{Public methods:}

\begin{itemize}
 \item \texttt{DoubleMLIIVM$new()}
 \item \texttt{DoubleMLIIVM$clone()}
\end{itemize}

\textbf{Method} \texttt{new()}: Creates a new instance of this R6 class.

\textbf{Usage:}
\begin{verbatim}
DoubleMLIIVM$new(
 data,
 ml_g,
 ml_m,
 ml_r,
)
\end{verbatim}
n_folds = 5,
n_rep = 1,
score = "LATE",
subgroups = list(always_takers = TRUE, never_takers = TRUE),
dml_procedure = "dml2",
trimming_rule = "truncate",
trimming_threshold = 1e-12,
draw_sample_splitting = TRUE,
apply_cross_fitting = TRUE
)

Arguments:

data (DoubleMLData)
The DoubleMLData object providing the data and specifying the variables of the causal model.

ml_g (LearnerRegr, LearnerClassif, Learner, character(1))
A learner of the class LearnerRegr, which is available from mlr3 or its extension packages mlr3learners or mlr3extralearners. For binary treatment outcomes, an object of the class LearnerClassif can be passed, for example lrn("classif.cv_glmnet", s = "lambda.min"). Alternatively, a Learner object with public field task_type = "regr" or task_type = "classif" can be passed, respectively, for example of class GraphLearner.

ml_g refers to the nuisance function \(g_0(Z, X) = E[Y|X, Z] \).

ml_m (LearnerClassif, Learner, character(1))
A learner of the class LearnerClassif, which is available from mlr3 or its extension packages mlr3learners or mlr3extralearners. Alternatively, a Learner object with public field task_type = "classif" can be passed, for example of class GraphLearner. The learner can possibly be passed with specified parameters, for example lrn("classif.cv_glmnet", s = "lambda.min").

ml_m refers to the nuisance function \(m_0(X) = E[Z|X] \).

ml_r (LearnerClassif, Learner, character(1))
A learner of the class LearnerClassif, which is available from mlr3 or its extension packages mlr3learners or mlr3extralearners. Alternatively, a Learner object with public field task_type = "classif" can be passed, for example of class GraphLearner. The learner can possibly be passed with specified parameters, for example lrn("classif.cv_glmnet", s = "lambda.min").

ml_r refers to the nuisance function \(r_0(Z, X) = E[D|X, Z] \).

n_folds (integer(1))
Number of folds. Default is 5.

n_rep (integer(1))
Number of repetitions for the sample splitting. Default is 1.

score (character(1), function())
A character(1) ("LATE" is the only choice) specifying the score function. If a function() is provided, it must be of the form function(y, z, d, g0_hat, g1_hat, m_hat, r0_hat, r1_hat, smpls) and the returned output must be a named list() with elements psi_a and psi_b. Default is "LATE".

subgroups (named list(2))
Named list(2) with options to adapt to cases with and without the subgroups of always-takers and never-takes. The entry always_takers(logical(1)) specifies whether there are
always takers in the sample. The entry never_takers (logical(1)) specifies whether there are never takers in the sample. Default is list(always_takers = TRUE, never_takers = TRUE).

dml_procedure (character(1))
A character(1) ("dml1" or "dml2") specifying the double machine learning algorithm. Default is "dml2".

trimming_rule (character(1))
A character(1) ("truncate" is the only choice) specifying the trimming approach. Default is "truncate".

trimming_threshold (numeric(1))
The threshold used for trimming. Default is 1e-12.

draw_sample_splitting (logical(1))
Indicates whether the sample splitting should be drawn during initialization of the object. Default is TRUE.

apply_cross_fitting (logical(1))
Indicates whether cross-fitting should be applied. Default is TRUE.

Method clone(): The objects of this class are cloneable with this method.

Usage:
DoubleMLIIVM$clone(deep = FALSE)

Arguments:
depth Whether to make a deep clone.

See Also
Other DoubleML: DoubleMLIRM, DoubleMLPLIV, DoubleMLPLR, DoubleML

Examples

library(DoubleML)
library(mlr3)
library(mlr3learners)
library(data.table)
set.seed(2)
ml_g = lrn("regr.ranger",
 num.trees = 100, mtry = 20,
 min.node.size = 2, max.depth = 5)
ml_m = lrn("classif.ranger",
 num.trees = 100, mtry = 20,
 min.node.size = 2, max.depth = 5)
ml_r = ml_m$clone()
obj_dml_data = make_iivm_data(
 theta = 0.5, n_obs = 1000,
 alpha_x = 1, dim_x = 20)
dml_iivm_obj = DoubleMLIIVM$new(obj_dml_data, ml_g, ml_m, ml_r)
dml_iivm_obj$fit()
dml_iivm_obj$summary()
Not run:
library(DoubleML)
library(mlr3)
library(mlr3learners)
library(mlr3tuning)
library(data.table)
set.seed(2)
ml_g = lrn("regr.rpart")
ml_m = lrn("classif.rpart")
ml_r = ml_m$clone()
obj_dml_data = make_iivm_data(
 theta = 0.5, n_obs = 1000,
 alpha_x = 1, dim_x = 20)
dml_iivm_obj = DoubleMLIIVM$new(obj_dml_data, ml_g, ml_m, ml_r)
param_grid = list(
 "ml_g" = paradox::ParamSet$new(list(
 paradox::ParamDbl$new("cp", lower = 0.01, upper = 0.02),
 paradox::ParamInt$new("minsplit", lower = 1, upper = 2)));
 "ml_m" = paradox::ParamSet$new(list(
 paradox::ParamDbl$new("cp", lower = 0.01, upper = 0.02),
 paradox::ParamInt$new("minsplit", lower = 1, upper = 2)));
 "ml_r" = paradox::ParamSet$new(list(
 paradox::ParamDbl$new("cp", lower = 0.01, upper = 0.02),
 paradox::ParamInt$new("minsplit", lower = 1, upper = 2)))
)
minimum requirements for tune_settings
tune_settings = list(
 terminator = mlr3tuning::trm("evals", n_evals = 5),
 algorithm = mlr3tuning::tnr("grid_search", resolution = 5))
dml_iivm_obj$tune(param_set = param_grid, tune_settings = tune_settings)
dml_iivm_obj$fit()
dml_iivm_obj$summary()

End(Not run)

DoubleMLIRM

Double machine learning for interactive regression models

Description

Double machine learning for interactive regression models.

Format

R6::R6Class object inheriting from *DoubleML.*
Details

Interactive regression (IRM) models take the form
\[Y = g_0(D, X) + U, \]
\[D = m_0(X) + V, \]
with \(E[U|X, D] = 0 \) and \(E[V|X] = 0 \). \(Y \) is the outcome variable and \(D \in \{0, 1\} \) is the binary treatment variable. We consider estimation of the average treatment effects when treatment effects are fully heterogeneous. Target parameters of interest in this model are the average treatment effect (ATE),
\[\theta_0 = E[g_0(1, X) - g_0(0, X)] \]
and the average treatment effect on the treated (ATTE),
\[\theta_0 = E[g_0(1, X) - g_0(0, X)|D = 1]. \]

Super class

\texttt{DoubleML::DoubleML} -> \texttt{DoubleMLIRM}

Active bindings

- \texttt{trimming_rule (character(1))}
 - A character(1) specifying the trimming approach.
- \texttt{trimming_threshold (numeric(1))}
 - The threshold used for trimming.

Methods

Public methods:

- \texttt{DoubleMLIRM\$new()}
- \texttt{DoubleMLIRM\$clone()}

Method \texttt{new()}: Creates a new instance of this R6 class.

Usage:

```r
DoubleMLIRM\$new(
  data,
  ml\_g,
  ml\_m,
  n\_folds = 5,
  n\_rep = 1,
  score = "ATE",
  trimming\_rule = "truncate",
  trimming\_threshold = 1e-12,
  dml\_procedure = "dml2",
  draw\_sample\_splitting = TRUE,
  apply\_cross\_fitting = TRUE
)
```

Arguments:
The DoubleMLData object providing the data and specifying the variables of the causal model.

ml_g (LearnerRegr, LearnerClassif, Learner, character(1))
A learner of the class LearnerRegr, which is available from mlr3 or its extension packages mlr3learners or mlr3extralearners. For binary treatment outcomes, an object of the class LearnerClassif can be passed, for example lrn("classif.cv_glmnet", s = "lambda.min"). Alternatively, a Learner object with public field task_type = "regr" or task_type = "classif" can be passed, respectively, for example of class GraphLearner.

ml_g refers to the nuisance function $g_0(X) = E[Y|X, D]$

ml_m (LearnerClassif, Learner, character(1))
A learner of the class LearnerClassif, which is available from mlr3 or its extension packages mlr3learners or mlr3extralearners. Alternatively, a Learner object with public field task_type = "classif" can be passed, for example of class GraphLearner. The learner can possibly be passed with specified parameters, for example lrn("classif.cv_glmnet", s = "lambda.min").

ml_m refers to the nuisance function $m_0(X) = E[D|X]$

n_folds (integer(1))
Number of folds. Default is 5.

n_rep (integer(1))
Number of repetitions for the sample splitting. Default is 1.

score (character(1), function())
A character(1) ("ATE" or "ATTE") or a function() specifying the score function. If a function() is provided, it must be of the form function(y, d, g0_hat, g1_hat, m_hat, smpls) and the returned output must be a named list() with elements psi_a and psi_b. Default is "ATE".

trimming_rule (character(1))
A character(1) ("truncate" is the only choice) specifying the trimming approach. Default is "truncate".

trimming_threshold (numeric(1))
The threshold used for trimming. Default is 1e-12.

dml_procedure (character(1))
A character(1) ("dml1" or "dml2") specifying the double machine learning algorithm. Default is "dml2".

draw_sample_splitting (logical(1))
Indicates whether the sample splitting should be drawn during initialization of the object. Default is TRUE.

apply_cross_fitting (logical(1))
Indicates whether cross-fitting should be applied. Default is TRUE.

Method clone(): The objects of this class are cloneable with this method.

Usage:
DoubleMLIRM$clone(deep = FALSE)

Arguments:
deep. Whether to make a deep clone.
See Also

Other DoubleML: DoubleMLIVM, DoubleMLPLIV, DoubleMLPLR, DoubleML

Examples

```r
library(DoubleML)
library(mlr3)
library(mlr3learners)
library(data.table)
set.seed(2)
ml_g = lrn("regr.ranger",
  num.trees = 100, mtry = 20,
  min.node.size = 2, max.depth = 5)
ml_m = lrn("classif.ranger",
  num.trees = 100, mtry = 20,
  min.node.size = 2, max.depth = 5)
obj_dml_data = make_irm_data(theta = 0.5)
dml_irm_obj = DoubleMLIRM$new(obj_dml_data, ml_g, ml_m)
dml_irm_obj$fit()
dml_irm_obj$summary()

## Not run:
library(DoubleML)
library(mlr3)
library(mlr3learners)
library(data.table)
set.seed(2)
ml_g = lrn("regr.rpart")
ml_m = lrn("classif.rpart")
obj_dml_data = make_irm_data(theta = 0.5)
dml_irm_obj = DoubleMLIRM$new(obj_dml_data, ml_g, ml_m)

param_grid = list(  
  "ml_g" = paradox::ParamSet$new(list(    
    paradox::ParamDbl$new("cp", lower = 0.01, upper = 0.02),    
    paradox::ParamInt$new("minsplit", lower = 1, upper = 2))),  
  "ml_m" = paradox::ParamSet$new(list(    
    paradox::ParamDbl$new("cp", lower = 0.01, upper = 0.02),    
    paradox::ParamInt$new("minsplit", lower = 1, upper = 2))))

# minimum requirements for tune_settings

tune_settings = list(  
  terminator = mlr3tuning::trm("evals", n_evals = 5),  
  algorithm = mlr3tuning::tnr("grid_search", resolution = 5))
dml_irm_obj$tune(param_set = param_grid, tune_settings = tune_settings)
dml_irm_obj$fit()
dml_irm_obj$summary()

## End(Not run)
```
Double machine learning for partially linear IV regression models

Description

Double machine learning for partially linear IV regression models.

Format

R6::R6Class object inheriting from DoubleML.

Details

Partially linear IV regression (PLIV) models take the form

\[Y - D\theta_0 = g_0(X) + \zeta, \]
\[Z = m_0(X) + V, \]

with \(E[\zeta|Z, X] = 0 \) and \(E[V|X] = 0 \). \(Y \) is the outcome variable variable, \(D \) is the policy variable of interest and \(Z \) denotes one or multiple instrumental variables. The high-dimensional vector \(X = (X_1, \ldots, X_p) \) consists of other confounding covariates, and \(\zeta \) and \(V \) are stochastic errors.

Super class

DoubleML::DoubleML -> DoubleMLPLIV

Active bindings

\texttt{partialX} (logical(1))
Indicates whether covariates \(X \) should be partialled out.

\texttt{partialZ} (logical(1))
Indicates whether instruments \(Z \) should be partialled out.

Methods

Public methods:

- \texttt{DoubleMLPLIV$new()}
- \texttt{DoubleMLPLIV$set_ml_nuisance_params()}
- \texttt{DoubleMLPLIV$tune()}
- \texttt{DoubleMLPLIV$clone()}

Method \texttt{new()}: Creates a new instance of this R6 class.

Usage:
DoubleMLPLIV$new(
 data,
 ml_l,
 ml_m,
 ml_r,
 ml_g = NULL,
 partialX = TRUE,
 partialZ = FALSE,
 n_folds = 5,
 n_rep = 1,
 score = "partialling out",
 dml_procedure = "dml2",
 draw_sample_splitting = TRUE,
 apply_cross_fitting = TRUE
)

Arguments:

data (DoubleMLData)
 The DoubleMLData object providing the data and specifying the variables of the causal model.

ml_l (LearnerRegr, Learner, character(1))
 A learner of the class LearnerRegr, which is available from mlr3 or its extension packages mlr3learners or mlr3extralearners. Alternatively, a Learner object with public field task_type = "regr" can be passed, for example of class GraphLearner. The learner can possibly be passed with specified parameters, for example lrn("regr.cv_glmnet", s = "lambda.min").
 ml_l refers to the nuisance function \(l_0(X) = E[Y | X] \).

ml_m (LearnerRegr, Learner, character(1))
 A learner of the class LearnerRegr, which is available from mlr3 or its extension packages mlr3learners or mlr3extralearners. Alternatively, a Learner object with public field task_type = "regr" can be passed, for example of class GraphLearner. The learner can possibly be passed with specified parameters, for example lrn("regr.cv_glmnet", s = "lambda.min").
 ml_m refers to the nuisance function \(m_0(X) = E[Z | X] \).

ml_r (LearnerRegr, Learner, character(1))
 A learner of the class LearnerRegr, which is available from mlr3 or its extension packages mlr3learners or mlr3extralearners. Alternatively, a Learner object with public field task_type = "regr" can be passed, for example of class GraphLearner. The learner can possibly be passed with specified parameters, for example lrn("regr.cv_glmnet", s = "lambda.min").
 ml_r refers to the nuisance function \(r_0(X) = E[D | X] \).

ml_g (LearnerRegr, Learner, character(1))
 A learner of the class LearnerRegr, which is available from mlr3 or its extension packages mlr3learners or mlr3extralearners. Alternatively, a Learner object with public field task_type = "regr" can be passed, for example of class GraphLearner. The learner can possibly be passed with specified parameters, for example lrn("regr.cv_glmnet", s = "lambda.min").
 ml_g refers to the nuisance function \(g_0(X) = E[Y - D\theta_0 | X] \). Note: The learner ml_g
is only required for the score 'IV-type'. Optionally, it can be specified and estimated for callable scores.

partialX (logical(1))
Indicates whether covariates X should be partialled out. Default is TRUE.

partialZ (logical(1))
Indicates whether instruments Z should be partialled out. Default is FALSE.

n_folds (integer(1))
Number of folds. Default is 5.

n_rep (integer(1))
Number of repetitions for the sample splitting. Default is 1.

score (character(1), function())
A character(1) ("partialling out" or "IV-type") or a function() specifying the score function. If a function() is provided, it must be of the form function(y, z, d, l_hat, m_hat, r_hat, g_hat, smpls)
and the returned output must be a named list() with elements psi_a and psi_b. Default is "partialling out".

dml_procedure (character(1))
A character(1) ("dml1" or "dml2") specifying the double machine learning algorithm.
Default is "dml2".

draw_sample_splitting (logical(1))
Indicates whether the sample splitting should be drawn during initialization of the object.
Default is TRUE.

apply_cross_fitting (logical(1))
Indicates whether cross-fitting should be applied. Default is TRUE.

Method set_ml_nuisance_params(): Set hyperparameters for the nuisance models of DoubleML models.
Note that in the current implementation, either all parameters have to be set globally or all parameters have to be provided fold-specific.

Usage:
DoubleMLPLIV$set_ml_nuisance_params(
 learner = NULL,
 treat_var = NULL,
 params,
 set_fold_specific = FALSE
)

Arguments:
learner (character(1))
The nuisance model/learner (see method params_names).

treat_var (character(1))
The treatment variable (hyperparameters can be set treatment-variable specific).

params (named list())
A named list() with estimator parameters. Parameters are used for all folds by default.
Alternatively, parameters can be passed in a fold-specific way if option fold_specific is TRUE. In this case, the outer list needs to be of length n_rep and the inner list of length n_folds.
set_fold_specific (logical(1))
Indicates if the parameters passed in params should be passed in fold-specific way. Default is FALSE. If TRUE, the outer list needs to be of length n_rep and the inner list of length n_folds. Note that in the current implementation, either all parameters have to be set globally or all parameters have to be provided fold-specific.

Returns: self

Method tune(): Hyperparameter-tuning for DoubleML models.
The hyperparameter-tuning is performed using the tuning methods provided in the mlr3tuning package. For more information on tuning in mlr3, we refer to the section on parameter tuning in the mlr3 book.

Usage:
DoubleMLPLIV$tune(
 param_set,
 tune_settings = list(n_folds_tune = 5, rsmp_tune = mlr3::rsmp("cv", folds = 5), measure = NULL, terminator = mlr3tuning::trm("evals", n_evals = 20), algorithm = mlr3tuning::tnr("grid_search"), resolution = 5),
 tune_on_folds = FALSE
)

Arguments:
param_set (named list())
A named list with a parameter grid for each nuisance model/learner (see method learner_names()). The parameter grid must be an object of class ParamSet.
tune_settings (named list())
A named list() with arguments passed to the hyperparameter-tuning with mlr3tuning to set up TuningInstance objects. tune_settings has entries
• terminator (Terminator)
 A Terminator object. Specification of terminator is required to perform tuning.
• algorithm (Tuner or character(1))
 A Tuner object (recommended) or key passed to the respective dictionary to specify the tuning algorithm used in tnr(). algorithm is passed as an argument to tnr(). If algorithm is not specified by the users, default is set to "grid_search". If set to "grid_search", then additional argument "resolution" is required.
• rsmp_tune (Resampling or character(1))
 A Resampling object (recommended) or option passed to rsmp() to initialize a Resampling for parameter tuning in mlr3. If not specified by the user, default is set to "cv" (cross-validation).
• n_folds_tune (integer(1), optional)
 If rsmp_tune = "cv", number of folds used for cross-validation. If not specified by the user, default is set to 5.
• measure (NULL, named list(), optional)
 Named list containing the measures used for parameter tuning. Entries in list must either be Measure objects or keys to be passed to passed to msr(). The names of the entries must match the learner names (see method learner_names()). If set to NULL, default measures are used, i.e., "regr.mse" for continuous outcome variables and "classif.ce" for binary outcomes.
• **resolution (character(1))**

 The key passed to the respective dictionary to specify the tuning algorithm used in `tnr()`. resolution is passed as an argument to `tnr()`.

 tune_on_folds (logical(1))

 Indicates whether the tuning should be done fold-specific or globally. Default is FALSE.

 Returns: self

 Method `clone()`: The objects of this class are cloneable with this method.

 Usage:
  ```r
  DoubleMLPLIV$clone(deep = FALSE)
  ```

 Arguments:

 `deep` Whether to make a deep clone.

 See Also

 Other DoubleML: `DoubleMLIIVM, DoubleMLIRM, DoubleMLPLR, DoubleML`

 Examples

  ```r
  library(DoubleML)
  library(mlr3)
  library(mlr3learners)
  library(data.table)
  set.seed(2)
  ml_l = lrn("regr.ranger", num.trees = 100, mtry = 20, min.node.size = 2, max.depth = 5)
  ml_m = ml_l$clone()
  ml_r = ml_l$clone()
  obj_dml_data = make_pliv_CHS2015(alpha = 1, n_obs = 500, dim_x = 20, dim_z = 1)
  dml_pliv_obj = DoubleMLPLIV$new(obj_dml_data, ml_l, ml_m, ml_r)
  dml_pliv_obj$fit()
  dml_pliv_obj$summary()
  ```

  ```r
  ## Not run:
  library(DoubleML)
  library(mlr3)
  library(mlr3learners)
  library(mlr3tuning)
  library(data.table)
  set.seed(2)
  ml_l = lrn("regr.rpart")
  ml_m = ml_l$clone()
  ml_r = ml_l$clone()
  obj_dml_data = make_pliv_CHS2015(
    alpha = 1, n_obs = 500, dim_x = 20, dim_z = 1)
  dml_pliv_obj = DoubleMLPLIV$new(obj_dml_data, ml_l, ml_m, ml_r)
  param_grid = list(
    "ml_l" = paradox::ParamSet$new(list(
DoubleMLPLR

Double machine learning for partially linear regression models

Description

Double machine learning for partially linear regression models.

Format

R6::R6Class object inheriting from DoubleML.

Details

Partially linear regression (PLR) models take the form

\[ Y = D\theta_0 + g_0(X) + \zeta, \]
\[ D = m_0(X) + V, \]

with \( E[\zeta|D,X] = 0 \) and \( E[V|X] = 0 \). \( Y \) is the outcome variable variable and \( D \) is the policy variable of interest. The high-dimensional vector \( X = (X_1, \ldots, X_p) \) consists of other confounding covariates, and \( \zeta \) and \( V \) are stochastic errors.

Super class

DoubleML::DoubleML -> DoubleMLPLR
Methods

Public methods:

• DoubleMLPLR$new()
• DoubleMLPLR$set_ml_nuisance_params()
• DoubleMLPLR$tune()
• DoubleMLPLR$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
DoubleMLPLR$new(
  data,
  ml_l,
  ml_m,
  ml_g = NULL,
  n_folds = 5,
  n_rep = 1,
  score = "partialling out",
  dml_procedure = "dml2",
  draw_sample_splitting = TRUE,
  apply_cross_fitting = TRUE
)

Arguments:

data (DoubleMLData)
  The DoubleMLData object providing the data and specifying the variables of the causal model.

ml_l (LearnerRegr, Learner, character(1))
  A learner of the class LearnerRegr, which is available from mlr3 or its extension packages mlr3learners or mlr3extralearners. Alternatively, a Learner object with public field task_type = "regr" can be passed, for example of class GraphLearner. The learner can possibly be passed with specified parameters, for example lrn("regr.cv_glmnet", s = "lambda.min").
  ml_l refers to the nuisance function \( l_0(X) = E[Y|X] \).

ml_m (LearnerRegr, LearnerClassif, Learner, character(1))
  A learner of the class LearnerRegr, which is available from mlr3 or its extension packages mlr3learners or mlr3extralearners. For binary treatment variables, an object of the class LearnerClassif can be passed, for example lrn("classif.cv_glmnet", s = "lambda.min"). Alternatively, a Learner object with public field task_type = "regr" or task_type = "classif" can be passed, respectively, for example of class GraphLearner.
  ml_m refers to the nuisance function \( m_0(X) = E[D|X] \).

ml_g (LearnerRegr, Learner, character(1))
  A learner of the class LearnerRegr, which is available from mlr3 or its extension packages mlr3learners or mlr3extralearners. Alternatively, a Learner object with public field task_type = "regr" can be passed, for example of class GraphLearner. The learner can possibly be passed with specified parameters, for example lrn("regr.cv_glmnet", s = "lambda.min").
  ml_g refers to the nuisance function \( g_0(X) = E[Y - \theta_0|X] \). Note: The learner ml_g
is only required for the score 'IV-type'. Optionally, it can be specified and estimated for callable scores.

\(n_{\text{folds}}\) (integer(1))
Number of folds. Default is 5.

\(n_{\text{rep}}\) (integer(1))
Number of repetitions for the sample splitting. Default is 1.

\(\text{score}\) (character(1), function())
A character(1) ("partialling out" or "IV-type") or a function() specifying the score function. If a function() is provided, it must be of the form \(\text{function}(y, d, l_{\hat{\text{a}}}, m_{\hat{\text{a}}}, g_{\hat{\text{a}}}, \text{smpls})\) and the returned output must be a named list() with elements \(\text{psi}_a\) and \(\text{psi}_b\). Default is "partialling out".

\(\text{dml\_procedure}\) (character(1))
A character(1) ("dml1" or "dml2") specifying the double machine learning algorithm. Default is "dml2".

\(\text{draw\_sample\_splitting}\) (logical(1))
Indicates whether the sample splitting should be drawn during initialization of the object. Default is TRUE.

\(\text{apply\_cross\_fitting}\) (logical(1))
Indicates whether cross-fitting should be applied. Default is TRUE.

Method \(\text{set\_ml\_nuisance\_params}\): Set hyperparameters for the nuisance models of DoubleML models.

Note that in the current implementation, either all parameters have to be set globally or all parameters have to be provided fold-specific.

Usage:
DoubleMLPLR$set_ml_nuisance_params(
  learner = NULL,
  treat_var = NULL,
  params,
  set_fold_specific = FALSE
)

Arguments:
\(\text{learner}\) (character(1))
The nuisance model/learner (see method \(\text{params\_names}\)).

\(\text{treat\_var}\) (character(1))
The treatment variable (hyperparameters can be set treatment-variable specific).

\(\text{params}\) (named list())
A named list() with estimator parameters. Parameters are used for all folds by default. Alternatively, parameters can be passed in a fold-specific way if option \(\text{fold\_specific}\) is TRUE. In this case, the outer list needs to be of length \(n_{\text{rep}}\) and the inner list of length \(n_{\text{folds}}\).

\(\text{set\_fold\_specific}\) (logical(1))
Indicates if the parameters passed in \(\text{params}\) should be passed in fold-specific way. Default is FALSE. If TRUE, the outer list needs to be of length \(n_{\text{rep}}\) and the inner list of length \(n_{\text{folds}}\). Note that in the current implementation, either all parameters have to be set globally or all parameters have to be provided fold-specific.
Returns: self

Method `tune()`: Hyperparameter-tuning for DoubleML models.

The hyperparameter-tuning is performed using the tuning methods provided in the `mlr3tuning` package. For more information on tuning in `mlr3`, we refer to the section on parameter tuning in the `mlr3` book.

Usage:
`DoubleMLPLR$tune(  
  param_set,  
  tune_settings = list(n_folds_tune = 5, rsmp_tune = mlr3::rsmp("cv", folds = 5), measure = NULL, terminator = mlr3tuning::trm("evals", n_evals = 20), algorithm = mlr3tuning::tnr("grid_search"), resolution = 5),  
  tune_on_folds = FALSE  
)
`

Arguments:
`param_set` (named list())
- A named list with a parameter grid for each nuisance model/learner (see method `learner_names()`).
- The parameter grid must be an object of class `ParamSet`.

`tune_settings` (named list())
- A named list() with arguments passed to the hyperparameter-tuning with `mlr3tuning` to set up `TuningInstance` objects. `tune_settings` has entries
  - `terminator` (Terminator)
    - A Terminator object. Specification of `terminator` is required to perform tuning.
  - `algorithm` (Tuner or character(1))
    - A Tuner object (recommended) or key passed to the respective dictionary to specify the tuning algorithm used in `tnr()`. If `algorithm` is not specified by the users, default is set to "grid_search". If set to "grid_search", then additional argument "resolution" is required.
  - `rsmp_tune` (Resampling or character(1))
    - A Resampling object (recommended) or option passed to `rsmp()` to initialize a Resampling for parameter tuning in `mlr3`. If not specified by the user, default is set to "cv" (cross-validation).
  - `n_folds_tune` (integer(1), optional)
    - If `rsmp_tune = "cv"`, number of folds used for cross-validation. If not specified by the user, default is set to 5.
  - `measure` (NULL, named list(), optional)
    - Named list containing the measures used for parameter tuning. Entries in list must either be Measure objects or keys to be passed to passed to `msr()`. The names of the entries must match the learner names (see method `learner_names()`). If set to NULL, default measures are used, i.e., "regr.mse" for continuous outcome variables and "classif.ce" for binary outcomes.
  - `resolution` (character(1))
    - The key passed to the respective dictionary to specify the tuning algorithm used in `tnr()`. `resolution` is passed as an argument to `tnr()`.

`tune_on_folds` (logical(1))
- Indicates whether the tuning should be done fold-specific or globally. Default is FALSE.
DoubleMLPLR

Returns: self

Method clone(): The objects of this class are cloneable with this method.

Usage:
DoubleMLPLR$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also
Other DoubleML: DoubleMLIIVM, DoubleMLIRM, DoubleMLPLIV, DoubleML

Examples

library(DoubleML)
library(mlr3)
library(mlr3learners)
library(data.table)
set.seed(2)
ml_g = lrn("regr.ranger", num.trees = 10, max.depth = 2)
ml_m = ml_g$clone()
obj_dml_data = make_plr_CCDDHNR2018(alpha = 0.5)
dml_plr_obj = DoubleMLPLR$new(obj_dml_data, ml_g, ml_m)
dml_plr_obj$fit()
dml_plr_obj$summary()

## Not run:
library(DoubleML)
library(mlr3)
library(mlr3learners)
library(data.table)
set.seed(2)
ml_l = lrn("regr.rpart")
ml_m = ml_l$clone()
obj_dml_data = make_plr_CCDDHNR2018(alpha = 0.5)
dml_plr_obj = DoubleMLPLR$new(obj_dml_data, ml_l, ml_m)

param_grid = list(
  "ml_l" = paradox::ParamSet$new(list(
    paradox::ParamDbl$new("cp", lower = 0.01, upper = 0.02),
    paradox::ParamInt$new("minsplit", lower = 1, upper = 2)),
  "ml_m" = paradox::ParamSet$new(list(
    paradox::ParamDbl$new("cp", lower = 0.01, upper = 0.02),
    paradox::ParamInt$new("minsplit", lower = 1, upper = 2))))

# minimum requirements for tune_settings
tune_settings = list(
  terminator = mlr3tuning::trm("evals", n_evals = 5),
  ...
```r
algorithm = mlr3tuning::tnr("grid_search", resolution = 5)
dml_plr_obj$tune(param_set = param_grid, tune_settings = tune_settings)
dml_plr_obj$fit()
dml_plr_obj$summary()

End(Not run)

double_ml_data_from_data_frame

Wrapper for Double machine learning data-backend initialization from data.frame.

Description

Initialization of DoubleMLData from data.frame.

Usage

double_ml_data_from_data_frame(
 df,
 x_cols = NULL,
 y_col = NULL,
 d_cols = NULL,
 z_cols = NULL,
 cluster_cols = NULL,
 use_other_treat_as_covariate = TRUE
)

Arguments

df (data.frame())
 Data object.

x_cols (NULL, character())
 The covariates. If NULL, all variables (columns of data) which are neither specified as outcome variable y_col, nor as treatment variables d_cols, nor as instrumental variables z_cols are used as covariates. Default is NULL.

y_col (character(1))
 The outcome variable.

d_cols (character())
 The treatment variable(s).

z_cols (NULL, character())
 The instrumental variables. Default is NULL.

cluster_cols (NULL, character())
 The cluster variables. Default is NULL.

use_other_treat_as_covariate (logical(1))
 Indicates whether in the multiple-treatment case the other treatment variables should be added as covariates. Default is TRUE.
```
**Value**

Creates a new instance of class `DoubleMLData`.

**Examples**

```r
df = make_plr_CCDDHNR2018(return_type = "data.frame")
x_names = names(df)[grep("X", names(df))]
obj_dml_data = double_ml_data_from_data_frame(
 df = df, x_cols = x_names,
 y_col = "y", d_cols = "d")
Input: Data frame, Output: DoubleMLData object
```

**Description**

Initialization of `DoubleMLData` from `matrix()` objects.

**Usage**

```r
double_ml_data_from_matrix(
 X = NULL,
 y,
 d,
 z = NULL,
 cluster_vars = NULL,
 data_class = "DoubleMLData",
 use_other_treat_as_covariate = TRUE
)
```

**Arguments**

- `X` *(matrix())*  
  Matrix of covariates.
- `y` *(numeric())*  
  Vector of outcome variable.
- `d` *(matrix())*  
  Matrix of treatment variables.
- `z` *(matrix())*  
  Matrix of instruments.
- `cluster_vars` *(matrix())*  
  Matrix of cluster variables.
data_class (character(1))
Class of returned object. By default, an object of class DoubleMLData is returned. Setting data_class = "data.table" returns an object of class data.table.

use_other_treat_as_covariate (logical(1))
Indicates whether in the multiple-treatment case the other treatment variables should be added as covariates. Default is TRUE.

Value

Creates a new instance of class DoubleMLData.

Examples

```r
matrix_list = make_plr_CCDDHNR2018(return_type = "matrix")
obj_dml_data = double_ml_data_from_matrix(X = matrix_list$X,
y = matrix_list$y,
d = matrix_list$d)
```

Description

Preprocessed data set on financial wealth and 401(k) plan participation. The raw data files are preprocessed to reproduce the examples in Chernozhukov et al. (2020). An internet connection is required to successfully download the data set.

Usage

```r
fetch_401k(
 return_type = "DoubleMLData",
polynomial_features = FALSE,
instrument = FALSE,
)
```

Arguments

return_type (character(1))
If "DoubleMLData", returns a DoubleMLData object. If "data.frame" returns a data.frame(). If "data.table" returns a data.table(). Default is "DoubleMLData".

polynomial_features (logical(1))
If TRUE polynomial features are added (see replication file of Chernozhukov et al. (2018)).
If TRUE, the returned data object contains the variables e401 and p401. If return_type = "DoubleMLData", the variable e401 is used as an instrument for the endogenous treatment variable p401. If FALSE, p401 is removed from the data set.

Details

Variable description, based on the supplementary material of Chernozhukov et al. (2020):

- net_tfa: net total financial assets
- e401: = 1 if employer offers 401(k)
- p401: = 1 if individual participates in a 401(k) plan
- age: age
- inc: income
- fsize: family size
- educ: years of education
- db: = 1 if individual has defined benefit pension
- marr: = 1 if married
- twoearn: = 1 if two-earner household
- pira: = 1 if individual participates in IRA plan
- hown: = 1 if home owner

The supplementary data of the study by Chernozhukov et al. (2018) is available at https://academic.oup.com/ectj/article/21/1/C1/5056401#supplementary-data.

Value

A data object according to the choice of return_type.

References


fetch_bonus

Data set on the Pennsylvania Reemployment Bonus experiment.

Description

Preprocessed data set on the Pennsylvania Reemployment Bonus experiment. The raw data files are preprocessed to reproduce the examples in Chernozhukov et al. (2020). An internet connection is required to successfully download the data set.

Usage

fetch_bonus(return_type = "DoubleMLData", polynomial_features = FALSE)

Arguments

return_type (character(1))
If "DoubleMLData", returns a DoubleMLData object. If "data.frame" returns a data.frame(). If "data.table" returns a data.table(). Default is "DoubleMLData".

polynomial_features (logical(1))
If TRUE polynomial features are added (see replication file of Chernozhukov et al. (2018)).

Details

Variable description, based on the supplementary material of Chernozhukov et al. (2020):

- abdt: chronological time of enrollment of each claimant in the Pennsylvania reemployment bonus experiment.
- tg: indicates the treatment group (bonus amount - qualification period) of each claimant.
- inuidur1: a measure of length (in weeks) of the first spell of unemployment
- inuidur2: a second measure for the length (in weeks) of
- female: dummy variable; it indicates if the claimant’s sex is female (=1) or male (=0).
- black: dummy variable; it indicates a person of black race (=1).
- hispanic: dummy variable; it indicates a person of hispanic race (=1).
- othrace: dummy variable; it indicates a non-white, non-black, not-hispanic person (=1).
- dep1: dummy variable; indicates if the number of dependents of each claimant is equal to 1 (=1).
- dep2: dummy variable; indicates if the number of dependents of each claimant is equal to 2 (=1).
- q1-q6: six dummy variables indicating the quarter of experiment during which each claimant enrolled.
- recall: takes the value of 1 if the claimant answered “yes” when was asked if he/she had any expectation to be recalled
• agelt35: takes the value of 1 if the claimant’s age is less than 35 and 0 otherwise.
• agegt54: takes the value of 1 if the claimant’s age is more than 54 and 0 otherwise.
• durable: it takes the value of 1 if the occupation of the claimant was in the sector of durable manufacturing and 0 otherwise.
• nondurable: it takes the value of 1 if the occupation of the claimant was in the sector of nondurable manufacturing and 0 otherwise.
• lusd: it takes the value of 1 if the claimant filed in Coatesville, Reading, or Lancaster and 0 otherwise.
• husd: it takes the value of 1 if the claimant filed in Lewistown, Pittston, or Scranton and 0 otherwise.
• These three sites were considered to be located in areas characterized by low unemployment rate and short duration of unemployment.
• muld: it takes the value of 1 if the claimant filed in Philadelphia-North, Philadelphia-Uptown, McKeesport, Erie, or Butler and 0 otherwise.
• These three sites were considered to be located in areas characterized by moderate unemployment rate and long duration of unemployment.”

The supplementary data of the study by Chernozhukov et al. (2018) is available at https://academic.oup.com/ectj/article/21/1/C1/5056401#supplementary-data.

Value
A data object according to the choice of return_type.

References


Examples
library(DoubleML)
df_bonus = fetch_bonus(return_type = "data.table")
obj_dml_data_bonus = DoubleMLData$new(df_bonus,
y_col = "inuidur1",
d_cols = "tg",
x_cols = c("female", "black", "othrace", "dep1", "dep2",
"q2", "q3", "q4", "q5", "q6", "agelt35", "agegt54",
"durable", "lusd", "husd"
make_iivm_data

Generates data from a interactive IV regression (IIVM) model.

description
Generates data from a interactive IV regression (IIVM) model. The data generating process is defined as:

\[ d_i = 1 \{ \alpha_x Z + v_i > 0 \} , \]
\[ y_i = \theta d_i + x_i' \beta + u_i , \]
\[ Z \sim Bernoulli(0.5) \] and
\[ \begin{pmatrix} u_i \\ v_i \end{pmatrix} \sim \mathcal{N} \left( 0 , \begin{pmatrix} 1 & 0.3 \\ 0.3 & 1 \end{pmatrix} \right) . \]

The covariates \( x_i \sim \mathcal{N}(0, \Sigma) \), where \( \Sigma \) is a matrix with entries \( \Sigma_{kj} = 0.5 |j-k| \) and \( \beta \) is a \( \text{dim}_x \)-vector with entries \( \beta_j = \frac{1}{j} \).

The data generating process is inspired by a process used in the simulation experiment of Farbmacher, Gruber and Klaaßen (2020).

usage
make_iivm_data(
  n_obs = 500,
  dim_x = 20,
  theta = 1,
  alpha_x = 0.2,
  return_type = "DoubleMLData"
)

arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_obs</td>
<td>(integer(1)) The number of observations to simulate.</td>
</tr>
<tr>
<td>dim_x</td>
<td>(integer(1)) The number of covariates.</td>
</tr>
<tr>
<td>theta</td>
<td>(numeric(1)) The value of the causal parameter.</td>
</tr>
<tr>
<td>alpha_x</td>
<td>(numeric(1)) The value of the parameter ( \alpha_x ).</td>
</tr>
<tr>
<td>return_type</td>
<td>(character(1)) If &quot;DoubleMLData&quot;, returns a DoubleMLData object. If &quot;data.frame&quot; returns a data.frame(). If &quot;data.table&quot; returns a data.table(). If &quot;matrix&quot; a named list() with entries X, y, d and z is returned. Every entry in the list is a matrix() object. Default is &quot;DoubleMLData&quot;.</td>
</tr>
</tbody>
</table>
**makeIRMData**

Generates data from a interactive regression (IRM) model.

**Description**

Generates data from a interactive regression (IRM) model. The data generating process is defined as:

\[
d_i = 1 \{ \frac{\exp(c_d x_i' \beta)}{1+\exp(c_d x_i' \beta)} > v_i \},
\]

\[
y_i = \theta d_i + c_y x_i' \beta d_i + \zeta_i,
\]

with \( v_i \sim U(0,1) \), \( \zeta_i \sim N(0,1) \) and covariates \( x_i \sim N(0, \Sigma) \), where \( \Sigma \) is a matrix with entries \( \Sigma_{kj} = 0.5^{|j-k|} \). \( \beta \) is a \( \text{dim}_x \)-vector with entries \( \beta_j = \frac{1}{j^2} \) and the constants \( c_y \) and \( c_d \) are given by:

\[
c_y = \sqrt{\frac{R^2_y}{(1-R^2_y)\beta' \Sigma \beta}},
\]

\[
c_d = \sqrt{\frac{\left(\frac{\pi^2}{3}\right)R^2_d}{(1-R^2_d)\beta' \Sigma \beta}}.
\]

The data generating process is inspired by a process used in the simulation experiment (see Appendix P) of Belloni et al. (2017).

**Usage**

```r
makeIRMData(n_obs = 500,
 dim_x = 20,
 theta = 0,
 R2_d = 0.5,
 R2_y = 0.5,
 return_type = "DoubleMLData")
```

**Arguments**

- `n_obs` (integer(1))
  - The number of observations to simulate.
- `dim_x` (integer(1))
  - The number of covariates.
- `theta` (numeric(1))
  - The value of the causal parameter.
- `R2_d` (numeric(1))
  - The value of the parameter \( R^2_d \).
The value of the parameter $R^2_y$.

**return_type** (character(1))
If "DoubleMLData", returns a DoubleMLData object. If "data.frame" returns a data.frame(). If "data.table" returns a data.table(). If "matrix" a named list() with entries X, y, d and z is returned. Every entry in the list is a matrix() object. Default is "DoubleMLData".

**References**

**make_pliv_CHS2015**
Generates data from a partially linear IV regression model used in Chernozhukov, Hansen and Spindler (2015).

**Description**
Generates data from a partially linear IV regression model used in Chernozhukov, Hansen and Spindler (2015). The data generating process is defined as

$$z_i = \Pi x_i + \zeta_i,$$
$$d_i = x_i'\gamma + z_i'\delta + u_i,$$
$$y_i = \alpha d_i + x_i'\beta + \epsilon_i,$$

with

$$\begin{pmatrix} 
\varepsilon_i \\
u_i \\
\zeta_i \\
x_i 
\end{pmatrix} \sim \mathcal{N} \left(0, \begin{pmatrix} 
1 & 0.6 & 0 & 0 \\
0.6 & 1 & 0 & 0 \\
0 & 0 & 0.25 I_{p^z_n} & 0 \\
0 & 0 & 0 & \Sigma 
\end{pmatrix} \right)$$

where $\Sigma$ is a $p^x_n \times p^x_n$ matrix with entries $\Sigma_{kj} = 0.5|j-k|$ and $I_{p^z_n}$ is the $p^z_n \times p^z_n$ identity matrix. $eta = \gamma$ is a $p^x_n$-vector with entries $\beta_j = \frac{1}{j^2}$, $\delta$ is a $p^z_n$-vector with entries $\delta_j = \frac{1}{j^2}$ and $\Pi = (I_{p^z_n}, O_{p^z_n \times (p^x_n-p^z_n)})$.

**Usage**
```r
make_pliv_CHS2015(
 n_obs,
 alpha = 1,
 dim_x = 200,
 dim_z = 150,
 return_type = "DoubleMLData"
)
```
Arguments

- **n_obs** (integer(1))
  The number of observations to simulate.
- **alpha** (numeric(1))
  The value of the causal parameter.
- **dim_x** (integer(1))
  The number of covariates.
- **dim_z** (integer(1))
  The number of instruments.
- **return_type** (character(1))
  If "DoubleMLData", returns a DoubleMLData object. If "data.frame" returns a data.frame(). If "data.table" returns a data.table(). If "matrix" a named list() with entries X, y, d and z is returned. Every entry in the list is a matrix() object. Default is "DoubleMLData".

Value

A data object according to the choice of return_type.

References


Description

Generates data from a partially linear IV regression model with multiway cluster sample used in Chiang et al. (2021). The data generating process is defined as

\[
Z_{ij} = X_{ij}' \xi_0 + V_{ij},
\]

\[
D_{ij} = Z_{ij}' \pi_{10} + X_{ij}' \pi_{20} + v_{ij},
\]

\[
Y_{ij} = D_{ij} \theta + X_{ij}' \zeta_0 + \epsilon_{ij},
\]

with

\[
X_{ij} = (1 - \omega_1^X - \omega_2^X) \alpha_{ij}^X + \omega_1^X \alpha_i^X + \omega_2^X \alpha_j^X,
\]

\[
\epsilon_{ij} = (1 - \omega_1^\epsilon - \omega_2^\epsilon) \alpha_{ij}^\epsilon + \omega_1^\epsilon \alpha_i^\epsilon + \omega_2^\epsilon \alpha_j^\epsilon,
\]

\[
v_{ij} = (1 - \omega_1^v - \omega_2^v) \alpha_{ij}^v + \omega_1^v \alpha_i^v + \omega_2^v \alpha_j^v,
\]

\[
V_{ij} = (1 - \omega_1^V - \omega_2^V) \alpha_{ij}^V + \omega_1^V \alpha_i^V + \omega_2^V \alpha_j^V,
\]
and $\alpha^X_{ij}, \alpha_i^X, \alpha_j^X \sim \mathcal{N}(0, \Sigma)$ where $\Sigma$ is a $p_x \times p_x$ matrix with entries $\Sigma_{kj} = s^{j-k}_X$.

Further
\[
\begin{pmatrix}
\alpha^Y_{ij} \\
\alpha^V_{ij}
\end{pmatrix}, \begin{pmatrix}
\alpha^Y_i \\
\alpha^V_i
\end{pmatrix}, \begin{pmatrix}
\alpha^Y_j \\
\alpha^V_j
\end{pmatrix} \sim \mathcal{N}\left(0, \begin{pmatrix} 1 & s_{\epsilon V} \\ s_{\epsilon V} & 1 \end{pmatrix} \right)
\]
and $\alpha^V_{ij}, \alpha^V_i, \alpha^V_j \sim \mathcal{N}(0, 1)$.

Usage

```r
make_pliv_multiway_cluster_CKMS2021(
 N = 25,
 M = 25,
 dim_X = 100,
 theta = 1,
 return_type = "DoubleMLClusterData",
 ...
)
```

Arguments

- **N** (integer(1))
  The number of observations (first dimension).
- **M** (integer(1))
  The number of observations (second dimension).
- **dim_X** (integer(1))
  The number of covariates.
- **theta** (numeric(1))
  The value of the causal parameter.
- **return_type** (character(1))
  If "DoubleMLClusterData", returns a DoubleMLClusterData object. If "data.frame" returns a data.frame(). If "data.table" returns a data.table(). If "matrix" a named list() with entries X, y, d, z and cluster_vars is returned. Every entry in the list is a matrix() object. Default is "DoubleMLClusterData".
  ... Additional keyword arguments to set non-default values for the parameters $\pi_{10} = 1.0, \omega_X = \omega_\epsilon = \omega_\nu = (0.25, 0.25), s_X = s_{\epsilon \nu} = 0.25$, or the $p_x$-vectors $\zeta_0 = \pi_{20} = \xi_0$ with default entries $\zeta_0 = 0.5^j$.

Value

A data object according to the choice of return_type.

References

Generates data from a partially linear regression model used in Chernozhukov et al. (2018) for Figure 1. The data generating process is defined as

\[ d_i = m_0(x_i) + s_1 v_i, \]
\[ y_i = \alpha d_i + g_0(x_i) + s_2 \zeta_i, \]

with \( v_i \sim \mathcal{N}(0, 1) \) and \( \zeta_i \sim \mathcal{N}(0, 1). \). The covariates are distributed as \( x_i \sim \mathcal{N}(0, \Sigma) \), where \( \Sigma \) is a matrix with entries \( \Sigma_{kj} = 0.7^{|j-k|}. \) The nuisance functions are given by

\[ m_0(x_i) = a_0 x_{i,1} + a_1 \frac{\exp(x_{i,3})}{1+\exp(x_{i,3})}, \]
\[ g_0(x_i) = b_0 \frac{\exp(x_{i,1})}{1+\exp(x_{i,1})} + b_1 x_{i,3}, \]

with \( a_0 = 1, a_1 = 0.25, s_1 = 1, b_0 = 1, b_1 = 0.25, s_2 = 1. \)

Usage

```r
make_plr_CCDDHNR2018(
 n_obs = 500,
 dim_x = 20,
 alpha = 0.5,
 return_type = "DoubleMLData"
)
```

Arguments

- **n_obs** (integer(1))
  The number of observations to simulate.
- **dim_x** (integer(1))
  The number of covariates.
- **alpha** (numeric(1))
  The value of the causal parameter.
- **return_type** (character(1))
  If "DoubleMLData", returns a DoubleMLData object. If "data.frame" returns a data.frame(). If "data.table" returns a data.table(). If "matrix" a named list() with entries \( X, y \) and \( d \) is returned. Every entry in the list is a matrix() object. Default is "DoubleMLData".

Value

A data object according to the choice of return_type.
References

make_plr_turrell2018

Generates data from a partially linear regression model used in a blog article by Turrell (2018).

Description
Generates data from a partially linear regression model used in a blog article by Turrell (2018). The data generating process is defined as
\[ d_i = m_0(x_i'b) + v_i, \]
\[ y_i = \theta d_i + g_0(x_i'b) + u_i, \]
with \( v_i \sim \mathcal{N}(0, 1) \), \( u_i \sim \mathcal{N}(0, 1) \), and covariates \( x_i \sim \mathcal{N}(0, \Sigma) \), where \( \Sigma \) is a random symmetric, positive-definite matrix generated with \texttt{clusterGeneration::genPositiveDefMat()} . \( b \) is a vector with entries \( b_j = \frac{1}{j} \) and the nuisance functions are given by
\[ m_0(x_i) = \frac{1}{2\pi} \frac{\sinh(\gamma)}{\cosh(\gamma) - \cos(x_i - \nu)}, \]
\[ g_0(x_i) = \sin(x_i)^2. \]

Usage
make_plr_turrell2018(
  n_obs = 100,
  dim_x = 20,
  theta = 0.5,
  return_type = "DoubleMLData",
  nu = 0,
  gamma = 1
)

Arguments
n_obs (integer(1)) The number of observations to simulate.
dim_x (integer(1)) The number of covariates.
theta (numeric(1)) The value of the causal parameter.
return_type (character(1)) If "DoubleMLData", returns a DoubleMLData object. If "data.frame" returns a data.frame(). If "data.table" returns a data.table(). If "matrix" a named list() with entries X, Y and d is returned. Every entry in the list is a matrix() object. Default is "DoubleMLData".
The value of the parameter $\nu$. Default is 0.

The value of the parameter $\gamma$. Default is 1.

Value

A data object according to the choice of return_type.

References

Index

* DoubleML
  DoubleML, 2
  DoubleMLIIVM, 14
  DoubleMLIRM, 18
  DoubleMLPLIV, 22
  DoubleMLPLR, 27

clusterGeneration::genPositiveDefMat(), 44

data.table, 3, 10–13
double_ml_data_from_data_frame, 32
double_ml_data_from_data_frame(), 10, 12

double_ml_data_from_matrix, 33
double_ml_data_from_matrix(), 10, 12
DoubleML, 2, 14, 17, 18, 21, 22, 26, 27, 31
DoubleML::DoubleML, 15, 19, 22, 27
DoubleML::DoubleMLData, 10
DoubleMLClusterData, 10
DoubleMLData, 12
DoubleMLIIVM, 9, 14, 21, 26, 31
DoubleMLIRM, 9, 17, 18, 26, 31
DoubleMLPLIV, 9, 17, 21, 22, 31
DoubleMLPLR, 9, 17, 21, 26, 27

fetch_401k, 34
fetch_bonus, 36

GraphLearner, 16, 20, 23, 28

Learner, 16, 20, 23, 28
LearnerClassif, 16, 20, 28
LearnerRegr, 16, 20, 23, 28

make_iivm_data, 38
make_irm_data, 39
make_pliv_CHS2015, 40
make_pliv_multiway_cluster_CKMS2021, 41
make_plr_CCDDHNR2018, 43

make_plr_turrell2018, 44
Measure, 7, 25, 30
msr(), 7, 25, 30

p.adjust(), 8
ParamSet, 6, 25, 30

R6, 10, 13
R6::R6Class, 2, 14, 18, 22, 27
Resampling, 7, 25, 30
rsmp(), 7, 25, 30

Terminator, 6, 25, 30
tnr(), 6, 7, 25, 26, 30
Tuner, 6, 25, 30
TuningInstance, 6, 25, 30