Package ‘DrBats’

November 27, 2019

Type Package

Title Data Representation: Bayesian Approach That's Sparse

Version 0.1.5

Date 2019-11-15

Maintainer Anne Bisson <anne.bisson@inra.fr>

Description Feed longitudinal data into a Bayesian Latent Factor Model to obtain a low-rank representation. Parameters are estimated using a Hamiltonian Monte Carlo algorithm with STAN. See G. Weinrott, B. Fontez, N. Hilgert and S. Holmes, "Bayesian Latent Factor Model for Functional Data Analysis", Actes des JdS 2016.

Depends R (>= 3.1.0), rstan

Imports ade4, coda, MASS, Matrix, sde

License GPL-3

LazyData TRUE

Suggests fda, ggplot2, knitr, parallel, rmarkdown, testthat

VignetteBuilder knitr

RoxygenNote 7.0.1

NeedsCompilation no

Author Anne Bisson [cre],
 Gabrielle Weinrott [aut],
 Brigitte Charnomordic [aut],
 Benedicte Fontez [aut],
 Nadine Hilgert [aut],
 Susan Holmes [aut]

Repository CRAN

Date/Publication 2019-11-27 15:20:13 UTC

R topics documented:

coda.obj .. 2
coinertia.drbats ... 3
coda.obj

Convert a STAN objet to MCMC list

description

Convert a STAN objet to MCMC list

Usage

coda.obj(stanfit)

Arguments

stanfit a STAN object

Value

codafit an mcmc.list

Author(s)

Gabrielle Weinrott

Examples

data(stanfit) # output of modelFit or main.modelFit
coda.fit <- coda.obj(stanfit)
head(coda.fit)
Perform Coinertia Analysis on the PCA of the Weighted PCA and Deville’s PCA

Usage

coinertia.drbats(
 X.histo = NULL,
 Qp = NULL,
 X = NULL,
 t = NULL,
 t.range = c(0, 1000),
 breaks
)

Arguments

 X.histo the data matrix projected onto the histogram basis
 Qp a matrix of weights, if Qp = NULL the function specifies a diagonal weight
 matrix
 X a data matrix, if X.histo is NULL and needs to be built
 t a matrix of observation times, if X.histo is NULL and needs to be built
 t.range the range of observation times in vector form, if X.histo is NULL and needs to
 be built (default: t.range = c(0, 1000))
 breaks integer number of histogram windows

Value

 co_weight the co-inertia object

Author(s)

Gabrielle Weinrott

Examples

res <- drbats.simul(N = 5, P = 100, t.range = c(5, 100), breaks = 8)
res.coinertia <- coinertia.drbats(X = res$X, t = res$t.simul, t.range = c(5, 100), breaks = 8)
res.coinertia
drbats.simul Main simulation function

Description

Main simulation function

Usage

drbats.simul(
 N = 10,
 P = 150,
 t.range = c(0, 1000),
 b.range = c(0.2, 0.4),
 c.range = c(0.6, 0.8),
 b.sd = 2,
 c.sd = 2,
 a.range = c(-0.4, 0.4),
 y.range = c(0, 10),
 amp = 10,
 per = 12,
 data.type = "sparse",
 breaks = 15,
 sigma2 = 0.2,
 seed = NULL
)

Arguments

N integer number of functions to simulate (default = 10)
P a number of observation times (default = 150)
t.range a range of times in which to place the P observations (default = c(1, 1000))
b.range a vector giving the range of values for the mean of the first mode (default b.range = c(0.2, 0.4))
c.range a vector giving the range of values for the mean of the second mode (default c.range = c(0.6, 0.8))
b.sd the standard deviation for the first mode (default b.sd = 2)
c.sd the standard deviation for the second mode (default c.sd = 2)
a.range a vector giving the range of values for the slope (default a.range = c(-0.4, 0.4))
y.range a vector giving the range of values for the intercept (default y.range = c(0, 10))
amp the amplitude of the cosine function (default = 10)
per the periodicity of the cosine function (default = 12)
data.type string indicating type of functions (options :sparse, sparse.tend, sparse.tend.cos)
Project a set of curves onto a histogram basis

Usage

histoProj(X, t, t.range, breaks)

Arguments

X a matrix

t a matrix of observation times

t.range a range of times in which to place the P projections (default = c(0, 1000))

breaks the number of intervals in the histogram basis
Value

- X.proj: the matrix X after projection
- X.count: a matrix containing the number of observations used to build the projection onto the histogram basis
- windows: a vector containing the first time of each window of the histogram intervals
- X.max: the matrix of minimum values in each window
- X.min: the matrix of maximum values in each window

Author(s)

Gabrielle Weinrott

Examples

```r
res <- drbats.simul(N = 5, P = 100, t.range = c(5, 100), breaks = 8)
res.proj <- histoProj(res$X, res$t.simul, t.range = c(5, 100), breaks = 8)
res.proj
```

modelFit

Fit a Bayesian Latent Factor to a data set using STAN

Description

Fit a Bayesian Latent Factor to a data set using STAN

Usage

```r
modelFit(
  model = "PLT",
  var.prior = "IG",
  prog = "stan",
  parallel = TRUE,
  Xhisto = NULL,
  nchains = 4,
  nthin = 10,
  niter = 10000,
  R = NULL
)
```

Arguments

- **model**: a string indicating the type of model ("PLT", or sparse", default = "PLT")
- **var.prior**: the family of priors to use for the variance parameters ("IG" for inverse gamma, or "cauchy")
pca.Deville

Description

Perform a PCA using Deville's method

Usage

pca.Deville(X, t, t.range, breaks)

Arguments

- `X`
a data matrix
- `t`
a matrix of observation times corresponding to X
- `t.range`
the range of observation times in vector form (ex. t.range = c(0, 1000))
- `breaks`
integer number of histogram windows

Value

- `X.histo`
the matrix projected onto the histogram basis
- `U.histo`
a matrix of eigenvectors in the histogram basis
- `Cp`
a matrix of principal components
- `lambda`
a vector of eigenvalues
- `perc.lambda`
a vector of the percentage of total inertia explained by each principal component
Author(s)
Gabrielle Weinrott

References

Examples
res <- drbats.simul(N = 5, P = 100, t.range = c(5, 100), breaks = 8)
res.pca <- pca.Deville(resX, rest.simul, t.range = c(5, 100), breaks = 8)
res.pca

pca.proj.Xt
PCA data projected onto a histogram basis

Description
PCA data projected onto a histogram basis

Usage
pca.proj.Xt(X, t, t.range = c(0, 1000), breaks = 15)

Arguments
X the data matrix
t the matrix of observation times
t.range a vector specifying the observation time range (default : c(0, 1000))
breaks the number of breaks in the histogram basis (default : breaks = 15)

Value
Xt.proj a matrix of projected observations
U a matrix of eigenvectors
lambda a vector of eigenvalues
lambda.perc the percentage of inertia captured by each axis

Author(s)
Gabrielle Weinrott
Examples

```r
res <- drbats.simul(N = 5, P = 100, t.range = c(5, 100), breaks = 8)
pca.proj.Xt(res$X, res$t.simul, t.range = c(0, 100), breaks = 8)
```

postdens

Calculate the unnormalized posterior density of the model

Description

Calculate the unnormalized posterior density of the model

Usage

```r
postdens(mcmc.output, Y, D, chain = 1)
```

Arguments

- `mcmc.output`: an mcmc list as produced by clean.mcmc
- `Y`: the data matrix
- `D`: the number of latent factors
- `chain`: the chain to plot (default = 1)

Value

post a vector containing the posterior density at each iteration

Author(s)

Gabrielle Weinrott

Examples

```r
data(“toydata”) data(“stanfit”) dens <- postdens(coda.obj(stanfit), Y = toydata$Y.simul$Y, D = 2, chain = 1) hist(dens)
```
\textbf{stanfit} \hspace{1cm} \textit{A stanfit object fitted to the toydata}

\section*{Description}
A stanfit object fitted to the toydata

\section*{Usage}
\texttt{stanfit}

\section*{Format}
A large stanfit object

\textbf{toydata} \hspace{1cm} \textit{A toy longitudinal data set}

\section*{Description}
A toy longitudinal data set

\section*{Usage}
\texttt{toydata}

\section*{Format}
A list with 5 elements:

\begin{description}
\item[Y.simul] a list of simulated data with 3 elements
\item[t.simul] a matrix with 5 rows and 150 columns giving the observation times of the original data
\item[X] the original data matrix with 5 rows and 150 columns
\item[proj.pca] a list with 4 elements: results of the function histoProj(X, t, t.range = c(0, 1000), breaks = 8)
\item[wlu] a list with 4 elements: results of the function W.QR(U, lambda) where U and lambda are the results of the PCA of X
\end{description}
Description

Format scores output for visualization

Usage

visbeta(mcmc.output, Y, D, chain = 1, axes = c(1, 2), quant = NULL)

Arguments

mcmc.output an mcmc list as produced by clean.mcmc
Y the matrix of data
D the number of latent factors
chain the chain to use (default = 1)
axes the axes to use (default = c(1, 2))
quant a vector of quantiles to retain (default = NULL)

Value

mean.df are the MCMC estimates for the parameters
points.df contains all of the estimates of the chain
contour.df contains the exterior points of the convex hull of the cloud of estimates

Author(s)

Gabrielle Weinrott

Examples

data("toydata")
data("stanfit")
codafit <- coda.obj(stanfit) ## convert to mcmc.list
beta.res <- visbeta(codafit, Y = toydata$Y.simul$Y, D = toydatawluD, chain = 1,
axes = c(1, 2), quant = c(0.05, 0.95))

ggplot2::ggplot() +
 ggplot2::geom_path(data = beta.res$contour.df, ggplot2::aes(x = x, y = y, colour = ind)) +
 ggplot2::geom_point(data = beta.res$mean.df, ggplot2::aes(x = x, y = y, colour = ind))
visW

Plot the estimates for the latent factors

Description
Plot the estimates for the latent factors

Usage

```r
visW(mcmc.output, Y, D, chain = 1, factors = c(1, 2))
```

Arguments

- **mcmc.output**: an mcmc list as produced by clean.mcmc
- **Y**: the matrix of data
- **D**: the number of latent factors
- **chain**: the chain to plot (default = 1)
- **factors**: a vector indicating the factors to plot (default = c(1, 2))

Value

- **res.W**: a data frame containing the estimates for the factors, and their lower and upper bounds
- **Inertia**: the percentage of total inertia captured by each of the factors

Author(s)
Gabrielle Weinrott

Examples

```r
data("toydata")
data("stanfit")
codafit <- coda.obj(stanfit) ## convert to mcmc.list
W.res <- visW(codafit, Y = toydata$Y.simul$Y, D = toydata$wlu$D,
chain = 1, factors = c(1, 2))

## plot the results
data <- data.frame(time = rep(1:9, 2), W.res$res.W)
ggplot2::ggplot() +
ggplot2::geom_step(data = data, ggplot2::aes(x = time, y = Estimation, colour = Factor)) +
ggplot2::geom_step(data = data, ggplot2::aes(x = time, y = Lower.est, colour = Factor),
linetype = "longdash") +
ggplot2::geom_step(data = data, ggplot2::aes(x = time, y = Upper.est, colour = Factor),
linetype = "longdash")
```
Build and decompose a low-rank matrix W

Description

Build and decompose a low-rank matrix from a matrix of eigenvectors and eigenvalues from principal component analysis

Usage

\[W.QR(U, \lambda) \]

Arguments

- \(U \) a matrix of eigenvectors
- \(\lambda \) a vector of corresponding eigenvalues

Value

- \(W \) a low-rank matrix
- \(D \) the number of latent factors
- \(Q \) the orthogonal matrix of the \(W = QR \) matrix decomposition
- \(R \) the upper triangular matrix of the \(W = QR \) matrix decomposition

Author(s)

Gabrielle Weinrott

Examples

```r
res <- drbats.simul(N = 5, P = 100, t.range = c(5, 100), breaks = 8)
res.pca <- pca.Deville(res$X, res$t.simul, t.range = c(5, 100), breaks = 8)
Wres.pca <- W.QR(res.pca$U, res.pca$lambda)
Wres.pca
```
weighted.Deville

Perform a weighted PCA using Deville’s method on a data matrix X that we project onto a histogram basis and weighted.

Description

Perform a weighted PCA using Deville’s method on a data matrix X that we project onto a histogram basis and weighted.

Usage

weighted.Deville(X, t, t.range, breaks, Qp = NULL)

Arguments

X a data matrix
t a matrix of observation times corresponding to X
t.range the range of observation times in vector form (ex. t.range = c(a, b))
breaks integer number of histogram windows
Qp a matrix of weights, if Qp = NULL the function specifies a diagonal weight matrix

Value

X.histo the matrix projected onto the histogram basis
U.histo a matrix of eigenvectors in the histogram basis
Cp a matrix of principal components
lambda a vector of eigenvalues
perc.lambda a vector of the percentage of total inertia explained by each principal component

Author(s)

Gabrielle Weinrott

Examples

res <- drbats.simul(N = 5, P = 100, t.range = c(5, 100), breaks = 8)
res.weighted <- weighted.Deville(resX, rest.simul, t.range = c(5, 100), breaks = 8, Qp = NULL)
res.weighted
Index

*Topic datasets
 stanfit, 10
toydata, 10
coda.obj, 2
coinertia.drbats, 3
drbats.simul, 4
histoProj, 5
modelFit, 6
pca.Deville, 7
pca.proj.Xt, 8
postdens, 9
stanfit, 10
toydata, 10
visbeta, 11
visW, 12
W.QR, 13
weighted.Deville, 14